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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread

rapidly throughout the world, causing severe morbidity and mortality. Since the

first reports of Coronavirus disease 2019 (COVID-19) in late 2019, research on

the characteristics of specific humoral immunity against SARS-CoV-2 in

patients with COVID-19 has made great progress. However, our knowledge

of persistent humoral immunity to SARS-CoV-2 infection is limited. The

existence of protective immunity after infection will affect future transmission

and disease severity. Therefore, it is important to gather knowledge about the

kinetics of antibody responses. In this review, we summarize the information

obtained so far on the characteristics and kinetics of the SARS-CoV-2 infection

of specific humoral immune response, especially in neutralizing antibodies and

their relationship with disease severity. In addition, with the emergence of

variants of concern, we summarize the neutralizing effect of specific humoral

immunity on variants of concern after the initial SARS-CoV-2 infection

and vaccination.
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Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The first case was detected in

Wuhan, Hubei, China at the end of 2019, and then it spread rapidly, forming a large-

scale global outbreak. SARS-CoV-2 is an enveloped single-stranded, positive-sense RNA

virus, belonging to the Betacoronavirus genus (1). There are 14 open reading frames

(ORFs) in the SARS-CoV-2 genome, encoding four structural proteins: the spike
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glycoprotein (S), envelope (E), membrane (M), and nucleocapsid

(N); 16 nonstructural proteins (NSP 1–16), and nine accessory

proteins (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9a,

ORF9b, ORF10) (2, 3). The viral capsid formed by the N protein

wraps the viral genome, while the E and M proteins participate

in the assembly and release of the virion. The S protein is the key

protein for viral invasion of cells (4). The S protein consists of S1

and S2 subunits. S1 folds into the N-terminal domain (NTD),

receptor-binding domain (RBD), and two C-terminal domains

(CTDs) (5, 6). The RBD of S1 interacts with human angiotensin-

converting enzyme (hACE2) to promote fusion between the cell

membrane and the virus envelope, and the virion can reproduce

in the cells (3, 5–10). Figure 1 shows a schematic diagram of the

viral infection and replication.

The immune system can be broadly divided into the innate

immune system and the adaptive immune system. Innate

immunity is the first line of defense of the immune system

(11). The innate immunity system restricts virus replication in

infected cells and produces an antiviral state in the local tissue

environment, which slows down the replication and spread of
Frontiers in Immunology 02
the virus. In addition, the innate immune response is critical to

trigger the adaptive immune response (12). Adaptive immunity

takes time to generate enough virus-specific cells to control the

infection. Adaptive immunity involves three main cell types:

CD8+ T cells, CD4+ T cells, and B cells (12). After the virus

enters the tissue cells, viral peptides are presented to CD8+

cytotoxic T cells through the class I major histocompatibility

complex (MHC) protein, and CD8+ cytotoxic T cells can

produce cytotoxic effects on virus-infected tissue cells and

induce apoptosis through perforin, granzyme, and other

mechanisms (13). Professional antigen-presenting cells (e.g.,

macrophages and dendritic cells) recognize viruses and viral

particles, and the class II major histocompatibility complex

(MHCII) presents viral peptides to CD4+ T cells. In patients

with SARS-CoV-2 infection, CD4+ T cells usually differentiate

into T helper type 1 (Th1) cells and T follicular helper (Tfh) cells,

which have the ability to instruct B cells, help CD8+ T cells, and

recruit innate immunity cells. Recognition of the virus by B cells

leads to their activation and interaction with CD4+ T cells (13).

After activation, naive B cells proliferate and differentiate into
FIGURE 1

The life cycle of SARS-CoV-2 and the specific immune response to the virus. The virus particles of SARS-CoV-2 are composed of four major
proteins, envelope (E), spike glycoprotein (S), membrane (M), and the nucleocapsid (N). SARS-CoV-2 promotes virus invasion through the
interaction between the S protein, hACE2, and TMPRSS2. After successful invasion, the viral genome RNA is released in the cytoplasm, and then
initiates the translation of the genome. The translated polymeric proteins are cleaved by Mpro and PLpro to generate non-structural proteins
(nsps). These nsps are involved in viral replication and transcription. With the nucleocapsid (N) protein-encapsidated genomic RNA, the
structural proteins are translocated to the endoplasmic reticulum (ER) membrane and assembled into a new virus in the ER-to-Golgi
intermediate compartment (ERGIC). Finally, virus particles are secreted from infected cells via exocytosis. APC, B cells, CD4+ T cells, and CD8+
T cells are the main cells that participate in adaptive immunity. The virus is recognized by professional antigen-presenting cells (such as
dendritic cells and macrophages), and the viral peptides are presented to CD4+ T cells through the major histocompatibility complex (MHCII)
class II. Then, the CD4+ T cells differentiate into a series of helper cells, which in turn help activate CD8+ T cells and B cells. CD8+ T cells can
kill infected cells with the assistance of CD4+ T cells and MHCI. Simultaneously, B cells transform into plasma cells to produce neutralizing
antibodies to prevent the virus from invading again.
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plasma cells, secreting antibodies to prevent the entry of viruses

outside the cells (Figure 1). The seroconversion time of

antibodies varies according to the difference of the target

antigen and the subtype of the antibody (12). In the fight

against the virus, anti-SARS-CoV-2 antibodies are essential.

Proper neutralization will greatly reduce the number of viruses

that infect ACE2 receptor-expressing cells. Meanwhile, the

p r e s enc e o f an t i bod i e s a l s o p rov id e s immun i t y

against reinfection.
Dynamic changes in antibodies

In the process of B cell differentiation, a unique variable

chain is produced through a series of complex gene

rearrangements and can be subjec ted to somat ic

hypermutation after exposure to the antigen to allow affinity

maturation (14). Different variable domains can specifically

recognize different parts of the virus. The nucleocapsid

protein, spike glycoprotein, and S protein fragments (S1, RBD,

S2) of SARS-CoV-2 are the main antigens that induce antibody

responses (15). The Spike protein is the main target of SARS-

CoV-2 neutralizing antibodies, and the Spike RBD is the target

of > 90% of neutralizing antibodies (12). The constant domain

includes a fragment crystallization (Fc) portion that mediates the

biological effect of an antibody by binding to cell surface

receptors (Fc receptors) on circulating leukocytes,

macrophages, and natural killer cells (16). Human antibodies

are divided into five isotypes according to their constant domain:

Immunoglobulin (Ig)M, IgG, IgA, IgD, and IgE. Different

isotypes play a diverse roles in the process of anti-viral

infection according to the characteristics of their structure,

generation time, distribution, and half-life (6).

Almost all SARS-CoV-2 transmission models assume that

the immunity generated by the infection has a protective effect

against reinfection for a duration of at least 1 year (17). To form

a lasting and effective immunity to the virus, the dynamics of

antibody changes are very important. The study of the dynamic

changes of antibody levels mainly involves the seroconversion

time of different isotypes, the change of their concentrations

with time, and how long they last. The study of antibody

duration closely follows the time course of the first known

infected patients. In this section, we summarize relevant

information on the dynamic of antibodies (Figure 2A and

Supplementary Table 1).
IgM

IgM is the first immunoglobulin expressed during B cell

development. Monomeric IgM is expressed on the surface of

naive B cells. After initiating adaptive immune defense against
Frontiers in Immunology 03
pathogens, plasma cells first secrete multimeric (usually

pentameric) IgM into the blood. IgM works by opsonizing

(coating) antigens to destroy and fix complement (16).

Arkhipova-Jenkins et al. comprehensively analyzed a number

of studies on post–SARS-CoV-2 infection antibodies and

showed that the mean detection time of IgM was about 7 days

after disease onset, the peak was about 20 days into the disease,

and it decreased at about 27 days (moderate-strength evidence)

(18). There are relatively few studies tracking the duration of

IgM, possibly because IgM mostly works in the early stage and

has a short half-life. Wheatley et al. found that S-IgM decays

faster in the early stage, with a half-life of 55 days, and slower in

the later stage of recovery, with a half-life of 118 days (19). The

RBD-IgM level dropped by about 6 folds within 3 months after

discharge and then turned negative (20). The study of patients

from Wuhan found that S and N-IgM peaked within 1–2

months after the onset of symptoms, then rapidly decreased,

and was less than the cut-off value at 5–6 months. At 1 year, the

residual positive rates were 5.3% and 1.3%, respectively (21). Our

previous research found similar results. At 1 year (213–416 days

post-symptom onset, PSO), the residual positive rate of RBD-

IgM was 7.1%, whereas S2 and N-IgM were both 0% (22).
IgA

IgA is mainly secreted in the form of dimeric molecules,

which called secreted IgA (sIgA), and a small amount of IgA is

also secreted into the serum as a monomer. The mucosal surface

is the first entry point of SARS-CoV-2. sIgA is mainly found in

the mucosa, tears, and saliva and plays a vital role in the immune

defense of the mucosal surface (16). sIgA neutralizes invading

viruses by binding to the Spike protein on the surface of SARS-

Cov-2, thereby, preventing the virus from colonizing the

genitourinary tract, gastrointestinal tract, and respiratory tract

(23). The IgA response that appears in the early stage is stronger

than the IgM response and lasts longer. S-IgA could be detected

as early as 5–8 days PSO (5, 24). The median conversion time of

IgA, targeting S1 or S, was 11–13 days PSO (24, 25). The specific

IgA, targeting different antigens (S, RBD, N), peaked at about 1

month (16–30 days PSO) and then declined (26, 27). Cross-

sectional analysis showed that the S-IgA response could be

described using a short one-phase decay model incorporating

a prolonged plateau phase, with initial half-lives of S-IgA and

RBD-IgA of 14 days and 27 days, respectively, after which their

levels declined relatively gently. In longitudinal analysis, the

half-life of S-IgA was about 210 days and that of RBD-IgA was

74 days (28). Wheatley et al. found that S-IgA showed a similar

two-phase decay, with a half-life of 42 days in the early stage and

a slower decay in the later stage of recovery (19). A 1-year

follow-up analysis found that the RBD-IgA declined by about 3

folds over the first 3 months, remained steady up to 6 months,
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and became negative at 12 months (20). Another study showed

that the S1-IgA positive rate of patients with mild COVID-19

was 92% at 6 weeks after the onset, which dropped to 78% after 6

months with a decrease in titer of about 50%, and while at 12

months, there was still a 78% positive rate and the titer was not

significantly different from that at 6 months (29). Sterlin et al.

tested the antibody titers in the serum, saliva, and

bronchoalveolar lavage fluid of patients with COVID-19 and

found that IgA in saliva lasted longer than that in serum, and the

concentration of IgA in saliva was higher than that of IgG. IgA

decreased significantly in the serum at 1-month PSO, while

neutralizing, IgA could still be detected in the saliva 49–73 days

PSO, but not at a later time point (189–230 days PSO) (30). Our

previous studies have shown that N-IgA rises fastest in the early

stages of infection, with a 30.4% seroprevalence rate at 1-week

PSO. During the follow-up period (213–416 days POS), the
Frontiers in Immunology 04
positive rate of IgA antibodies (targeting RBD, S2, and N)

dropped below 10% (22).
IgG

IgG is the most common immunoglobulin in the blood that

usually works in the later stages of the humoral immune

response. Its small size (monomeric), high diffusivity, and high

affinity, make IgG the main type of antibody involved in

neutralization, opsonization, and activation of the complement

cascade (5, 16). In addition, because IgG has a durable half-life

and is associated with memory B cells, it plays a role in long-

lasting immunity (6). The seroconversion time of IgG is later

than that of IgM. Based on a number of studies, it is suggested

that IgG can be detected at about 12 days PSO, reaches a peak at
B

A

FIGURE 2

Kinetics severe acute respiratory syndrome coronavirus 2 infection antibody responses. (A) Graph showing IgA, IgM, IgG, Nab, viral load, and
total neutralizing antibody trends. (B) Graph of disease severity, viral load, and total neutralizing antibodies.
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about 25 days, and then remains relatively stable (moderate-

strength evidence) (18).

The IgG targeting the nucleocapsid and the IgG only

recognizing RBD have a shorter duration than the IgG

targeting the intact Spike protein (28). Dan et al. conducted a

cross-sectional study on 188 patients with COVID-19 (detection

time 6–240 days PSO). A total of 254 samples were analyzed,

among which 43 samples were tested at more than or equal to 6

months after infection. The best-fit curve indicated that

continuous decay was the preferred model, which speculated

that the half-lives of S-IgG, RBD-IgG, and N-IgG were about 140

days, 83 days, and 68 days, respectively. Longitudinal studies

using the subset of subjects donated at two or more time points

showed similar trends, the half-lives of IgG targeting S, RBD, and

N were 103 days, 69 days, and 68 days, respectively (28). Terpos

et al. collected the anti-SARS-CoV-2 antibody data of patients

with COVID-19 longitudinally at three time points (median 2.1,

5.6, and 8.4 months), and found that antibodies targeting four

antigens (the trimeric Spike, Spike-RBD, Nucleocapsid, and the

Nucleocapsid RNA Binding Domain) decreased within 8

months after infection, and showed a two-phase decay with a

more obvious decrease during the first 6 months PSO. It was

estimated that the half-lives of IgGs against Spike, Spike-RBD,

nucleocapsid, and Nucleocapsid RNA Binding Domain were 97,

62, 47, and 47 days, respectively, and the estimated half-life was

significantly longer after 6 months (31). The Co-Stars study

recruited 3,679 healthcare workers prospectively and performed

monthly serological testing for a maximum of 7 months. Under

the most pessimistic assumptions of continuous exponential

decay, the half-lives for IgG targeting S, RBD, and N were

predicted to be 126, 102, and 60 days. In addition, at 200 days

PSO, 75% of individuals had detectable N antibodies, > 95% of

individuals had detectable S antibodies, and it was predicted that

S antibodies would remain detectable in 95% of individuals until

465 days (32). Wheatley et al. distinguished S-specific antigens in

more detail and reported that the half-life of IgG targeting S-

specific was 229 days, RBD was 126 days, S1 was 115 days, and

S2 was 344 days, whereas N-specific IgG decayed significantly

faster, with a half-life of 71 days (19).

A long-term follow-up studies showed that the IgG overall

seropositivity rate of convalescent individuals remained

relatively stable. A 1-year longitudinal study of patients from

Wuhan found that RBD-IgG titers decreased over time, whereas,

after 9 months, the geometric mean titer (GMT) began to

stabilize at 64.3% of the initial level. The GMT of RBD-IgG at

the 12th month after diagnosis decreased by 69.9% compared

with that in the first month, and the positive rate exceeded 70%.

Patients with a higher initial titer decayed faster; however, the

RBD-IgG titer was still higher than that of patients with a lower

initial titer (15). Other longitudinal studies came to similar

conclusions, that RBD-IgG declined rapidly by about 3 folds

within the first 3 months, further declined by about 5 folds at 6
Frontiers in Immunology 05
months, and remained stable from 6 months to 1 year (20, 33).

As for S1-IgG, the S1-IgG enzyme-linked immunosorbent assay

(ELISA) test of patients with apparent pneumonia remained

positive 1 year after infection, and some patients with subtle

pneumonia (33.3%) and asymptomatic patients (28.6%) had a

negative result (34). Choe et al. reported that the detectable rate

of S1-IgG in patients with mild COVID-19 after 1 year was

57.7% (35). Longitudinal studies found that the S1-IgG positive

rate of patients with mild COVID-19 dropped from 95% at 6

weeks to 70% at 6 months after the onset, with the titer

decreasing by about 50%, while at 12 months, 66% of patients

were still positive, and the titer remained stable (29). Guzmán-

Martıńez et al. predicted that the maximum duration of S1-IgG

in SARS-CoV-2 infected patients could reach 744 days based on

linear mixed models (36). Similar to RBD-IgG, S-IgG declined

rapidly within the first 6 months and remained stable until 12

months (20), whereas the N-IgG declined significantly during

this period (33, 37), with only 20% remaining seropositive after 1

year (37). Consistent with this research, Haveri et al. reported

that S-IgG persisted in 97% of subjects for at least 13 months

after infection, but only 36% had N-IgG. Studies also reported a

high seroprevalence rate of both S-IgG and N-IgG after 1 year.

The S-IgG and N-IgG seroprevalence rates of convalescent

individuals were 90.8% and 88.2%, respectively (21), and in

patients with mild COVID-19, 84.6% and 82.7% of individuals

still had detectable S-IgG and N-IgG, respectively (35). At 14

months, the anti-spike-receptor binding domain (S-RBD) IgG

persisted in 96.8% of mildly and moderately infected subjects

(38). S2 was not routinely evaluated in most serological tests, and

our study found that S2 IgG maintained a high positive rate

during follow-up. The seropositivity rate of S2-IgG (85.7%) at 1

year (213–416 days POS) was higher than that of RBD-IgG and

N-IgG at 19.0% and 52.4%, respectively (22).
Neutralizing antibodies

Not all antibodies that bind to pathogenic particles have a

neutralizing effect. Neutralizing antibodies (Nabs) that can

prevent viruses from infecting cells by affecting virus surface

molecules have vital functions in restricting virus replication in

host cells and reduce virus infectivity (39). The specific binding

of non-neutralizing antibodies might promote SARS-CoV-2 to

enter cells through Fc-Fc receptor interaction and cause

antibody-dependent enhancement (ADE) (23).

Research has shown that the dynamic changes of Nabs are

quite different. Nabs can be detected 6–15 days after disease

onset (40), peak at 14–45 days (26), and then decrease (18, 41).

Nabs showed a two-phase decay, rapidly decreasing within 1–2

months, which was related to the rapid decline of IgM and IgA,

and then a slow decrease, which was consistent with the slow

decline of IgG (39). In a cross-sectional study, the half-life of the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.864278
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.864278
one-phase decay of Nabs was 27 days, the half-life of continuous

decay was estimated to be 114 days, and the half-life in the

longitudinal analysis was 90 days (28). The longitudinal study by

Wheatley et al. also found that the decline of neutralization titer

conforms to a two-phase decay model (23). The half-life of up to

day 70 PSO was 55 days, and then the decay slowed down, with

an estimated half-life of 519 days. This was consistent with the

two-phase decay of immune plasma’s capacity to inhibit the

interaction of viral RBD with hACE2 receptors (19). Another

study proposed a differential half-life (35). The half-life of Nabs

in the first 6 months was 47 days, and the half-life from 6 to 8

months was reduced to 27 days. The study had relatively few

follow-up data at 8 months; therefore, this estimation should be

deemed explorative. In addition, this difference might also be

related to the differences in the calculation methods between

studies (31).

The titer of Nabs decreases over time and their protective

ability also declines; however, the protective effect of Nabs

against serious diseases might last longer. A study of the

earliest patients in Wuhan found that the neutralizing activity

was only detected in about 43% of patients at 1-year PSO, and

most individuals had low Nab titers (21). Other studies have

shown that 48%–57.7% of patients with mild COVID-19 had

positive neutralizing activity 1 year after infection (29, 35).

Haveri showed that in a population with a lower proportion of

elderly people, Nabs against wild-type (WT) virus persisted in

89% of patients for at least 13 months after infection (42). Our

research revealed a stable positive rate of Nabs among the

samples taken from patients with the longest follow-up (213–

416 days POS), among which 95.2% remained positive. This

might be related to a large number of severe and critically ill

patients included in the study (44.1% and 29.4%, respectively)

(22). Differences in the included population would affect the

results of the duration of Nabs.

The detectable Nabs might not be sufficient to provide

protection, and the Nab titer is of more concern. The

detection methods of the Nab titer in different studies are

quite heterogeneous; therefore, it is difficult to compare the

absolute magnitude of the responses. The Nab titer decreased

significantly in the first 6 months after infection, and the decline

was slower between 6 months and 1 year (20, 34), with no

significant difference being detected between Nab titers at 12

months and 6 months after the initial infection in patients (20,

33). A study on healthcare workers shown that the Nab titer at 1

year was not significantly different from the titers at 1–3 months

after the initial infection, and Nabs provided protection against

re-infection 1 year after the first infection for 56.1% of healthcare

workers who had not been vaccinated (43).

In addition, a decline in antibody titers might not indicate a

decrease in protection. A mature SARS-CoV-2 antibody

response enhances cross-neutralization toward circulating

variants. Moriyama. et al. indicated that although the antibody

titer and total neutralizing activity declined, neutralization
Frontiers in Immunology 06
potency (neutralizing ability per virus-binding antibodies) and

neutralization breath (cross-neutralizing ability to variants per

neutralizing antibodies) increased overtime after 3 months PSO

(44). Antibodies induced by SARS-CoV-2 accumulated somatic

mutations in the germinal center, which could increase the

affinity for cognate antigens. Compared with the antibodies

isolated at 1.3 months, those isolated at 6.2 months had higher

potency (45). The persistent viral antigen deposition during the

convalescence period mediated the progressive supply of high-

affinity antibodies, while low-affinity antibodies decayed over

time. The increase in neutralization breath might be related to

the durable IgG response that was resistant to RBD mutations

(44). Khoury et al. estimated that about 20% of the average

convalescent neutralizing antibody titer could provide 50%

protection from symptomatic COVID-19, and a lower Nab

titer was required to provide 50% protection from severe

COVID-19, at approximately 3% of the average convalescent

Nab titer (46). According to the threshold, 17% of COVID-19

survivors obtained 50% protection against detectable WT SARS-

CoV-2 re-infection and 87% of participants received 50%

protection against severe disease of up to 1-year post infection

(47). Lau et al. estimated that in symptomatic patients, the levels

of Nabs conferring 50% protection would be maintained for

around 990 days PSO (48).
The relationship between antibody
kinetics and disease severity

There is a wide heterogeneity in the severity of COVID-19

disease, and the patient’s antibody response varies. Available

studies suggest that irrespective of disease severity, the majority

of patients mount a robust adaptive immune response. Higher

levels of antibodies and delayed humoral response are associated

with severity (49–51) (Figure 2B).

In general, compared with patients with asymptomatic or

mild infections, the levels of several antibody isotypes and Nabs

in patients with severe and critical SARS-CoV-2 are higher. In

the acute phase, the IgG seroprevalence was not significantly

different between asymptomatic patients and symptomatic

patients at 81.1% and 83.8%, respectively. However, the IgG

level of asymptomatic patients was significantly lower relative to

the symptomatic group, and more asymptomatic patients

became seronegative in the early convalescent phase (52).

Rijkers et al. compared patients with severe and mild disease

and showed that only 87% of patients with mild disease had

detectable antibodies (IgA and IgG) at 21–28 days PSO, with a

significantly lower titer than that of patients with severe disease

(53). Yu et al. reported similar results, compared with patients

with non-severe disease, those with severe disease had

significantly higher levels of IgA and IgG; however, there was

no statistically significant difference in IgM levels (25).
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Meanwhile, Lynch et al. reported that compared to those with

milder disease, patients admitted to the ICU had enhanced peak

IgM levels at 6–20 days and higher peak IgG levels after 5 days

(54). In addition, the antibody response of patients with severe

COVID-19 was not only higher but also had broader SARS-

CoV-2 polyantigenicity, whereas patients with only spike

reactivity tended to exhibit mild or moderate symptoms (55).

In patients with mild or asymptomatic disease, the

neutralizing activity decreased insignificantly within 6 months

after diagnosis or symptoms onset. In comparison, the titers of

Nabs in hospitalized patients were higher and followed a two-

phase decay pattern, with a rapid decline at first and a slowdown

after day 80. Nonetheless, hospitalized patients still had higher

neutralizing activity than patients with mild disease at 6 months

(50). However, Xiang et al. found that 1 year after the onset of

symptoms, in convalescent patients, the proportion of

neutralizing antibodies in patients who had non-severe disease

was higher than that in severely ill patients at 44% and 39.1%,

respectively (21). Feng et al. showed Nab levels were only

transiently higher as a result of severe symptoms during the

earlier convalescence stage, which then decreased from 3 months

to 1 year (20).

Another view is that the clinical trajectory and results are not

related to the cross-sectional level of the antibody, but related to

the timing of antibody production and antibody kinetics. Ren

et al. found that the role of antibody titers in predicting the

severity of COVID-19 was limited; however, a delayed antibody

response was a risk factor for disease severity (56). A study

reported that IgG and IgM levels in critical cases were lower than

those in severe and moderate cases at the initial stage of onset.

Compared with the moderate group, the increase in IgM in the

severe group was delayed, whereas in the critical group, the

production of both IgM and IgG antibodies was delayed (57).

Lucas et al. found that high S-IgG was associated with increased

disease severity; however, the overall humoral response of

patients who died was not higher than that of live discharged

patients. Patients who died showed a delayed humoral response,

and the delayed seroconversion kinetics was associated with

impaired virus clearance. In addition, early Nab production (<

14 days PSO) was related to the improvement of clinical

symptoms and the reduction of mortality, and compared with

the late Nab production group, the maximum viral load over the

entire course was lower (58). Zhou et al. also showed that

compared with discharged patients, the anti-S, anti-RBD, and

anti-neutralizing antibodies levels in patients who died were

significantly lower in the first week PSO, increased in week 2,

and then tended to be consistent with those of the discharged

patients (59).

There are many factors that affect the severity of COVID-19

infection and neutralizing antibody levels, such as age, gender,

comorbidities, etc. The older the age, the higher the risk of the

fatal disease. A positive correlation was found between age and
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antibody levels (60). This may be due to the decreasing

abundance of naive T cells and professional antigen-presenting

cells in the elderly, delaying adaptive immune responses, and

resulting in a high-viral burden that derives higher antibody titer

(12, 61). Male and female patients have different immune

capabilities at the early stage of SARS-CoV-2 infection. During

SARS-CoV-2 infection, T cell activation was stronger in female

patients than in male patients (12, 62, 63). By contrast, male

patients are at higher risk of severe COVID-19 and have higher

levels of neutralizing antibodies compared with female patients

(60, 63). Additionally, patients with comorbidities (such as

cardiovascular disease, obesity, and type 2 diabetes mellitus)

have an increased rate of severe and fatal COVID-19 disease

(62). At 6 months PSO, patients with comorbidities have higher

levels of S-IgG and neutralizing antibody (64), which may be

related to immunosenescence and a dysfunctional

immune system.
Neutralization of virus variants

Since onset of the new coronavirus epidemic, a variety of

SARS-CoV-2 variants have appeared. The first variant was

D614G, identified in January 2020. The mutation position is

close to the S1:S2 processing site that increases the infectivity of

the virus (65). Among the variants that emerged subsequently,

the World Health Organization (WHO) designated the

following as variants of concern (VOC): B.1.1.7 (Alpha),

B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529

(Omicron) [Phylogenetic Assignment of Named Global

Outbreak lineages (Pangolin) designation] (66). The Alpha

variant, containing both N501Y and D614G mutations in the

RBD, was discovered in the UK at the end of 2020. N501Y is one

of the six ACE2 contact residues. The N501Y mutation increased

the affinity of the spike protein for ACE2 (65, 67). The Beta

variant, identified in South Africa, has three mutations (E484K,

K417N, and N501Y) in the RBD. The mutations of the Brazilian

variant Gamma (E484K, K417T, and N501Y) were similar to

those of Beta (65). The SARS-CoV-2 B.1.617 lineage was

identified in India in October 2020 and includes three main

subtypes (B1.617.1, B.1.617.2, and B.1.617.3). B.1.617.2, also

termed as the Delta variant, is believed to spread more quickly

compared with the other variants and has several key mutations:

L452R, P681R, and T478K (66, 68). The Omicron variant, first

discovered in Botswana and South Africa in early November

2021, contains more than 30 mutations in the spike protein and

is more transmissible than the Delta variant (69). The Omicron

variant is subdivided into three sublineages, BA.1, BA.2, and

BA.3, of which BA.2 has the strongest transmissibility (70). In

addition, other variants have been observed: 20A.EU2 (Spain),

COH.20G/677H (Columbus, OH), B.1.427/429 (California),

B.1.526 (New York), and B.1.1.298 (Danish mink), etc. (65, 67,
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71). The mutations of these variants are mainly in the spike,

which are mostly related to increased infectivity and decreased

neutralization efficiency, and might escape from humoral

immunity acquired via prior infections or vaccinations (66).

Although all VOCs are resistant to convalescent serum, the

degree of resistance varies among VOC strains. The Omicron

variant has the strongest resistance, followed by the Beta, Delta,

and Gamma variants, with the Alpha variant having the weakest

resistance (44, 66, 72–74). Chen et al. evaluated 106 studies

systematically and found that in the live virus neutralization

assay, the Beta and Delta variants escaped the neutralization

effect mediated by natural infection significantly, showing 4.1-

fold and 3.2-fold reductions, respectively, followed by the

Gamma and Alpha variants with 1.8-fold and 1.4-fold

reductions, respectively (66). One study showed that compared

with Victoria (early pandemic virus), the neutralization titers for

Omicron variant in convalescent serum from patients previously

infected with Alpha, Beta, Gamma, and Delta variants were

decreased by 33.8 folds, 11.8 folds, 3.1 folds, and 1.7 folds,

respectively (75). A long-term studies have shown consistent

results. At 1-year post–SARS-CoV-2 infection, the neutralizing

activity of the patient’s serum against Alpha, Beta, B.1.526, and

Gamma variants was generally lower than that of against theWT

SARS-CoV-2 virus, and the Beta variant had the most loss of

activity (33). Compared with the Alpha and D614G strains, the

neutralizing titers of the convalescent patients’ serum against

Delta at 6 months PSO were significantly reduced by 4 and 6

fold, respectively, which was similar to that of against Beta. At 12

months, the neutralizing activity against Delta and Beta

decreased by 4 folds relative to Alpha (68). One study

collected convalescent sera at 6 and 12 months PSO, and

found that 91% and 94% of them showed neutralizing activity

against the Delta variant, whereas only 36% and 39% remained

active against the Omicron variant (76).

In addition to the N501Y mutation, the Beta and Gamma

variants have two other RBD mutations (E484K and K417N/T),

of which E484K affects antibody neutralization resistance to a

greater extent. ELISA-based quantification of RBD IgG

antibodies showed that in the moderate and severe groups,

IgG antibody binding was reduced slightly by the N501Y

mutation (1.1 to 1.2 folds), whereas the E484K mutation

significantly reduced the binding of IgG antibodies (2.7 to 2.9

folds). Furthermore, K417N and/or N501Y mutations have an

additive effect on the E484K mutation. Compared to any RBD

mutation alone, the triple mutant RBD caused the most

significant reduction (3.7 to 4.0 folds) (44). The L452R

substitution in the RBD of the Delta strain might induce

structural changes in the binding domain, thereby, promoting

the spike-ACE2 receptor interaction. The T478K mutation is

unique to the Delta strain and might be related to immune

evasion, similar to the E484K mutation in the Beta and Gamma

strains. The P681R mutation, located adjacent to the furin
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cleavage site, has been shown to enhance transmissibility and

pathogenicity (68). The Omicron variant has several mutations

in RBD, including K417N, T478K, N501Y, E484A shared with

Alpha, Beta, Gamma, and Delta variants (70), three mutations

close to the furin cleavage site (P681H, H655Y, N679K), six

unique mutations in S2, and seven mutations in the NTD (76,

77). The high number of mutations results in high

transmissibility and immune evasion ability (77).

The residual neutralizing antibodies, following WT SARS-

CoV-2 infection, had less efficacy against variants, particularly,

variants possessing strong immune evasiveness, raising concerns

regarding re-infection. Studies have confirmed that COVID-19

convalescent patients with detectable neutralizing antibody titers

could still be infected by the SARS-CoV-2 variants; thus, they

should not be considered safe from the second infection (78).
Neutralization of vaccine

Since the outbreak of the pandemic, several highly effective

vaccines against SARS-CoV-2 have been developed. The widely

used vaccines include Live attenuated or inactivated vaccines

(BBIBP-CorV and CoronaVac), viral vector vaccines (AZD1222,

Ad26COV2-S, and Ad5-nCov), and mRNA vaccines

(mRNA1273 and BNT162b2) (79). High seroconversion rates

are observed for different vaccines within 14 days of initial

vaccination, and nearly all vaccines induced neutralizing

antibodies after two doses, with antibody levels similar to or

higher than those in convalescent individuals (80–83). Vaccine-

induced antibodies naturally wane over time, and the

neutralizing activity shows a biphasic decline as in natural

infection (80, 84).

Like convalescent sera, many VOCs have reduced

susceptibility to vaccine-elicited immunity. The Alpha variant

has no apparent effect on vaccine efficacy, but the Beta and

Gamma variants could significantly evade vaccine-induced

neutralizing antibodies. Serum from individuals who received

one dose of vaccine, either the mRNA vaccine (BNT162b2) or

the viral vector vaccine (AZD1222), had little inhibitory effect on

the Delta variant, but the two doses were still effective,

neutralizing 94% and 95% of the Delta variant, respectively

(70). Compared to the Delta variant, the neutralizing activity

against the Omicron variant was significantly reduced in

individuals vaccinated with two doses, and vaccines were

significantly less effective against symptomatic COVID-19

infection caused by the Omicron variant (70, 85). Fortunately,

current research shows that booster vaccination can reverse the

trend of compromised neutralization against Omicron variant

(86). In individuals who received three doses of the mRNA

vaccines (mRNA-1273 and BNT162b2), only a modest

reduction in neutralizing activity was detected compared to

the WT virus (87). Furthermore, heterologous booster
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vaccination appeared to induce higher neutralizing antibody

responses than homologous booster vaccination (77). Even

without a booster vaccination, most people may be susceptible

to mild disease, but still remain long-term protective immunity

against severe and fatal disease (70, 88).

Recent research indicated that vaccination of infected

patients would induce a higher level of protection (33, 43, 89).

Thus, the combination of vaccination and natural infection

caused the potency of the antibodies to reach an apparent

biological ceiling. Individuals who were vaccinated,

approximately 1 year after the initial infection, had relatively

unchanged serum neutralization potency toward the original

spike sequence; however, the activity against all variants was

similar to that of against the original sequence (89). Even against

the Omicron variant, a single-dose vaccine can significantly

increase the cross-neutralization antibody responses in

previously infected individuals (83). These findings support

the view that despite COVID-19 convalescent patients

retaining a strong specific humoral response against SARS-

CoV-2 at 1- year post-infection, further vaccination is

still required.

Factors such as age, gender, and comorbidities also affect the

level of antibodies elicited by the vaccine. In contrast to natural

infection, older individuals, male sex, and those with

comorbidities (such as hemodialysis, transplantation, cancer,

and autoimmune diseases) showed lower neutralizing antibody

levels post-vaccination (90, 91). In addition, individuals with

seronegative status had lower antibody titers at each time point

after 2 doses of mRNA vaccination compared with the

seropositive group (91). However, antibody levels reached peak

levels after the second dose in the seronegative group, and a

second dose of the vaccine in the seropositive group did not

significantly increase antibody titers (91, 92). The rate of decline

in humoral responses was consistent 6 months after mRNA

vaccination regardless of age, sex, serostatus, and comorbidities

(90, 91), suggesting that booster vaccination remains necessary,

while the dose and timing of vaccination should be adjusted

according to individual characteristics and status.
Conclusions and future perspectives

The present review summarized the avaialble information

regarding the characteristics and dynamics of the specific

humoral immune response (IgM, IgA, IgG, and Nabs) elcited

by SARS-CoV-2 infection. We also discuss the relationship

between the dynamics of neutralizing antibodies and disease

severity and the influencing factors. In addition, we briefly

summarize the neutralizing potency of infection- and vaccine-

elicited humoral immunity against the emerging variants of

concern. Such information is critical to design specific

diagnostic and therapeutic strategies and should help to

optimize public health decisions.
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We mainly focus on the changes in antibodies after

infection, not cellular immunity, but cellular immunity also

plays a key role in various aspects. Antibodies mainly clear

extracellular viruses and T cells are required to kill virally

infected cells (12). T-cell responses contribute substantially to

disease control. Reduced disease severity is related significantly

to the timely response of T cells, and patients with persistent

COVID-19 show a trend of T cell exhaustion that indicates

serious disease progression (93). T cells can also provide long-

term immunity. Strong responses of memory T cells to SARS-

CoV-2 are detectable months after infection even in the absence

of detectable circulating antibodies (94). Unlike antibodies

which only RBD-specific antibodies can neutralize, T cells

respond to at least 30 epitopes of viral protein. In prior

infection, vaccination, both prior infection and vaccinated

individuals, and T cell responses are largely preserved to

Omicron variants and show robust cross-protection against

VOCs (95, 96). Although many VOCs can evade humoral

immunity, most vaccines provide protection against severe

disease, supporting a major role of cellular immunity in

disease control (96).

The importance of cellular immunity is undeniable, but the

complexity and cost of measuring cellular immune responses are

much higher than routine serological testing of antibodies,

which limits the widespread adoption or implementation of

cellular immune response assays, and antibody detection

remains the primary indicator for assessing immune

protection (79, 96). In the future, it is necessary to develop a

more convenient cellular immune detection method,

quantitatively evaluate antibody levels and cellular immune

indicators, calculate the corresponding relationship between

immune indicators and immune protection (including

prevention of re-infection and critical symptoms), and

establish more accurate immune evaluation system.

In infected individuals, neutralizing antibodies decline over

time and the protection against breakthrough infection of the

variant is diminished, whereas a single dose of vaccination in

convalescent individuals can achieve a good effect. In

uninfected patients, most vaccines require 2 or even 3 doses

to protect against widely prevalent variants. For vulnerable

populations, such as the elderly, males, and individuals with

comorbidities, the antibody responses caused by natural

infection and vaccination are different. For now, there

appears to be none of the available vaccines that completely

prevent viral infection (79), although the approved SARS-CoV-

2 vaccine has a good safety profile, unnecessary vaccination

and its side effects should be avoided as much as possible.

Further research is needed to assess the extent to which

immune protection is weakened over time after infection and

vaccination. The use of booster doses and the timing of

vaccination should fully consider the individual’s immune

efficacy, combined with vaccine coverage and supply, local

widespread strains, etc.
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