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Breast cancer remains the most common malignancy among women worldwide.
Although the implementation of mammography has dramatically increased the early
detection rate, conventional treatments like chemotherapy, radiation therapy, and
surgery, have significantly improved the prognosis for breast cancer patients.
However, about a third of treated breast cancer patients are known to suffer from
disease recurrences and progression to metastasis. Immunotherapy has recently
gained traction due to its ability to establish long-term immune surveillance, and
response for the prevention of disease recurrence and extension of patient survival.
Current research findings have revealed that gold nanoparticles can enhance the safety
and efficacy of cancer immunotherapy, through their unique intrinsic properties of good
biocompatibility, durability, convenient surface modification, as well as enhanced
permeability and retention effect. Gold nanoparticles are also able to induce innate
immune responses through the process of immunogenic cell death, which can lead to
the establishment of lasting adaptive immunity. As such gold nanoparticles are
considered as good candidates for next generation immunotherapeutic strategies.
This mini review gives an overview of gold nanoparticles and their potential
applications in breast cancer immunotherapeutic strategies.
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INTRODUCTION

As reported in GLOBOCAN 2018, breast cancer has the second
highest incidence globally, with an incidence rate that has been
increasing in both developing and developed countries in
comparison with other cancers (1). Breast cancer is much more
prevalent in women (2), and contributes most of the cancer-
associated morbidity and mortality for females worldwide (3).

Breast cancer is characterized by uncontrollable neoplastic
growth in the breast (4), through a multistep tumorigenesis
process involving many complex molecular mechanisms (5).
This heterogenous cancer may arise from environmental
influences, genetic alterations, metabolic changes, or a
combination of these factors (6, 7). Although there are many
morphological variants of breast cancer, the most common is
ductal carcinoma which encompasses about 80% of all diagnosed
breast malignancies (8). Ductal carcinoma can be further
classified by their molecular subtypes based on the expression
levels of estrogen receptor, progesterone receptor, and human
epidermal growth factor receptor 2 (HER2) (9–13). Different
prognoses have been reported for various breast cancer subtypes,
and therapeutic strategies that target these subgroups were
therefore developed accordingly (14, 15).

The success rate for breast cancer therapy is largely
determined by the point of detection, where the overall
mortality rate can be reduced by 20% with early diagnosis (16).
The inception of mammography has significantly increased early
detection of breast malignancies among females, as clinical and
self-examinations for the detection of early abnormalities in the
breast have always been challenging (17).

Conventional treatments for breast cancer, like chemotherapy,
radiation therapy (RT), and surgery have significantly improved
both disease-free survival and overall survival (OS) (18, 19).
Unfortunately, post-treatment recurrences of this disease remain
a formidable challenge for clinicians (20). Immunotherapy has
recently emerged as a promising anti-cancer strategy for
prolonged survival in breast cancer patients (4). This novel anti-
tumor approach allows the activation and stimulation of the host
immune system to recognize and eradicate tumor cells, as well as
establish a long-term immunological memory to prevent tumor
recurrences. However, this relatively new form of therapy has its
own fair share of clinical safety concerns and efficacy issues (20).
Lately, the concept of incorporating nanotechnology into cancer
immunotherapy, has also been gaining traction (21). Because of its
multiple surface functionalities and unique properties, gold
nanoparticles (AuNPs) are actively being researched as cancer
diagnostics and therapeutics (22). This mini review seeks to
highlight the perspectives and potential of AuNP-based
platforms as a strategic approach in breast cancer immunotherapy.
CURRENT TREATMENT FOR
BREAST CANCER

Breast cancer diagnostics and therapeutics have made considerable
progress in the last decade due to better understanding of disease
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pathogenesis (23). Current treatments for breast cancer are
chemotherapy, RT, and surgery. Although these approaches have
been widely employed by clinicians for decades, they have their own
limitations and challenges (24). Chemotherapy uses cytotoxic
drugs, like 5-fluorouracil, anthracyclines, carboplatin,
cyclophosphamide, and taxanes, to eliminate rapidly proliferating
cells that include both tumor and normal cells (like immune and
epithelial cells) (25). Although the survival rate for breast cancer
patients under the age of 50 years, can be improved (by up to 15
years) by 10% and those older by 3% (26), the non-targeted nature
of chemotherapy brings unwanted systemic damage to the host
body (24). RT employs high doses of radiation, such as g-rays and
X-rays, to destroy tumor cells and shrink tumor size. Like
chemotherapy, it also damages healthy cells and tissues near the
treatment area (27). Surgery removes tumors that are accessible,
large, and resectable (24). Although the prognosis is highly
favorable when early diagnosis of breast cancer is met with
conventional treatments (14), nearly a third of these patients still
suffer from disease recurrences and progression to metastasis (18).

Compared to conventional chemoradiotherapeutic
approaches, the emergence of cancer immunotherapy is
attributed to its potential to provide better prognosis and
prevent disease recurrences (20). Immunotherapy is designed
to enhance and/or restore the host immunity to seek and
eliminate cancer cells (28). Although more immunotherapeutic
drugs and combinatorial treatment strategies involving
immunotherapies have been approved lately (29), there are still
issues with autoimmunity and systemic inflammation (30), as
well as challenges in targeting solid tumors (31). Fortunately, the
incorporation of nanotechnology can potentially enhance both
the efficacy and delivery of these immunotherapeutic drugs (32).
NANOPARTICLES IN BREAST
CANCER NANOMEDICINE

Nanotechnology is defined as the manipulation of materials with
dimensions from 1 nm to 100 nm (33). Due to their small
physical size, nanomaterials offer unique physical and chemical
characteristics that are distinct from their bulky counterparts
(34). NPs can be generally classified under organic NPs or
inorganic NPs (35).

Organic NPs, like liposomes, polylactic-co-glycolic acid (PLGA)
NPs, and extracellular vesicles (EVs), are known to have high drug
delivery efficiency and low toxicity (36). Liposomes were the first
nanomedicine approved for clinical use (37), and their application
in breast cancer has been gaining popularity (38, 39). Liposome has
an outer lipid layer that can be modified to mimic the biophysical
properties of the host cells, and a core carrying its cargo, usually
chemotherapeutic agents (40, 41). Unlike its non-biodegradable
predecessors, PLGA NP is a clinically approved copolymer made of
lactic and glycolic acids, which can be hydrolyzed into normal
metabolites under physiological conditions, and has excellent in
vivo biocompatibility (42, 43). Like liposomes, PLGA NPs are used
as nanocarriers for breast cancer therapy. EVs are double-layered
phospholipid vesicles secreted by cells (44), and can be categorized
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into apoptotic bodies, exosomes, or microvesicles (45). Doxorubicin
(DOX)-loaded into exosomes could be used for breast cancer
treatment due to enhanced tumoricidal activity and reduced
cardiotoxicity (46). More information on the use of organic NPs
in anti-cancer therapies can be found in the review paper by
Karpinski and co-workers (44).

InorganicNPs, such as carbon nanotubes (CNTs), quantumdots
(QDs), and metallic NPs, have higher modifiable surface area to
volume ratio that can be easily functionalized (47, 48). Discovered in
1980s, CNTs are rolls of graphene that can be categorized as either
single-walled or multi-walled (44). In addition to being good
nanocarriers due to their unique biological, chemical, and physical
properties, they can also be used for photothermal therapy (PTT)
when exposed to near-infrared radiation (NIR) (49). QDs are
nanoscale semiconductors that exhibit a quantum confinement
(50), and have high photostability with a broad spectrum of
absorption and narrow emission bands, allowing them to be
mainly used as an imaging modality and/or a therapeutic agent
for photodynamic therapy (PDT) and/or PTT (51). However, the
main limitation for QDs is the lack of an optimized production
process (44). For metallic NPs, AuNPs have been widely studied for
use in breast cancer diagnostics and therapeutics (21, 52). Hence,
their potential to be incorporated into the next generation of breast
cancer immunotherapeutic strategies will be discussed in the
subsequent sections.
ANTI-CANCER PROPERTIES OF
GOLD NANOPARTICLES

AuNPs can easily be synthesized from the reduction of gold salts
(21), into variable sizes and shapes including decahedron,
hexagon, icosahedron, octahedron, sub-octahedron, nanocage,
nanoprism, nanorod, nanosphere, and nanostar (53, 54). Smaller
sized AuNPs allow for greater tissue distribution, deeper tissue
penetration, and increased cellular internalization (55). This is
largely attributed to the phenomenon, known as the enhanced
permeability and retention (EPR) effect, where the nano-sized
effect of AuNPs allows for greater accumulation in tumor tissues
than healthy tissues, due to their extravasation into the tumor
microenvironment (TME) through the wide fenestrations of the
angiogenic vascular architecture, as well as the lack of normal
lymphatic drainage (56). Hence, this permits AuNPs to achieve
passive targeting to tumor tissues in vivo.

The toxicity of AuNPs is also dependent on their shape, size,
surface charge, surface chemistry, coating, and contaminants
(57). The cytotoxic feature of AuNPs is attributed to their ability
to induce oxidative stress (24). There are studies that report
AuNPs are non-toxic although there are conflicting reports that
state otherwise (58). AuNPs are popular for diagnostic and
therapeutic uses due to their unique catalytic, electronic,
magnetic, optical, physical, and structural properties (21, 22,
52, 59). Chemicals, drugs, natural products, and/or probes can
bind to the negatively charged surfaces of AuNPs to potentiate
their therapeutic efficacy (60–64).
Frontiers in Immunology | www.frontiersin.org 3
GOLD NANOPARTICLE-BASED
TARGETED THERAPY

Targeted therapy has been deemed safer than traditional
therapies, as the latter usually result in collateral damage to
healthy cells and tissues due to their non-specificity. Thus, breast
cancer patients are expected to suffer less side effects from
targeted therapies (4). Trastuzumab (Tz) or Herceptin is the
first humanized monoclonal antibody (mAb) to be approved for
routine clinical use as targeted therapy for HER2+ metastatic
breast cancer in 1998 (65, 66). HER2 is responsible for cell
proliferation in normal cells but an overexpression of these
receptors can promote unrestricted cell growth and eventually
tumorigenesis (67). HER2 can be neutralized, internalized, and
downregulated upon the binding of Tz, with concomitant
upregulation of p21Waf1 and p27Kip1 (68). Tz is also known
to cause antibody-dependent cellular cytotoxicity on its target
cells (69), whereby cells marked with Tz can be targeted for cell
lysis by natural killer cells (70).

Interestingly, AuNPs can be conjugated to Tz to allow specific
active targeting to breast tumor cells. This concept has been
successfully demonstrated in both in vitro experimentation and
using a subcutaneous MCF-7 human breast cancer murine
model (71). Although there was an increase in targeting
efficiency for AuNPs that were conjugated with two mAbs for
in vitro experiments, in vivo results showed that one mAb per
AuNP (5NP-1Tz) produced the best tumor homing and
protracted therapeutic efficacy (71). By conventional wisdom,
one may think that a higher number of mAbs on a AuNP can
confer superior binding ability. However, a high density of mAbs
per AuNP may introduce steric hindrance that reduces the access
to its target antigen (71). Hence, it is important to adjust the
number of mAbs conjugated per AuNP to achieve the desired
active targeting efficacy. Additionally, the same in vivo study has
shown that long-term intra-tumoral retention of 5NP-1Tz
produced continuous therapeutic effect over time (71).
IMMUNOTHERAPY WITH
GOLD NANOPARTICLES
AS DELIVERY VEHICLES

Owing to their EPR effect, AuNPs are able to specifically
accumulate in tumor sites and lymph nodes, which allow them
to be highly effective delivery vehicles for immunological
reagents (30). They are also easily synthesized into different
sizes and shapes, to modify properties such as cytotoxicity,
distribution, immunogenicity, and metabolism, for various
therapeutic uses (20). The high molecular density on their
surface and ease of modifications allow conjugation of different
molecules like polyethylene glycol (PEG) and arginine-
glycine-aspartic acid tripeptide, to improve the overall
pharmacodynamics and pharmacokinetics of AuNPs and its
cargo (72). This phenomenon has already been elegantly and
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successfully demonstrated in an in vivo study, where chimeric
peptides (glycopeptide sequence frommucin-1 and T cell epitope
P30 sequence) were attached to the PEGylated AuNPs (PEG-
AuNPs), to be used as an anti-cancer vaccination strategy against
MCF-7 human breast cancer cells (73).

AuNPs can also function as protective delivery vehicles for
compounds that have low intracellular accumulation, such as
siRNA, and/or vulnerable to intrinsic enzymatic degradation (5).
Thus, the incorporation of AuNPs as nanocarriers in the drug
delivery strategy, not only helps with tumor site targeting, but
can also improve the solubility and stability of their sensitive
cargo and prolong the half-life (74). Studies have demonstrated
the potent immunomodulatory effects of Ganoderma lucidum
polysaccharide (GLP) on the maturation of dendritic cells (DCs)
(75, 76). However, due to their low prescribed dosages and rapid
clearances, the efficacy of GLP for clinical applications remains
questionable. One study showed that the half-life of GLP in the
blood can be extended and their accumulation in immune organs
can be increased, when AuNPs were used as delivery vehicles for
GLP (GLP-Au) (77). Compared to free GLP, the in vitro results
in the same study have revealed a stronger DC activation and T
cell response by GLP-Au. Moreover, combining GLP-Au with
DOX produced stronger inhibitory effect against 4T1 murine
tumor growth and pulmonary metastasis than free GLP with
DOX. Additionally, the activated DCs were also observed to
induce both CD4+ and CD8+ T cell expansion in the spleen.
RADIATION THERAPY WITH
GOLD NANOPARTICLES

RT is one of the least invasive standard of care that has been
prescribed for over half of cancer patients (78–80). RT exerts
cytotoxic and cytostatic effects via DNA damage by fractionated
focal irradiation (81). However, these irradiations are unable to
differentiate tumor cells from normal cells which lead to
unnecessary destruction of surrounding healthy tissues (82).
Additionally, its tumoricidal ability is often limited by the
maximum deposited dosage and that has always remained a
challenge among radiologists (83). Hence, there is always a
clinical interest to specifically maximize the RT dosage on the
tumor and minimize the collateral damage to the neighboring
healthy tissues (84).

Fortunately, metal radiosensitizers, such as AuNPs, can
increase the sensitivity of tumor cells to irradiation due to its
high atomic number granting high absorption coefficient (85–
87). Generation of reactive oxygen species (ROS) can be induced
by the Auger electron production from the surface of AuNPs
(20). By coupling with an active targeting strategy or by the
passive targeting of the EPR effect alone, using AuNPs as
radiosensitizers allows the reduction of total RT dosage whilst
increasing the local RT dosage to tumor sites (82). For example,
conjugation of Tz to PEG-AuNPs (Tz-PEG-AuNPs) allowed
intracellular uptake of AuNPs into SK-BR-3 human breast
Frontiers in Immunology | www.frontiersin.org 4
cancer cells, which then proceeded to cause DNA double-
strand breaks by 3.3 to 5.1 times more than RT alone or RT
with PEG-AuNPs (88).

The resultant cell death from RT, known as immunogenic cell
death (ICD), can release tumor antigens and improve the host
response to cancer immunotherapy through antigen
presentation, cytokine secretion, and naïve T cell activation
(89–95). Additionally, signals for anti-tumor immunity like
adenosine triphosphate (ATP), nuclear protein high-mobility
group box-1 (HMGB1) and calreticulin (CALR) are produced
upon ICD (92, 96). The release of these danger-associated
molecular patterns (DAMPs) help to recruit and activate
antigen-presenting cells (APCs) of the innate immune response
like DCs and macrophages, and also promote antigen uptake and
presentation to CD8+ T cells for the establishment of long-term
adaptive immunity (96, 97) (Figure 1). ATP interacts with
purinergic receptor P2X 7 on DCs and activates the NOD-,
LRR- and pyrin domain-containing protein 3 inflammasome for
proteolysis, maturation and secretion of interleukins 18 and 1b
(98). HMGB1 engages toll-like receptor 4 on macrophages to
enhance the release of proinflammatory cytokines (99, 100),
whereas CALR binds to the CD91 receptors on phagocytes to
promote phagocytosis of dying and dead cells (101). This process
is especially useful against immunologically cold tumors, like
triple negative breast cancer, because the increase in TME
immunogenicity was found to be correlated with better
prognos i s due to improved pat i en t r e sponses to
immunotherapy and chemotherapy (102). RT with 14 nm
AuNPs showed enhanced RT efficacy, and induced ICD that
resulted in significant macrophage infiltration, and hence
improved OS in an MDA-MB-231 human breast cancer
murine model (82).
PHOTODYNAMIC THERAPY WITH
GOLD NANOPARTICLES

PDT is a cancer therapy that has spatiotemporal selectivity with
minimal invasiveness (103). Its mechanism of action is to
generate ROS to destroy tumor cells through a photochemical
reaction, using light, photosensitizers like AuNPs, and oxygen
(O2) from tissues (5, 20, 104). Briefly, accumulated AuNPs at the
tumor site can be excited by NIR to generate ROS in the presence
of surrounding O2, which can be devastating to the surrounding
tumor cells (20). Just like RT with AuNPs, PDT with AuNPs is
also able to trigger anti-cancer immune response through the
ICD process (105) (Figure 1).

Unfortunately, PDT is often met with poor efficacy due to the
hypoxic TME (106). In addition to promoting tumorigenesis and
metastasis (107–109), a hypoxic TME is one of the primary
reasons to immunosuppression due to the inhibition of T cell
infiltration into the tumor site (110, 111). Hence, tackling tumor
hypoxia should be considered before employing a PDT strategy
(112). Recently, studies have shown that gold nanocages
March 2022 | Volume 13 | Article 865554
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(AuNCs) have PDT potential due to their hollow porous
structures (113, 114). An interesting in vivo study
demonstrated the feasibility of using AuNC@manganese
dioxide (AuNC@MnO2) for an O2-boosted immunogenic PDT
in a 4T1 mouse model, in which MnO2 shells degrade under low
pH and produce large amount of O2 to boost the PDT effect in a
hypoxic TME (112).
PHOTOTHERMAL THERAPY WITH
GOLD NANOPARTICLES

Similar to PDT, PTT is another non-invasive cancer therapy that
utilizes AuNPs and NIR, but the only difference here is the
generation of heat to destroy cancer cells (115). PTT is
commonly employed to treat breast cancer by selectively
ablating tumor cells (5). Due to their high photothermal
conversion efficiency, AuNPs can reach an excited state
through the absorption of light (78), at which vibrational
energy is emitted as heat and can consequently destroy nearby
cancer cells (116).

In addition to the ability to generate ICD in tumor cells like
RT with AuNPs and PDT with AuNPs (117), PTT also cause
heat-induced cytotoxicity (118). As a result, heat shock proteins
(HSPs) are released, which can then form HSP-peptide
complexes with tumor antigen peptides to enhance
Frontiers in Immunology | www.frontiersin.org 5
phagocytosis of dead cells and antigen presentation by APCs
(119, 120) (Figure 1).
CONCLUSION AND PERSPECTIVES

Current research in nanomedicine has shown that AuNPs have
excellent biocompatibility and good resistance against degradation
under physiological conditions, thus facilitating long-term
therapeutic effects in breast cancer patients. Due to their EPR
effect and the option to include active targeting strategies, both in
vitro and in vivo studies have demonstrated the promising
applications and feasibility of AuNPs in improving the efficacy of
various therapies, especially in RT, PDT, and PTT. Additionally, the
unique intrinsic properties of AuNPs in stimulating the host
immune system through the induction of ICD allows the
incorporation of immunotherapeutic strategies. A summary figure
depicting a AuNP-based approach as a nanocarrier for
immunotherapeutic drugs and stimulation of the host immune
system mediated via RT, PDT, and PTT is shown in Figure 2.
Although there is a lot of flexibility in the surface modifications of
AuNPs, a re-evaluation of the pharmacology and toxicology of
every additional modification will be required, to address any
concerns regarding efficacy and safety. More work needs to be
done before AuNPs can be routinely used for breast cancer
immunotherapy. Nevertheless, recent preclinical data have
adequately shown that AuNPs can serve as potential next
generation immunomodulators for breast cancer therapy.
FIGURE 1 | Mechanistic insights for induction of host immune system in AuNP-based RT, PDT, and PTT in breast cancer.
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