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Excessive alcohol use increases the risk of developing respiratory infections partially due
to impaired alveolar macrophage (AM) phagocytic capacity. Previously, we showed that
chronic ethanol (EtOH) exposure led to mitochondrial derangements and diminished
oxidative phosphorylation in AM. Since oxidative phosphorylation is needed to meet the
energy demands of phagocytosis, EtOH mediated decreases in oxidative phosphorylation
likely contribute to impaired AM phagocytosis. Treatment with the peroxisome
proliferator-activated receptor gamma (PPARY) ligand, pioglitazone (PIO), improved
EtOH-mediated decreases in oxidative phosphorylation. In other models, hypoxia-
inducible factor-1 alpha (HIF-10) has been shown to mediate the switch from oxidative
phosphorylation to glycolysis; however, the role of HIF-1o in chronic EtOH mediated
derangements in AM has not been explored. We hypothesize that AM undergo a
metabolic shift from oxidative phosphorylation to a glycolytic phenotype in response to
chronic EtOH exposure. Further, we speculate that HIF-1a. is a critical mediator of this
metabolic switch. To test these hypotheses, primary mouse AM (MAM) were isolated from
a mouse model of chronic EtOH consumption and a mouse AM cell line (MH-S) were
exposed to EtOH in vitro. Expression of HIF-1a, glucose transporters (Glut1 and 4), and
components of the glycolytic pathway (Ptkfb3 and PKM2), were measured by gRT-PCR
and western blot. Lactate levels (lactate assay), cell energy phenotype (extracellular flux
analyzer), glycolysis stress tests (extracellular flux analyzer), and phagocytic function
(fluorescent microscopy) were conducted. EtOH exposure increased expression of HIF-
1o, Glut1, Glut4, Pfkfb3, and PKM2 and shifted AM to a glycolytic phenotype.
Pharmacological stabilization of HIF-1ow via cobalt chloride treatment in vitro mimicked
EtOH-induced AM derangements (increased glycolysis and diminished phagocytic
capacity). Further, PIO treatment diminished HIF-1a levels and reversed glycolytic shift
following EtOH exposure. These studies support a critical role for HIF-1a in mediating the
glycolytic shift in energy metabolism of AM during excessive alcohol use.

Keywords: ethanol, hypoxia-inducible factor-1 alpha, alveolar macrophage, energy metabolism, glycolysis

Frontiers in Immunology | www.frontiersin.org 1

May 2022 | Volume 13 | Article 865492


https://www.frontiersin.org/articles/10.3389/fimmu.2022.865492/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.865492/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.865492/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:syeliga@emory.edu
https://doi.org/10.3389/fimmu.2022.865492
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.865492
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.865492&domain=pdf&date_stamp=2022-05-11

Morris et al.

HIF-10 Mediates EtOH-Induced Glycolysis

INTRODUCTION

Over 15 million people in the United States have been diagnosed
with alcohol use disorders (1). Excessive alcohol use increases
morbidity and mortality (2) and increases risk of developing
respiratory infections (3), which is largely linked to immune
dysfunction in alveolar macrophages (AM) (4-7). AM initiate
the immune response to pathogens in the lower airway (8), but
excessive alcohol use impairs AM phagocytic capacity and
bacterial clearance (5, 9). Phagocytosis requires high energy
demands, and mitochondrial-dependent oxidative
phosphorylation is the most efficient method of generating
cellular ATP. Our laboratory has established that chronic
alcohol exposure results in AM mitochondrial dysfunction
(e.g., mitochondrial fragmentation, morphological alteration,
and derangements in mitochondrial bioenergetics) (10).
Further, treatment with the peroxisome proliferator-activated
receptor gamma (PPARY) ligand, pioglitazone (PIO), improved
AM phagocytic dysfunction (7, 11) and oxidative
phosphorylation (10) during ethanol (EtOH) exposure.

One mechanism employed by cells to meet their energy
demands in the absence of oxidative phosphorylation is
glycolysis (12). Glycolysis is a metabolic pathway that converts
glucose into pyruvate utilizing enzymatic proteins, such as 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3)
and pyruvate kinase M2 (PKM2), to generate energy (12, 13).
Blocking key glycolytic proteins such as Pfkb3 and PKM2 has
been shown to mitigate acute lung injury (14, 15). The effect of
EtOH on these glycolytic proteins in AM has not been explored.

Stabilization of hypoxia-inducible factor (HIF)-low and
subsequent formation of HIF-1 (comprised of the inducible
HIF-1o. and constitutive HIF-1P) increases the transcription of
numerous genes including those in the glycolytic pathway, such
as glucose transporters (GLUT) 1 and 4 and pyruvate
dehydrogenase kinase 1 (PDK-1) (16-19). Mounting evidence
suggests that HIF-1a may act as a “metabolic switch”, shifting
cells from relying on oxidative phosphorylation towards
glycolysis instead (17-19). The availability of glucose needed
for glycolysis is in part regulated by glucose transporters which
transport glucose into the cell (12). HIF-1o (with GLUT and
PDK-1) have been shown in other models to contribute to lung
injury (20-22). Further, numerous studies have shown a direct
relationship between HIF-1ar and EtOH-mediated pathologies in
the brain (23), adipose tissue (24), and liver (25). The findings
from these studies showed that EtOH-induced HIF-1o can occur
during oxidative stress or elevated inflammation.

The relationship between HIF-lo and these metabolic
derangements in the context of chronic EtOH-induced AM
phagocytic dysfunction, however, have not been examined
and are the focus of the current study. Our data demonstrate
that HIF-1a is a critical mediator of EtOH-mediated energy
derangements in AM, suggesting a key role of HIF-1lol in
EtOH-mediated lung pathobiology. Further, PIO attenuated
EtOH-induced HIF-1o, which could provide a novel
therapeutic strategy in the treatment of alcohol use
disorders in the lung and decrease susceptibility to
respiratory infections.

MATERIALS AND METHODS

Mouse Model of Chronic Ethanol Ingestion
Animal studies were carried out in accordance with the National
Institutes of Health guidelines as outlined in the Guide for the
Care and Use of Laboratory Animals. Additionally, all protocols
were reviewed and approved by the Atlanta VA Health Care
System Institutional Animal Care and Use Committee. 8- to 10-
week-old male C57BL/6] mice purchased from Jackson
Laboratory (Bar Harbor, Maine, United States) were fed
standard laboratory chow ad libitum. Mice were randomly
divided into two groups (control and EtOH). EtOH fed mice
received increases of EtOH (5% w/v) in their drinking water for 2
weeks until the EtOH concentration reached 20% w/v and this
concentration was maintained for 10 weeks, resulting in a 0.12%
blood alcohol level (6, 7, 26). During the last week of ethanol
ingestion, mice were administered PIO (10 mg/kg/day in 100-pL
methylcellulose vehicle) or vehicle alone via oral gavage (7).
Following euthanasia, tracheas were cannulated, and a
tracheotomy was performed to collect bronchoalveolar lavage
fluid. Bronchoalveolar lavage fluid was centrifuged at 8000 RPM
for 5 minutes to isolate mouse alveolar macrophages (mAM).
Isolated mAM were resuspended in RPMI-1640 culture medium
(2% fetal bovine serum and 1% penicillin/streptomycin) for 24
hours for further experimentation (6, 7). Lung tissue was
harvested and homogenized for RNA isolation.

In Vitro Ethanol Exposure of MH-S Cells

The mouse alveolar macrophage cell line (MH-S) was purchased
from American Type Culture Collection (Manassas, VA, United
States). MH-S cells were cultured in RPMI-1640 medium (10%
fetal bovine serum, 1% penicillin/streptomycin, 11.9 mM sodium
bicarbonate, gentamicin (40mg/ml) and 0.05 mM 2-
mercaptoethanol) in the presence or absence of 0.08% EtOH
for 72 hours (media changed daily) at 37°C in a humidified
incubator in 5% CO, (5, 6). In a subset of experiments, MH-S
were treated with PIO (10 uM; last 24 hours of EtOH exposure)
(Cayman Chemicals, Ann Arbor, Michigan, United States).

Cell Energy Phenotype Test

Cell energy phenotype tests were performed to evaluate the
metabolic phenotypes of mAM and MH-S using either an
XFe96 (Catalog number: 103325-100) or an XFp extracellular
flux analyzer (Catalog number: 103275-100) (Agilent Seahorse
Bioscience Inc.; Billerica, MA, United States). Oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR) were measured in mAM and MH-S over time in XF
Base Medium supplemented with 1 mM of sodium pyruvate, 10
mM glucose, and 2 mM of L-glutamine followed by a single
injection of 2 UM oligomycin (ATP synthase inhibitor) + 0.5 uM
carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP; a
mitochondrial uncoupling agent). XFp plates were precoated
with collagen (~4 hours) and washed with PBS and media prior
to addition of mAM cells to promote mAM adherence to the
plates. Raw OCR and ECAR were determined using the XF Wave
2.1 software. OCR and ECAR values were calculated, normalized
to cell protein concentration in the same sample, and were
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expressed as mean of biological replicates * standard error of the
mean (SEM).

Glycolysis Stress Test

Glycolysis stress tests were performed using either an XFe96 or
an XFp extracellular flux analyzer (Agilent Seahorse Bioscience
Inc.) to evaluate the parameters of glycolytic flux. ECAR was
measured in mAM and MH-S over time in XF Base Medium
supplemented with 2 mM L-glutamine followed by sequential
injections of 10 mM glucose (saturating concentration of glucose
to promote glycolysis), 2 UM oligomycin (ATP synthase
inhibitor), and 50 mM 2-deoxy-glucose (2-DG; a glucose
analog that inhibits glycolysis). To maximize mAM adherence
to XFp microculture plates, wells were precoated with collagen
(~4 hours) and were subsequently washed with PBS and media
before addition of cells. Glycolysis, glycolytic capacity, glycolytic
reserve, and non-glycolytic acidification were determined using
the XF Wave 2.1 software. Raw ECAR was determined using the
XF Wave 2.1 software. Glycolysis, glycolytic capacity, glycolytic
reserve, and non-glycolytic acidification ECAR values were
calculated, normalized to cell protein concentration in the
same sample, and were expressed as mean of biological
replicates + SEM.

RNA Isolation and Quantitative RT-PCR
(GQRT-PCR)

TRIzol reagent (Catalog number:15596026, Invitrogen,
Waltham, MA, United States) was used to isolate total RNA.
Primer sequences outlined in Table 1 were used to measure and
quantify target mRNA levels by qRT-PCR with iTaq Universal
SYBR Green One-Step kit (Catalog number: 1725151, Bio-Rad,
Hercules, CA, United States) using the Applied Biosystems ABI
Prism 7500 version 2.0.4 sequence detection system (6, 7). Target
mRNA values were normalized to 9S or glyceraldehyde 3-
phosphate dehydrogenase (GAPDH). mRNA levels were
expressed as fold-change of mean * SEM, relative to
control samples.

Cytoimmunostaining and Phagocytosis by
Fluorescent Microscopy

HIF-1a protein was measured in mAM isolated from control-
and EtOH-fed mice. mAM were fixed with 4% paraformaldehyde
and incubated with a HIF-1o rabbit monoclonal antibody (1:500,
Cell Signaling Technology, Danvers, MA, United States) for

1 hour, washed, and incubated with fluorescent-labeled anti-
rabbit secondary antibody (1:1000) for 1 hour. Protein values
were normalized to DAPI nuclear stain.

In vitro phagocytic capacity in MH-S was determined using
pHrodo Staphylococcus aureus BioParticles conjugate (Catalog
number: A10010, Invitrogen). MH-S (1.2 x 10° cells) were
incubated with 1 x 10° particles of pH-sensitive fluorescent-
labeled S. aureus for 2 hours. Following the incubation, cells
were fixed with 4% paraformaldehyde. Cells with internalized S.
aureus were considered positive for phagocytosis. Phagocytic
capacity was quantified as phagocytic index: cells positive for
internalized bacteria is multiplied by the relative fluorescent units
(RFU) of S. aureus per cell. Phagocytic index is expressed as fold-
change of mean + SEM, relative to control samples (7, 11).

Fluorescence for HIF-lo. cytoimmunostaining and
phagocytosis of S. aureus was measured using FluoView
(Olympus, Melville, New York, United States) and are
expressed as fold-change of mean relative fluorescent units
RFU per cell £ SEM, relative to control samples. RFU were
evaluated in at least 10 cells per field, with 10 fields per
experimental condition. Gain and gamma microscope settings
were constant for each field and experimental condition. Image]
was used to deconvolute and analyze images (10, 27).

Western Blot

Proteins were isolated from MH-S using SESSA lysis buffer and
quantified using the Pierce bicinchoninic acid (BCA) Protein
Assay Kit (Catalog number for Pierce bicinchoninic acid (BCA)
Protein Assay Reagent A: 23228 and Catalog number for Pierce
bicinchoninic acid (BCA) Protein Assay Reagent B: 23224,
Thermofisher, Waltham, Massachusetts, United States). Equal
amounts of protein from cell lysates were loaded on NuPAGE
Novex 10% Bis-Tris Protein Gels (Catalog number:
NP0301BOX, Fisher Scientific, Hampton, NH, United States)
subsequent to being transferred onto nitrocellulose membranes.
The membranes were blocked in 5% non-fat milk and TBST for 1
hour and then incubated with primary antibodies for HIF-1o
rabbit monoclonal antibody (Catalog number: 14179S, 1:500,
Cell Signaling Technology) or glyceraldehyde 3-phosphate
dehydrogenase rabbit polyclonal antibody (Catalog number:
G9545-100UL, 1:20,000, GAPDH, Sigma-Aldrich, St. Louis,
MO, United States) overnight at 4°C. Following this
incubation, the membranes were washed and incubated with
1:10,000 anti-rabbit IRDye800CW Secondary Antibodies

TABLE 1 | Primer sequences to measure mRNA levels using qRT-PCR.

Gene Forward Sequence (5’ — 3’) Reverse Sequence (5’ — 3’)
Mouse GAPDH GGATTTGGTCGTATTGGG GGAAGATGGTGATGGGATT
Mouse Glut1 CTCCTGCCCTGTTGTGTATAG AAGGCCACAAAGCCAAAGAT-
Mouse Glut4 AAAAGTGCCTGAAACCAGAG TCACCTCCTGCTCTAAAAGG
Mouse HIF-1o CTCAAAGTCGGACAG CCCTGCAGTAGGTTT
Mouse Pfkfo3 TCTAGAGGAGGTGAGATCAG CCTGCCACTCTTATCTTCTG
Mouse Pkm2 GAGGCCTCCTTCAAGTGCT CCAGACTTGGTGAGGACGAT
Mouse 9s ATCCGCCAGCGCCATA TCGATGTGCTTCTGGGAATCC

GAPDH; glyceraldehyde 3-phosphate dehydrogenase, Glut1; glucose transporter 1, Glut4, glucose transporter 4, HIF-10; hypoxia-inducible factor-1 alpha, Pfkfb3; 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3, PKM2; pyruvate kinase M2.
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(Catalog number: 926-32211, Li-COR Biosciences, Lincoln, NE,
United States) for 1 hour at room temperature. Odyssey Infrared
Imaging System (LI-COR Biosciences) was used to image the
membranes. Image ] software (NIH, Bethesda, MD, United
States) was used to measure densitometry. HIF-1o. protein
values were normalized to GAPDH and expressed as fold-
change of mean * SEM, relative to control samples.

Lactate Assay

Lactate levels in MH-S were determined using a lactate assay kit
(Catalog number: MAKO064, Sigma Aldrich) according to the
manufacturer’s instructions. Lactate values were normalized to
protein concentration in the same sample and were expressed as
fold-change of mean + SEM, relative to control samples.

Cobalt Chloride Treatment of MH-S

MH-S were treated with the HIF-1ot stabilizer cobalt (II) chloride
hexahydrate (Catalog number: C8661-25g, 25 uM, CoCl,,
Sigma-Aldrich) in PBS vehicle or PBS alone for 4 hours. CoCl,
increases HIF-1o expression (28) and stabilizes HIF-1au by
inhibiting the binding of von Hippel Lindau E3 ubiquitin
ligase, preventing HIF-1o. ubiquitination and subsequent
degradation (29).

Transient Transfection of MH-S

HIF-1o was silenced in MH-S using transient transfection of a
HIF-1o. siRNA (Catalog number: sc-35562, Santa Cruz, Dallas,
TX, United States), and HIF-1a was induced in MH-S using
transient transfection of HIF-1co lysate (Catalog number: sc-
120778, Santa Cruz). MH-S were resuspended in 100 pL of
Amaxa Mouse Macrophage Nucleofector Kit solution (Catalog
number: VPA-1009, Lonza, Alpharetta, GA, United States)
containing 100 nM of control scrambled (Catalog number: sc-
37007, control-scr, Santa Cruz), siRNA for HIF-1a (siHIF-1ov),
or HIF-1o lysate (HIF-1a) followed by nucleofection according
to the manufacturer’s protocol using program Y-001. Following
transfection, MH-S were washed with media and cultured with
or without 0.08% EtOH for 3 days (media changed daily).

Statistical Analysis

Data are presented as mean + SEM. A Student’s t-test was used in
studies with two groups. In studies, with more than two groups,
statistical significance was calculated using one-way analysis of
variance (ANOVA) followed by Tukey-Kramer post hoc
(GraphPad Prism version 9, San Diego, CA). In the event that
the data was not normally distributed, a non-parametric
statistical analysis using Kruskal-Wallis test was used. p<0.05
was considered significant.

RESULTS

Ethanol Shifted AM to a Glycolytic
Metabolic Phenotype

Previously, we have shown that EtOH exposure altered
mitochondrial morphology and negatively impacted

mitochondrial bioenergetics (10). To assess whether EtOH
exposure increased glycolysis, we evaluated the cell energy
phenotype of mAM isolated from control and EtOH-fed mice.
mAM from EtOH-fed mice shifted to a glycolytic phenotype in
response to the oligomycin +FCCP stressors (Figure 1A). To
provide further evidence that EtOH resulted in glycolytic shift,
we performed a glycolysis stress test on mAM from control and
EtOH fed mice. Compared with mAM from control mice, mAM
from EtOH fed mice exhibited increased glycolytic profiling
(Figure 1B), glycolysis (Figure 1C), glycolytic capacity
(Figure 1D), glycolytic reserve (Figure 1E), and non-glycolytic
acidification (Figure 1F). Similar to our in vivo studies, glycolytic
bioenergetics were elevated in EtOH-treated MH-S (Figure 2)
compared to control. Assessment of the cell energy phenotype of
EtOH treated MH-S exhibited a glycolytic shift compared to
control (Figure 2A). Additionally, EtOH treated MH-S displayed
increased glycolytic profiling compared to control (Figure 2B).
Finally, glycolysis (Figure 2C), and glycolytic capacity
(Figure 2D) were also elevated in EtOH-treated MH-S
compared to controls. We did not observe any differences in
glycolytic reserve (Figure 2E) or non-glycolytic acidification
(Figure 2F) between the groups. Collectively, these data
illustrate that AM exhibit a glycolytic energy phenotype in
response to EtOH.

Ethanol Increased Glycolytic Proteins in
Mouse Lungs and MH-S

As we observed increases in glycolytic flux following EtOH
exposure in AM, we assessed expression of the glucose
transporters, Glutl and Glut4, and key enzymes of the
glycolytic pathway, Pfkfb3 and PKM2. mRNA levels of
Glutl, Glut4, Pfkfb3, and PKM2 were increased in response
to EtOH (Figure 3A). Additionally, EtOH induced mRNA
expression of Glutl in mouse lung homogenates
(Supplementary Figure 1). Since lactate levels correlate
with generation of ECAR during glycolysis (30), we
investigated the effect of EtOH on AM lactate levels. Lactate
was elevated in response to EtOH in MH-S (Figure 3B). These
results further suggest that EtOH induces glycolysis in mouse
lungs and AM.

Ethanol-Induced HIF-1o in mAM and MH-S
We sought to investigate the mechanism by which EtOH
increased parameters of glycolytic flux in AM. HIF-1o, a
component of the transcription factor HIF-1, can act as a
“metabolic switch”. HIF-1 increases the transcription of some
genes in the glycolytic pathway and has been shown in other
models to be increased by EtOH exposure (23-25, 31). Here, we
examined how EtOH affected hypoxia-inducible factor (HIF)-1o
in AM. mRNA and protein levels of HIF-10. were measured in
control and EtOH mAM. EtOH feeding elevated mAM HIF-1o
mRNA (Figure 4A) and protein (Figure 4B) expression.
Similarly, we observed increases in HIF-1loo mRNA
(Figure 4C) and protein (Figure 4D) in MH-S exposed to
EtOH compared to control. Collectively, these data show that
EtOH induces HIF-10 in AM.
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drinking water, 12 weeks). (A) Oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were measured in response to an injection mixture of
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To establish whether HIF-1o is implicated in EtOH-mediated AM (Figures 1, 2). Similar to our in vitro studies (Figure 2), we did
glycolytic shift in AM, control MH-S were treated with cobalt  not observe changes in glycolytic reserve (Figure 5D) and non-
chloride, a HIF-1ca. stabilizer. Treatment of MH-S with cobalt  glycolytic capacity (Figure 5E) with cobalt chloride treatment.
chloride mimicked the increase in HIF-1loo mRNA  Concomitantly, treatment of MH-S with HIF-1o lysate increased
(Supplementary Figure 2A) and protein (Supplementary  glycolytic profiling (Supplementary Figure 3A), glycolysis
Figure 2B) seen in AM exposed to EtOH (Figure 4). Cobalt  (Supplementary Figure 3B), glycolytic capacity (Supplementary
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FIGURE 4 | Ethanol induces HIF-1c. in mAM and MH-S. (A, B) Mouse alveolar macrophages (mAM) were isolated from mice fed either control (Con) or ethanol (EtOH;
20% v/w in drinking water, 12 weeks). (A) HIF-1oo mRNA levels were measured by gRT-PCR, in duplicate, normalized to 9S, and expressed as mean + SEM, relative to
control. (B) HIF-1a. protein levels were measured by fluorescence microscopy (10 fields/condition), normalized to DAPI, and are expressed as mean RFU + SEM, relative
to control. Representative microscopy images have been provided. (C, D) MH-S were exposed to either control (Con) or ethanol (EtOH; 0.08%) for 72 hours. (C) HIF-1a.
and were measured by gRT-PCR, in duplicate, normalized to GAPDH, and expressed as mean + SEM, relative to control (n = 6). (D) HIF-1a. protein levels were evaluated
via western blot, normalized to GAPDH protein, and densitometry is expressed as mean + SEM, relative to control (n = 4). Representative western blot images have been
provided. *p < 0.05 versus control.
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Figure 3C), and glycolytic reserve (Supplementary Figure 3D).
Glut4, Ptkfb3, and PKM2 (Figure 6A) mRNA levels and lactate
levels (Figure 6B) were increased in response to cobalt chloride,
similar EtOH-treated MH-S (Figure 3). As cobalt chloride is a
mimetic for HIF-1a, these data suggest that EtOH-induced HIF-10
mediates the glycolytic shift observed in AM. Further, similar to
our EtOH studies (7, 11), treatment with cobalt chloride led to AM
phagocytic dysfunction (Figure 6C).

HIF-1o Modulates EtOH-Induced Glycolysis
and Phagocytic Function in MH-S

To further implicate HIF-1ot in modulating EtOH-induced
glycolysis, we knocked down HIF-1ow in the presence and
absence of EtOH. We determined that knockdown of HIF-1o
prevented EtOH-mediated glycolytic shift (Figure 7A). Further,
these improvements coincided with improved phagocytic index
in MH-S lacking HIF-1o in the presence of EtOH (Figure 7B).
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Collectively, these data show that HIF-1a plays a key role in
EtOH-mediated increases in AM glycolysis and impaired

phagocytic capacity.

Pioglitazone Treatment Reverses Ethanol-
Induced HIF-1a

The PPARy ligand, PIO, has been previously reported to
improve EtOH-mediated mitochondrial derangements (10),
and phagocytic dysfunction (7, 11). As such, we sought to
delineate whether PIO may affect EtOH-induced AM HIF-1o.
PIO treatment diminished HIF-1o. mRNA (Figure 8A) and
protein (Figure 8B) levels. Collectively, these data identify PIO
as a therapeutic strategy to mitigate EtOH-induced HIF-1o
in AM.

Pioglitazone Treatment Reverses
EtOH-Induced Glycolysis

As treatment with PIO improved mitochondrial derangements
due to EtOH exposure (10), here we sought to determine if PIO
affected glycolysis in MH-S in the presence of EtOH. As
demonstrated previously, EtOH induced a glycolytic shift in
response to oligomycin+FCCP stressors however, PIO

treatment prevented the EtOH-induced glycolytic shift in
MH-S (Figure 9A). Treatment with PIO also reversed EtOH-
induced increases in the MH-S glycolytic bioenergetics
parameters, glycolytic profiling (Figure 9B), glycolysis
(Figure 9C), glycolytic capacity (Figure 9D), glycolytic reserve
(Figure 9E), and non-glycolytic acidification (Figure 9F).
Similarly, PIO treatment prevented the glycolytic shift in mAM
isolated from EtOH-fed mice (Figure 10A). Treatment with PIO
also reversed EtOH-induced increases in the mAM glycolytic
bioenergetics parameters, glycolytic profiling (Figure 10B),
glycolysis (Figure 10C), glycolytic capacity (Figure 10D),
glycolytic reserve (Figure 10E), and non-glycolytic acidification
(Figure 10F). Collectively, these data show that AM glycolytic
energy phenotype in response to EtOH is reversed with
PIO treatment.

DISCUSSION

One of the hallmark immune functions of AM is to phagocytose
invading pathogens in the lower respiratory tract (8). In order to
meet the high energy demands of phagocytosis, oxidative
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phosphorylation is the most efficient process utilized for cellular
ATP generation. Previously, we have demonstrated that EtOH
exposure severely diminishes the ability of AM to phagocytose
and clear pathogens (4-7). Further, we have shown that EtOH
altered mitochondria morphology and diminished oxidative
phosphorylation in MH-S. Additionally, we demonstrated that
the PPARY ligand, PIO, partially reversed EtOH-induced AM
mitochondrial derangements (10) and improved EtOH-induced
AM phagocytic dysfunction (11). However, the mechanisms by
which EtOH alters AM metabolism have not been fully
elucidated. This study aimed to evaluate whether HIF-1o has a
role in EtOH-mediated energy derangements in AM. Our
findings provide evidence that EtOH shifts AM to a glycolytic
metabolic phenotype, which is mediated by EtOH-induced HIF-
lo. Also, PIO treatment diminishes EtOH-induced HIF-1a,
providing HIF-1o as a molecular mechanism by which PIO
improves AM phagocytic function. This study establishes HIF-

Lot as a critical modulator of chronic EtOH-mediated metabolic
derangements in AM.

This study provides a mechanistic understanding of our
previous study (10) by showing that EtOH-mediated decreases
in oxidative phosphorylation is due to a glycolytic shift. One
method of meeting the metabolic requirements of the cell in the
absence of oxidative phosphorylation is glycolysis. Glucose
transporters transport glucose into the cell, providing some of
the glucose needed for glycolysis (12). Glycolysis is a multistep
process which utilizes proteins such as Pfkfb3 and PKM2 (12,
13). Our findings herein show that EtOH increases glycolysis
(Figures 1, 2). The variance in EtOH-induced alterations in
ECAR in mAM (Figure 1B) versus MH-S (Figure 2B) may be
due to the difference in duration of EtOH exposure (mAM
isolated from mice fed EtOH for 12 weeks versus MH-S
exposed to 0.08% EtOH in vitro for 72 hours) and systemic,
physiological effects of EtOH. However, the glycolysis
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bioenergetics profiles for glycolysis and glycolytic capacity were
comparable between these mAM in vivo (Figures 1C, D) and
MH-S in vitro (Figures 2C, D) models. Further, we observed
mRNA levels of glucose transporters (GLUT1 and GLUT 4) were
elevated following EtOH exposure (Figure 3). Further, EtOH
induced Pfkfb3, PKM2, and lactate in AM (Figure 3). Together,
these data demonstrate that EtOH shifts AM to a
glycolytic phenotype.

Other studies have described a direct relationship between
HIF-1o. and EtOH-mediated pathologies (23-25, 31). These
studies have demonstrated that EtOH-induced HIF-1o. occurs
under conditions of elevated inflammation or oxidative stress.
Other models have investigated the role of HIF-1ct in chronic lung
injury (20, 21). HIF-1o. was activated in vitro in human
pulmonary artery smooth muscle cells, demonstrating a role of
HIF-1a in pulmonary hypertension pathogenesis (20). HIF-1o
has been branded a “metabolic switch”, shifting cells from utilizing
oxidative phosphorylation to glycolysis (17-19). However, the
relationship between HIF-1ot and metabolic derangements in
the context of chronic EtOH-induced AM phagocytic
dysfunction have not been established until now and are
supported by the data presented herein. This study illustrates
that chronic EtOH exposure increases HIF-1o. expression
(Figure 4). Further, as shown in Figures 5, 6, treatment with
the HIF-1o. mimetic, cobalt chloride, causes AM derangements
similar to EtOH. Knockdown of HIF-1a. in the presence of EtOH
prevented EtOH induced glycolytic shift and glycolytic profiling
(Figures 7A, B). Taken together, these data suggest that HIF-1ct is
a critical modulator of EtOH-induced glycolytic phenotype in AM.
Interestingly, Kang et al. showed that EtOH did not alter glycolysis
in bone marrow derived macrophages. The group did, however,
conclude that EtOH increased glycolytic capacity, glycolytic
reserve, and non-glycolytic acidification. HIF-1ow expression and
activity was also increased due to EtOH exposure (32). The slight
variance in results between our studies could be due to the
differences in experimental models using bone marrow-derived
macrophages to model the AM phenotype. AM may be tissue-
resident or recruited cells with key differential functions in host
defense (33). However, the current study provides evidence of the
critical role for HIF-1o in mediating the glycolytic shift in AM due
to EtOH exposure using an AM cell line and AM isolated from in
vivo EtOH-fed mice. As HIF-lo. is a component of the
transcription factor HIF-1; elevated levels could have effects not
related to glycolysis. One limitation of the current study is that it
does not explore non glycolytic effects of HIF-1o.. As described
above, previous reports have shown that HIF-1a is elevated as a
response to inflammation or oxidative stress (23-25, 31), and our
lab has shown that oxidative stress contributes to AM phagocytic
impairments (7, 10, 11). Modulation of HIF-1o. could be
alleviating EtOH-mediated oxidative stress, thus improving
phagocytic dysfunction.

Since HIF-1 is a transcription factor with numerous targets,
other targets may be of future interest. For example, the HIF-1
target PDK-1 can repress mitochondrial function and oxygen
consumption. PDK-1-mediated phosphorylation inhibits
pyruvate dehydrogenase, preventing the use of pyruvate in

oxidative phosphorylation and resulting in decreased
mitochondrial oxygen consumption (34). Additionally, other
mechanisms, such as fatty acid oxidation, may be involved in
meeting the energy demands of the cell due to EtOH exposure.
However, studies in the liver suggest that chronic alcohol
exposure promotes hepatic injury but does not increase the
rate of fatty acid B-oxidation through inhibition of
mitochondrial B-oxidation (35-37).

Previously, our lab has shown that alcohol-mediated decreases
in peroxisome proliferator-activated receptor gamma (PPARY)
cause AM dysfunction (7). PPARY is activated by synthetic
ligands, such as PIO. This results in heterodimerization of
PPARY with a retinoid receptor and subsequent binding to the
PPAR response element in the promoter region of its target genes.
The response to this binding is dependent on whether the
heterodimerization results in recruitment of coactivators
(increases gene expression) or corepressors (decreases gene
expression) (38). Our lab has shown that treatment with PPARy
ligands diminished oxidative stress following chronic EtOH
exposure (7, 10, 11). Interestingly, decreased expression of
PPARy impaired AM phagocytic capacity following chronic
EtOH exposure (7). However, the mechanism by which PPARy
mediates these effects is not known. Other models which generate
reactive oxygen species (ROS) have determined that there is an
inverse relationship between PPARY and HIF-1o and that PPARY
ligand treatment decreased hypoxia-induced HIF-1ow expression
(20, 39). Here, we show that treatment PIO attenuated EtOH-
induced HIF-1o. (Figure 8). It is unclear however, if PPARY
mediates its action on HIF-1ot in a direct (binding to HIF-lo
promoter) or indirect (reduction of ROS) manner. As shown in
Figures 5, 6, the HIF-10. mimetic, cobalt chloride produced results
similar to EtOH-induced metabolic derangements. Collectively,
these data demonstrated that EtOH-mediated phagocytic
dysfunction is in part linked to increased HIF-1o levels, which
is mitigated with PIO treatment. Further, PIO treatment reversed
EtOH-induced glycolytic bioenergetics (Figures 9, 10).

The current study fills a gap in knowledge by providing a
mechanistic understanding to earlier studies which demonstrate
that chronic EtOH exposure results in phagocytic dysfunction
(4-7, 10) and decreases oxidative phosphorylation (10) in AM.
Together, our previous studies suggest that AM has diminished
phagocytic capacity due to an inability to meet the energy
requirements for phagocytosis. Using both in vitro and in vivo
approaches, we identified HIF-1c as a critical mediator of EtOH-
mediated metabolic derangements in AM. These studies
establish HIF-1o. as a potential therapeutic target for PIO
(approved for clinical use in the treatment of type 2 diabetes),
which could mitigate the risk of developing respiratory infections
in people with a history of alcohol use disorders.
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