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Soluble signal regulatory protein-alpha (SIRP-alpha) is elevated in bronchoalveolar lavage
(BAL) of mice with lipopolysaccharides (LPS)-induced acute lung injury (ALI). To define the
role of soluble SIRP-alpha in the pathogenesis of ALI, we established murine ALI in wild-
type (WT) and SIRP-alpha knock-out (KO) mice by intratracheal administration of LPS. The
results indicated that lack of SIRP-alpha significantly reduced the pathogenesis of ALI, in
association with attenuated lung inflammation, infiltration of neutrophils and expression of
pro-inflammatory cytokines in mice. In addition, lack of SIRP-alpha reduced the
expression of pro-inflammatory cytokines in LPS-treated bone marrow-derived
macrophages (BMDMs) from KO mice, accompanied with improved macrophage
phagocytosis. Blockade of soluble SIRP-alpha activity in ALI BAL by anti-SIRP-alpha
antibody (aSIRP) effectively reduced the expression of TNF-alpha and IL-6 mRNA
transcripts and proteins, improved macrophage phagocytosis in vitro. In addition, lack
of SIRP-alpha reduced activation of Src homology 2 domain-containing protein tyrosine
phosphatase 1 (SHP-1) and improved activation of signal transducer and activator of
transcription-3 (STAT3) and STAT6. Suppression of SHP-1 activity by tyrosine
phosphatase inhibitor 1 (TPI-1) increased activation of STAT3 and STAT6, and
improved macrophage phagocytosis, that was effectively reversed by STAT3 and
STAT6 inhibitors. Thereby, SIRP-alpha suppressed macrophage phagocytosis through
activation of SHP-1, subsequently inhibiting downstream STAT3 and STAT6 signaling.
Lack of SIRP-alpha attenuated murine ALI possibly through increasing phagocytosis, and
improving STAT3 and STAT6 signaling in macrophages. SIRP-alpha would be promising
biomarker and molecular target in the treatment of murine ALI and patients with acute
respiratory distress syndrome (ARDS).
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INTRODUCTION

Signal regulatory prote in-a lpha (SIRP-alpha) is a
transmembrane glycoprotein and pre-dominantly expressed in
myeloid and neural cells (1). After activation of SIRP-alpha, Src
homology 2 domain-containing protein tyrosine phosphatase-1
(SHP-1) is recruited and regulates receptor tyrosine kinase-
coupled signaling, participating in the regulation of
phagocytosis and polarization of macrophages (2). Recent
studies revealed that SIRP-alpha is up-regulated by
granulocyte-macrophage colony-stimulating factor (GM-CSF)
and suppressed by extracellular signal-regulated kinase (ERK)
inhibitor and glucocorticoids (3). Thus, glucocorticoids may
exert anti-inflammatory role by suppressing SIRP-alpha,
subsequently improving macrophage phagocytosis, clearance of
dead cells and tissue debris in inflamed local tissues. Surfactant
protein D (SP-D) (4, 5) and CD47 (6–9) are important ligands of
SIRP-alpha, participating in suppression of macrophage
phagocytosis. Because the potent role of CD47/SIRP-alpha
signaling in suppression of macrophage phagocytosis, blocking
the CD47/SIRP-alpha interaction between macrophages and
tumor cells has become a promising approach in cancer
immunotherapy (10–12).

However, the role of SIRP-alpha in inflammatory diseases,
particularly in murine acute lung injury (ALI) and patients with
acute respiratory distress syndrome (ARDS) is not well
investigated so far. Previous reports showed that SIRP-alpha
suppressed macrophage activation, reduced the expression of IL-
12 and induced graft tolerance (13). Therefore, SIRP-alpha is
considered as an anti-inflammatory receptor on macrophages.
Intact SP-D and SP-A are thought to exert anti-inflammatory
function through binding to SIRP-alpha on macrophages (2, 14).
Rho-associated protein kinase (ROCK), ERK1/2, p38alpha/beta
mitogen-activated protein kinase (p38alpha/beta MAPK) and
p38gamma/delta MAPK signaling pathways are possibly
involved in the suppressive effects (3, 15). In contrast to the
anti-inflammatory function of SIRP-alpha in vitro, recent studies
in animal models have revealed that SIRP-alpha had pro-
inflammatory function and increased inflammation-mediated
insulin resistance (16, 17). In addition, it is evidenced that lack
of SIRP-alpha provided protective effects on mice with ischemia
reperfusion-induced acute kidney injury, in association with
reduced expression of proinflammatory cytokines and
mediators , such as react ive oxygen species (ROS),
thrombospondin-1 (TSP-1) and CD47 (18). TSP-1 and CD47
exerted pro-inflammatory function in some animal models by
Abbreviations: ADAM10, a disintegrin and metalloproteinase domain-containing
protein 10; ALI, murine acute lung injury; ARDS, acute respiratory distress
syndrome; aSIRP, anti-SIRP-alpha antibody; BAL, bronchoalveolar lavage;
BMDMs, bone marrow-derived macrophages; CD47, cluster of differentiation
47; Gas6, growth arrest-specific 6; GM-CSF, granulocyte-macrophage colony-
stimulating factor; KO, knock-out; LPS, lipopolysaccharides; M2 cells,
alternatively activated macrophages; MPs, macrophages; NPs, neutrophils;
ROCK, Rho-associated protein kinase; ROS, reactive oxygen species; SHP-1, Src
homology 2 domain-containing protein tyrosine phosphatase-1; SIRP-alpha,
signal regulatory protein-alpha; SP-D and A, Surfactant protein-D and A; TSG-
6, tumor necrosis factor-stimulated gene-6; TSP-1, thrombospondin-1;
WT, wild-type.
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binding to SIRP-alpha, such as renal ischemia reperfusion injury
(19). Lack of CD47 expression and blockade of CD47 activity by
CD47-Fc and CD47 fusion protein (CD47-Var1) can effectively
reduce SIRP-alpha+ dendritic cell trafficking into mediastinal
lymph node, suppressing Th2 type immune responses in asthma
and the expression of IL-1beta and TNF-alpha in patients with
Crohn’s disease (20–22). Therefore, blocking TSP-1/SIRP-alpha
and CD47/SIRP-alpha interaction would be useful therapeutic
approach in the treatment of some inflammatory diseases.
However, it is not defined so far whether SIRP-alpha exerts the
pro-inflammatory function in these animal models through
affecting macrophage phagocytosis.

Previous report indicated that different forms of SIRP-alpha
protein may account for distinct roles of SIRP-alpha in
modulation of immune responses. Membrane-bound SIRP-
alpha can be proteolytically cleaved and released during
inflammation through a disintegrin and metalloproteinase
domain-containing protein 10 (ADAM10). However, the role
of soluble SIRP-alpha is not well studied so far. It was recently
reported that overexpression of proteolytically cleaved SIRP-
alpha fragments enhanced activation of STAT-1 (Signal
transducer and activator of transcription) and NF-kappaB
pathway in vitro (2). However, it is not well defined the role
and underlying molecular mechanisms of cell membrane-bound
and soluble form of SIRP-alpha in the development of
ALI/ARDS.

In this study, we for the first time found that soluble SIRP-
alpha was highly elevated in bronchoalveolar lavage (BAL) of
murine ALI. To further define the role of soluble SIRP-alpha in
the pathogenesis of ALI/ARDS, we established murine ALI in
WT and SIRP-alpha knock-out (KO) mice. The results revealed
that lack of SIRP-alpha significantly reduced the severity of
murine ALI, in association with reduced production of pro-
inflammatory cytokines and improved macrophage phagocytosis
through STAT3 and STAT6 signaling pathways.
MATERIAL AND METHODS

Mice and Treatment
SIRP-alpha+/- mice on C57BL/6 background were created by
Cyagen biotech company in Suzhou, China, using Crispr/Cas9
technique, in which exons 7 and 8 that encode majority of the
cytoplasmic region were deleted. SIRP-alpha-/- KO mice were
obtained by mating of SIRP-alpha+/- females bred to SIRP-
alpha+/- male. Mouse phenotypes were identified by Terra PCR
direct genotyping kit (San Jose, CA) and flow cytometry analysis.
PCR primer sequences for PCR genotyping were listed
in Table 1.

8-10 weeks old of male WT and SIRP-alpha KO mice were
intratracheal (i.t.) injected with 5 mg/kg lipopolysaccharides
(LPS) (Sigma-Aldrich, St Louis, MO) for 2 days. The mice
treated with PBS were used as controls. BAL and lung tissues
were collected for analysis. All animals were housed and treated
under the guidelines of the Institutional Animal Care and Use
Committee of the Fudan University Zhongshan Hospital in
May 2022 | Volume 13 | Article 865579
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China. All experiments were approved by the committee and
performed in the Zhongshan Hospital Fudan University.
Hematoxylin and Eosin (H&E) Staining
and Pathological Quantification of
Lung Sections
Paraffin-embedded lung tissue sections were deparaffinized in
xylene and hydrated by passing through decreasing concentration
of alcohol baths (100%, 90%, 80%, 70%) and water. The slides were
then stained in hematoxylin for 3-5 minutes and dipped in 1%
acid alcohol (1% HCl in 70% alcohol) for 30 sec after washed
with tap water. The slides were then counterstained with 1%
Eosin Y for 10 min and followed by dehydration, clearing in two
xylene baths, finally mounted in mounting media. The
pathological score of lung tissues was semi-quantified under a
light photomicroscope by double-blind method. The severity of
lung injury was evaluated by scale from 0 to 4 in terms of alveolar
edema, hemorrhage, alveolar septal thickening, and infiltration
of polymorphonuclear leukocytes.

Flow Cytometry Analysis
0.5×106 cell suspension of lung tissue digests, BAL and cultured
cells were incubated with antibody cocktail containing FITC-
anti-CD80, PerC-Cy5-anti-F4/80, PE-Cy7-anti-Ly6G, APC-anti-
CD11b (BioLegend. San Diego, CA), APC-Cy7-anti-SIRP-alpha,
BV421-anti-Siglec-F (BD Biosciences, Franklin Lakes, NJ and
eBioscience, San Diego, CA) for 40 minutes in dark. Cells stained
with fluorescence minus one (FMO) were used as controls. The
stained cells were analyzed on BD FACSAria III flow cytometer.
All data were analyzed by Flow Jo software, version 8.8.4 (Becton,
Dickinson and Company, Franklin Lakes, NJ).

Western Blot Analysis
Total protein concentration was measured by the BCA Assay. 5
µg cell-free BAL protein or 20 µg macrophage protein lysates per
lane were denatured in reducing Laemmli buffer, then separated
by 10% SDS-PAGE gel electrophoresis and transferred onto
nitrocellulose membranes. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as an internal loading
control for cell protein lysate samples, but not used in cell-free
BAL samples, because GAPDH content in cell-free BAL was
changed in response to lung inflammation, according to the
previous reports (23–25). The blots were then incubated with rat
anti-human SIRP-alpha (1:500 dilution) for 2 h, followed by
incubation with horseradish peroxidase (HRP)-conjugated anti-
rat IgG for 1 h. After washing with TBST buffer, the blots were
developed by enhanced chemiluminescence (ECL) substrate
solution (Amersham Biosciences, Piscataway, NJ, USA). Band
densitometric intensity was quantitatively analyzed by
ImageJ software.
Frontiers in Immunology | www.frontiersin.org 3
Culture and Treatment of BMDMs
Bone marrow cells were collected by flushing femurs and tibiae
with PBS and maintained in RPMI1640 medium supplied with
10% fetal bovine serum (FBS) and 20% conditional media of
NIH3T3 cells for 6 days to obtain bone marrow-derived
macrophages (BMDMs). WT and SIRP-alpha KO BMDMs
were stimulated with 500 ng/ml LPS or 30% BAL from naïve
and ALI mice (naïve BAL, ALI BAL). The untreated or naïve
BAL-treated cells were used as controls. The treated cells and
supernatants were analyzed for protein expression and
mRNA transcripts.

Immunostaining Assay
The treated BMDMs were fixed with 4% paraformaldehyde for
10 min and blocked with blocking buffer (10% goat serum and
0.05% Triton X-100 in PBS) for 30 min. The cells were then
incubated with indicated primary antibody (dilution 1:200) for
24 hours at 4°C and Cy3-conjugated secondary antibody
(dilution 1:400) at room temperature for 2 hours. The
positively stained cells were visualized under fluorescence
microscope with 200 × magnification. Primary antibodies
included anti-total SHP-1, anti-p-SHP-1, p-STAT6 (Signal
transducer and activator of transcription 6) and acetyl-STAT3
(Abcam, Cambridge, MA and Cell signaling technology,
Danvers, MA), anti-mouse TNF-alpha and IL-6 (R&D systems,
Minneapolis, MN). The positively stained cells were
quantitatively analyzed on Image J software and data was
presented as ratio of arbitrary units to controls.

ELISA Assay
The concentration of TNF-alpha, IL-6, CXCL15 and IL-18 in
BAL and cell supernatants were measured by ELISA assay
according to industrial instructions (R&D systems). Soluble
SIRP-alpha in naïve BAL and ALI BAL was measured by direct
ELISA assay. Briefly, BAL was diluted in coating buffer (dilution
1:3) and coated in 96-well Maxisorp plate, then incubated
subsequently with rat anti-SIRP-alpha antibody (dilution
1:500) and HRP-conjugated anti-rat IgG (dilution 1:1000).
Data was presented as ratio of OD450nm value to PBS control.

qRT-PCR Assay
RANTES and IL-6 mRNA transcripts in the treated BMDMs
were analyzed by qRT-PCR analysis, as previously reported (24).
Briefly, total RNA was extracted from the treated cells by TRIzol
reagent (Invitrogen, Grand Island, NY) and cDNA was
synthesized by ReverTra Ace qPCR RT kit. Quantitative PCR
was performed using SYBR green real-time PCR Master Mix
(Toyobo, Osaka, Japan). Mouse TNF-alpha and IL-6 primers
were synthesized by Shanghai BioSune Biotechnology, according
to the sequences previously reported (24). GAPDH was used as
internal control. Real-time PCR reaction was performed on
QuantStudio 5 real-time PCR systems (Applied biosystems)
under condition of 95°C for 2 min, 40 cycles (95°C for 30 s,
57°C for 30 s, and 72°C for 40s). Gene expression was calculated
by formula of 2-DDCt. Data was presented as mean DDCt relative
to GAPDH ± standard deviation.
TABLE 1 | Primer sequences for genotyping.

F1: 5'-TCATTCCAGCTTCATCAGGAGGGAG-3'
R1: 5'-TAGCAGTTCCATGAGGACATAAGAC-3'
F2: 5'-ACTGCTCTTGGGTGACCTGAATG-3'
May 2022 | Volume 13 | Article 865579
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Macrophage Phagocytosis Assay
WT and SIRP-alpha KO BMDMs were pre-treated with 5 mM
C188-9 (STAT3 inhibitor), 5 mM AS1517499 (STAT6 inhibitor),
5 mM TPI-1 (tyrosine phosphatase inhibitor 1, SHP-1 inhibitor)
respectively for 30 min, and followed by treatment with or
without 500 ng/m LPS, 30% naïve BAL or ALI BAL,
respectively. PKH26 fluorescent cell linker (Sigma, Saint Louis,
Missouri)-labeled apoptotic neutrophils (NPs) were added at a
ratio of 2:1 (apoptotic cells: macrophages) for 4 hours. NPs were
obtained from mouse bone marrow and purified on 65-75%
Percoll gradient (GE Healthcare). Neutrophil apoptosis was
induced by exposure to germicidal UV light source for 15 min
and incubated at 37°C for 12 hrs. All inhibitors were purchased
from Selleckchem, Houston, TX. Macrophage phagocytosis was
analyzed by flow cytometry and visualized under fluorescence
microscope. Data was presented as mean percentage of PKH26+
cells after gating on CD11b+ cells.

Statistical Analysis
Results are presented as mean ± standard deviation of each
group. All data were statistically analyzed by using GraphPad
Prism 7 software. Student’s t test was performed for comparison
between two groups and one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test was performed
for comparison over two groups. A value of p<0.05 was
considered as statistically significantly different.
RESULTS

SIRP-Alpha Was Highly Expressed in Mice
With LPS-Induced ALI
Our study in LPS-induced murine ALI revealed that soluble
SIRP-alpha protein was significantly elevated in BAL of mice
with ALI (Figures 1A, B). However, membrane-bound SIRP-
alpha protein on cell surface was not significantly elevated (data
not shown). In addition, the increased soluble SIRP-alpha in
BAL was positively correlated to the expression levels of pro-
inflammatory cytokine IL-6 and chemokine CXCL15 in ALI BAL
(Figures 1C, D). Thereby, soluble SIRP-alpha in BAL would be a
novel biomarker and possibly involved in the development of
murine ALI.

Lack of SIRP-Alpha Reduced Lung
Inflammation in SIRP-Alpha KO Mice With
LPS-Induced ALI
To further investigate the role of SIPR-alpha in the development
of ALI, we established a conventional SIPR-alpha KO mouse
model. The heterogenous and homologous SIRP-alpha deficient
mice were identified by PCR method. As a result, we observed
471 bp and 502 bp PCR products, respectively by primer pairs
F1/R1 and F2/R1. 471 bp products represented defect and 502 bp
PCR products presented intact SIPR-alpha genes, respectively
(Figure 2A). SIRP-alpha expression on myeloid cell surface was
further analyzed by flow cytometry analysis, in which SIRP-alpha
Frontiers in Immunology | www.frontiersin.org 4
protein expression was largely reduced in CD11b+ BAL cells of
naïve SIRP-alpha KO mice, compared to that in WT
mice (Figure 2B).

To further investigate the effects of SIRP-alpha deficiency on
the development of ALI, we intratracheal (i.t.) treated WT and
SIRP-alpha KO mice with 5 mg/kg LPS for 2 days. BAL and lung
tissues were collected for analysis. The results showed that LPS
treatment significantly increased acute lung parenchyma
inflammation, exudation of fluid and destruction of normal
tight alveolar endothelial–epithelial barrier in WT mice.
However, lack of SIRP-alpha expression in KO mice
significantly attenuated LPS-induced acute lung inflammation
and tissue injury (Figures 2C, D). Consistently, total cell counts
in BAL of KO mice were significantly reduced, compared to
those in WT mice (Figure 2E). Therefore, lack of SIRP-alpha
effectively protected mice from the development of murine ALI.
Lack of SIRP-Alpha Suppressed Infiltration
of Neutrophils and Expression of Pro-
Inflammatory Cytokines in Murine ALI
Further analysis in the murine ALI model indicated that the
percentage and absolute number of F4/80+Ly6G+ neutrophils
(NPs) were significantly increased in BAL and lung digests of
WT mice. However, lack of SIRP-alpha significantly decreased
the percentage and absolute number of NPs in KO mice,
compared to those in WT mice with ALI (Figures 3A–D). In
addition, we observed that the percentage of NPs and
CD11b+SIRP-alpha+ cells was positively correlated in the lung
digests (Figure 3E), indicating the involvement of SIRP-alpha in
the induction of neutrophil infiltration into lung tissues of ALI
(Figure 3E). In addition, we found that lack of SIRP-alpha
A B

DC

FIGURE 1 | The expression level of SIRP-alpha was increased in BAL of
mice with LPS-induced acute lung injury (ALI). (A) Direct ELISA assay for
soluble SIRP-alpha in BAL of mice with LPS-induced ALI or treated with PBS
control. Data was presented as ratio of OD450nm value to PBS control, **p <
0.01 vs. PBS group. 2-tailed student t tests. (B) Western blot analysis for
soluble SIRP-alpha protein in BAL. One representative blot. Each lane
represents individual sample of each mouse. (C, D) Correlation analysis
between the expression levels of soluble SIRP-alpha and IL-6 or CXCL15 in
BAL. Each point presents the value of individual sample.
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expression reduced production of reactive oxygen species (ROS),
an important oxidative molecule (26) in the lung tissues of KO
mice, compared to that in WT mice (Figure 3B, lower panel).
The results were consistent with the expression levels of
cytokines, in which pro-inflammatory cytokines, TNF-alpha
Frontiers in Immunology | www.frontiersin.org 5
and IL-6 were significantly reduced in the lung tissues of KO
mice, compared to those in WT mice (Figure 3F). Thus, lack of
SIRP-alpha protected mice from the development of ALI, in
association with reduced infiltration of neutrophils and
expression of pro-inflammatory cytokines.
A

B

D

E

F

C

FIGURE 3 | Lack of SIRP-alpha reduced neutrophil infiltration and expression of pro-inflammatory cytokines in murine ALI. (A) Flow cytometry analysis for the
infiltrating neutrophils (NPs) and macrophages (MPs) in BAL (A) and lung digests (B, upper panel). NPs were identified as F4/80(low)Ly6G(high) cells; MPs were
identified as F4/80 (high) Ly6G (low) cells. Cell mitochondria-derived reactive oxygen species (ROS) was analyzed by respiratory burst assay kit (B), lower panel).
Representative dot plot. (C, D) Quantitative analysis of neutrophil absolute number in BAL and the percentage of NPs in lung tissues. (E) Correlation analysis
between the percentage of NPs and SIRP-alpha expression in the lung digests. Each point presents individual sample. (F) ELISA analysis for the expression of TNF-
alpha and IL-6 in BAL. All quantitative data was presented as mean ± standard deviation, *p < 0.05, **p < 0.01 vs. PBS group; ## p < 0.01 vs. WT group, n=5-6.
One-way ANOVA followed by Tukey’s multiple comparisons test.
A

B

D E

C

FIGURE 2 | Blockade of SIRP-alpha expression suppressed the development of murine ALI. (A) Schematic diagram and genotyping of SIRP-alpha phenotypes
in mice by PCR. 502 bp: SIRP-alpha +/+ (WT); 471 bp: SIRP-alpha -/- (KO); 502/471 bp: SIRP-alpha +/-. (B) Flow cytometry analysis of SIRP-alpha expression
on CD11b+ myeloid cells in BAL of naïve WT and KO mice. Representative dot plot. (C) H&E staining for lung pathology. Mice with ALI were established by
intratracheal injection of 5 mg/kg LPS for 2 days. Mice treated with PBS were controls. Representative photograph of each treatment with 100 × magnification.
(D) Quantitative analysis of lung pathology by H&E staining. The score of severity was evaluated by scale from 0 to 4 in terms of alveolar edema, hemorrhage,
alveolar septal thickening and infiltration of polymorphonuclear leukocytes. (E) Total cell counts in BAL. Data was presented as mean ± standard deviation, *p <
0.05, **p < 0.01 vs. PBS group; #p < 0.05 vs. WT group, n=5-6. One-way ANOVA followed by Tukey’s multiple comparisons test.
May 2022 | Volume 13 | Article 865579
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Siglec-F(-) Subtype Macrophages and
Neutrophils Were Reduced in SIRP-Alpha
Deficient Mice With ALI
It was previously reported that Siglec-F was highly expressed in
M2-like macrophages (25, 27). To further investigate the effects
of SIRP-alpha on Siglec-F expression, the Siglec-F+ and Siglec-F
(-) subtype cells were measured by flow cytometry after gating on
macrophages and neutrophils. The results showed that the
percentage of Siglec-F(-) subtype macrophages and neutrophils
were effectively increased in macrophages and neutrophils of WT
mice with ALI. However, their percentage was significantly
attenuated in KO mice, compared to those in WT mice
(Figures 4A, B). Consistently, the ratio of SiglecF(-)/Siglec-F+
subtypes of macrophages and neutrophils was significantly
reduced in BAL of KO mice, compared to that in WT mice
(Figures 4C, D). In addition, the ratio of SiglecF(-)/Siglec-F+
subtype neutrophils was positively correlated to the expression
level of IL-6 in BAL (Figure 4E). Therefore, SiglecF(-) subtype
macrophages and neutrophils would have a pro-inflammatory
property in murine ALI and that would be considered as a novel
cell biomarker in murine ALI.
Lack of SIRP-Alpha Expression in
Macrophages Reduced the Expression of
Pro-Inflammatory Cytokines and Improved
Macrophage Phagocytosis In Vitro
To further confirm that lack of SIRP-alpha expression attenuated
ALI through suppressing macrophage activation and expression
of pro-inflammatory cytokines in vitro, we treated BMDMs from
Frontiers in Immunology | www.frontiersin.org 6
WT and KO mice with or without LPS, respectively. Flow
cytometry analysis and Western blot analysis of cell samples
showed that SIRP-alpha expression was significantly reduced in
KO BMDMs, compared to that in WT BMDMs, confirming
SIRP-alpha deficiency in KO BMDMs (Figure 5A). In addition,
we observed that lack of SIRP-alpha moderately reduced LPS-
induced expression of CD80, indicating the role of SIRP-alpha in
inducing activation of macrophages (Figure 5B upper panel, and
Figure 5C). In addition, we observed the increased macrophage
phagocytosis of apoptotic neutrophils after LPS treatment, that
was further improved by SIRP-alpha deficiency in macrophages
(Figure 5B lower panel and Figure 5D). Furthermore, the
macrophage phagocytosis activity was negatively correlated to
the expression level of SIRP-alpha in macrophages (Figure 5E),
indicating the suppressive effects of SIRP-alpha on macrophage
phagocytosis in vitro. Consistent with the reduced macrophage
activation in KO BMDMs, we observed the lower expression
levels of TNF-alpha, IL-6 and IL-18 in the cell supernatants of
LPS-treated KO BMDMs, compared to those in LPS-treated WT
BMDMs (Figure 5F). The results confirmed the role of SIRP-alpha
in promoting pro-inflammatory responses and suppressing
macrophages phagocytosis.

Blockade of SIRP-Alpha Activity on
Macrophages by SIRP-Alpha Neutralizing
Antibody Reduced the Expression of Pro-
Inflammatory Cytokines and Improved
Macrophage Phagocytosis
The role of SIRP-alpha in macrophage pro-inflammatory
cytokine expression and phagocytosis were further confirmed
A

B

D

EC

FIGURE 4 | Lack of SIRP-alpha expression attenuated CD11b+Siglec-F(-) subtype macrophages and neutrophils in murine ALI. (A) Flow cytometry analysis for
CD11b+Siglec-F(-) subtype MPs and NPs in BAL of murine ALI. CD11b+Siglec-F(-) subtype MPs and NPs were gated on MPs and NPs, respectively. Representative dot
plot. (B) Quantitative analysis of CD11b+Siglec-F(-) subtype MPs in BAL. (C, D) Ratio of CD11b+Siglec-F(-) subtype MPs/CD11b+Siglec-F+ subtype of MPs and NPs in
BAL. Data was presented as mean ± standard deviation, *p<0.05, **p<0.01 vs. PBS group; #p<0.05, ## p<0.01 vs. WT group for (B–D). n=5-6. One-way ANOVA
followed by Tukey’s multiple comparisons test. (E) Correlation analysis between the expression of IL-6 in BAL and ratio of Siglec-F(-) subtype/Siglec-F+ subtype NPs in
BAL. Each point presents individual sample.
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in BMDMs pre-treated with anti-SIRP-alpha neutralizing
antibody (aSIRP). Consistently, blockade of SIRP-alpha activity
by aSIRP effectively reduced LPS-induced activation of
macrophages. We observed that CD80 and ERK1/2 positive
cells were increased by LPS treatment, that was effectively
reversed by aSIRP pre-treatment (Figure 6A). In addition,
ELISA analysis of cell supernatants and qRT-PCR analysis of
the treated cells revealed lower expression levels of TNF-alpha,
IL-6 and RANTES in aSIRP pre-treated WT BMDMs than those
in the untreated WT BMDMs (Figures 6B, C). However, the
suppressive effects of aSIRP on these cytokine expressions were
not observed in KO BMDMs that lack SIRP-alpha expression on
cell surface, indicating the requirement of cell membrane-bound
SIRP-alpha in modulation of macrophages (data not shown).
Consistently with the results in Figure 5D, we observed the
additive effects of aSIRP and LPS in improving macrophage
phagocytosis of apoptotic neutrophils (Figures 6D, E).

Blockade of Soluble SIRP-Alpha in BAL
Reduced the Expression of Pro-
Inflammatory Cytokines and Improved
Phagocytosis in Macrophages
To further determine the role of BAL-derived soluble SIRP-alpha
in macrophage activation and phagocytosis, we collected naïve
BAL and ALI BAL from naïve mice and ALI mice, then pre-
neutralized the soluble SIRP-alpha protein in naïve and ALI BAL
with aSIRP or IgG isotype control. The treated BAL were then
added into WT BMDMs for 24 hours. ELISA analysis of
cytokines in macrophage supernatants indicated that there
Frontiers in Immunology | www.frontiersin.org 7
were higher expression levels of TNF-alpha and IL-6 in ALI
BAL-treated cells than those in naïve BAL-treated cells.
However, pre-neutralizing soluble SIRP-alpha in ALI BAL
significantly reduced the expression of these cytokines in the
treated cell supernatants, compared to the IgG pre-neutralized
controls (Figure 7A). In addition, we observed the lower levels of
TNF-alpha and IL-6 in the supernatants of BAL-treated BMDMs
than those in BAL-untreated BMDMs, as shown in Figure 6B,
that may be caused by addition of 30% BAL into BMDMs,
resulting in dilution of cell culture medium, suppression of cell
growth and production of pro-inflammatory cytokines.
Considering the supernatants of BAL-treated cells contained
both BAL-derived and macrophage de novo expressed TNF-
alpha and IL-6, we further analyzed the cytokine levels in the
treated cells by qRT-PCR, immunostaining and flow cytometry
analysis. As a result, we observed that soluble SIRP-alpha in ALI
BAL effectively induced the expression of IL-6 and RANTES
transcripts in the treated cells, that was effectively reversed by
aSIRP pre-treatment (Figure 7B), consistent with the results of
immunostaining (Figure 7C) and flow cytometry (Figures 7D,
E), in which the expression of TNF-alpha and IL-6 was obviously
reduced in BMDMs treated with aSIRP pre-neutralized ALI BAL,
compared to the cells treated with IgG-treated controls.
However, macrophage phagocytosis was moderately improved
in BMDMs treated with aSIRP pre-neutralized BAL (Figure 7F).
The studies in vitro provided solid evidence that soluble SIRP-
alpha in ALI BAL activated macrophages and induced the
expression of pro-inflammatory cytokines, and suppressed
macrophage phagocytosis.
A B
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FIGURE 5 | Lack of SIRP-alpha expression suppressed activation, expression of pro-inflammatory cytokines and improved phagocytosis of bone marrow-derived
macrophages (BMDMs). (A) Western blot (upper panel) and flow cytometry (lower panel) analysis for the expression of SIRP-alpha in WT and KO mice-derived
BMDMs. Representative blot and histogram of flow cytometry. (B) BMDMs from WT and KO mice were treated with or without 500 ng/ml LPS for 24 hours. Flow
cytometry analysis for the expression of CD80 and macrophage phagocytosis of PKH26-labeled apoptotic NPs at a ratio of 2:1 (apoptotic cells: macrophages) for 4
hours. Representative histogram. (C, D) Quantitative analysis for CD80+ cells and phagocytosis activity of macrophages. Phagocytosis activity was presented as the
percentage of PKH26+ cells after gated on CD11b+ cells. (E) Correlation between macrophage phagocytosis and the percentage of SIRP-alpha+ cells. Each point
presents individual sample. (F) ELISA assay for the expression of TNF-alpha, IL-6 and IL-18 in the supernatants of treated cells. All quantitative data was presented
as mean ± standard deviation. *p < 0.05, **p < 0.01 vs. 0 group, #p < 0.05 vs. WT group, n=3. One-way ANOVA followed by Tukey’s multiple comparisons test.
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Lack of SIRP-Alpha Increased
Macrophage Phagocytosis Through STAT3
and STAT6 Signaling Pathways
To investigate downstream signaling pathways of SIRP-alpha in
modulation of macrophages, we analyzed the expression of total
SHP-1, phosphorylated SHP-1 (p-SHP-1), phosphorylated STAT6
(p-STAT6) and acetylated STAT3 (a-STAT3) in WT and KO
BMDMs by immunostaining. The results showed that lack of
SIRP-alpha induced more expression of total SHP-1, and largely
diminished activation of SHP-1, compared to that in WT
BMDMs, indicating the requirement of SIRP-alpha in the
activation of SHP-1. In addition, we observed more p-STAT6 at
residue Tyr641 (p-STAT6) and acetyl-STAT3 at residue Lys685
(a-STAT3) in KO BMDMs than those in WT BMDMs, indicating
the suppressive effects of SIRP-alpha on the activation of STAT3
and STAT6 (Figures 8A, B). To further investigate the role of
STAT3 and STAT6 signaling inmacrophage phagocytosis, we pre-
treated BMDMs with STAT3 inhibitor, C188-9 and STAT6
inhibitor, AS1517499 respectively. The results showed that
blockade of STAT3 and STAT6 activation by STAT3 and
STAT6 inhibitors significantly reduced macrophage
phagocytosis in both WT and KO BMDMs (Figure 8C). The
results indicated that STAT3 and STAT6 signaling were at
downstream of SIRP-alpha and promoted macrophage
phagocytosis. Therefore, lack of SIRP-alpha expression or
blockade of SIRP-alpha activity by aSIRP improved macrophage
phagocytosis and suppressed production of pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 8
mediators possibly through increasing STAT3 and STAT6
signaling pathways in macrophages.

It was documented that SIRP-alpha activated downstream
protein SHP-1 (6, 28). To further investigate the involvement of
SHP-1 in the modulation of STAT3 and STAT6 activation, we
treated WT and KO BMDMs with SHP-1 inhibitor, TPI-1. The
results by immunostaining (Figures 8D, E) and flow cytometry
analysis (Figure 8F) showed that TPI-1 largely increased
activation of STAT3 and STAT6 in macrophages, indicating a
suppressive role of SHP-1 in STAT3 and STAT6 signaling. Thus,
lack of SIRP-alpha improved macrophage phagocytosis possibly
through suppressing SHP-1 activation and subsequently
inducing activation of STAT3 and STAT6 signaling
pathways (Figure 9).
DISCUSSION

SIRP-alpha is well studied in cancer immunotherapy due to its
potent immune suppressive role in macrophage phagocytosis. A
body of evidence has showed that blocking SIRP-alpha signaling
effectively inhibited tumor growth through enhanced
macrophage phagocytosis (29). However, little is known about
the expression and role of SIRP-alpha in animal model with ALI.
To address this issue, we measured soluble SIRP-alpha protein
content in ALI BAL and found that soluble SIRP-alpha
A B

D E

C

FIGURE 6 | Blockade of SIRP-alpha on macrophages by neutralizing antibody suppressed activation, expression of pro-inflammatory cytokines and improved
macrophage phagocytosis. WT BMDM cells were pre-treated with 2 mg/ml anti-SIRP-alpha (aSIRP) or IgG isotype control for 1 hours and followed by stimulation with or
without 500 ng/ml LPS for 24 hours. (A) Quantitative analysis of CD80+ and ERK1/2+ cells after flow cytometry. (B) ELISA analysis for the expression levels of TNF-alpha
and IL-6 in the supernatants of treated cells. (C) mRNA transcripts of RANTES and IL-6 in the lysates of treated cells were measured by qRT-PCR. Data was presented
as DDCt. (D) Phagocytosis activity of the treated macrophage was measured by addition of PKH26-labeled apoptotic NPs at a ratio of 2:1 (apoptotic cells: macrophages)
for 4 hours. Representative histogram. (E) Quantitative analysis of macrophage phagocytosis after treatment. All quantitative data was presented as mean ± standard
deviation. *p < 0.05, **p < 0.01 vs. 0 group, #p < 0.05 vs. IgG group, n=3. One-way ANOVA followed by Tukey’s multiple comparisons test.
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expression level was significantly increased, compared to that in
naïve mice. In addition, the soluble SIRP-alpha expression level
in BAL was positively correlated to the expression levels of pro-
inflammatory mediators in murine ALI. Thus, soluble SIRP-
alpha in BAL could be considered as a novel biomarker in
evaluation of murine ALI. In addition, we found that blocking
SIRP-alpha activity in ALI BAL by neutralizing antibody
significantly reduced macrophage activation and pro-
inflammatory cytokine expression in macrophages, indicating
the pro-inflammatory function of soluble SIRP-alpha in murine
ALI. The results supported the previous report, in which over-
expression of proteolytically cleaved SIRP-alpha induced
activation of STAT1/NF-kappa B pathway in vitro (2).
Therefore, we conclude for the first time that soluble SIRP-
alpha was released into BAL of murine ALI under oxidative
stress and had pro-inflammatory function.

To further clarify the biological function of SIRP-alpha in
murine ALI, we created a SIRP-alpha KO mouse model with
LPS-induced ALI. The results indicated that SIRP-alpha was
expressed in both macrophages and neutrophils of WT mice.
However, SIRP-alpha was unexpressed or expressed at low levels
in SIRP-alpha-/- and +/- mice. Lack of SIRP-alpha expression
significantly attenuated the severity of murine ALI, confirming
Frontiers in Immunology | www.frontiersin.org 9
the pathogenic function of SIRP-alpha in murine ALI. The
results were consistent with the previously reported results in
other animal models, in which lack of SIRP-alpha protected mice
from acute kidney injury and increasing insulin sensitivity in
inflammation-mediated insulin resistance (17, 18).

Further analysis revealed that the attenuated severity of ALI
in SIRP-alpha KO mice was associated with lower infiltrating
Siglec-F(-) subtype of neutrophils and macrophages. Because
neutrophils and macrophages are major sources of debilitating
matrix metallopeptidase 2/9 (MMP2/9), ROS and other pro-
inflammatory mediators (30, 31), the reduced infiltration of
neutrophils and macrophages should contribute to the
beneficial effects of SIRP-alpha deficiency in murine ALI.

However, it is unclear so far whether the reduced ratio of
Siglec-F(-)/Siglec-F+ subtype macrophages and neutrophils
contributed to the lower severity of ALI. According to our
previous reports (25, 27), Siglec-F was co-expressed with
CD206+ alternatively activated macrophages (M2 cells), we
think that Siglec-F could be considered as an alternative M2
cell biomarker, and may play an immune regulatory role. The
concept is supported by previous reports, in which Siglec protein
can suppress chemotaxis of macrophages and neutrophils
(32–35), that was evidenced by reduced adhesion and rolling
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FIGURE 7 | Blockade of soluble SIRP-alpha in BAL by neutralizing antibody suppressed activation, expression of pro-inflammatory cytokines and improved
macrophage phagocytosis. WT BMDMs were treated with 30% ALI BAL that was pre-neutralized with 2 mg/ml aSIRP or IgG isotype. (A) The expression levels of
TNF-alpha and IL-6 in the supernatants of 24 hours-treated cells were measured by ELISA assay. (B) RANTES and IL-6 mRNA transcripts in the lysates of treated
cells were measured by qRT-PCR. Data was presented as mean DDCt ± standard deviation. *p < 0.05, **p < 0.01 vs. naive BAL group, #p < 0.05, ##p < 0.01 vs.
IgG group, n=3. One-way ANOVA followed by Tukey’s multiple comparisons test. (C, D) The expression of TNF-alpha and IL-6 in ALI BAL-treated cells was
analyzed by Immunostaining (representative photograph, 200 × magnification) and flow cytometry (representative histogram). (E) Quantitative analysis of TNF-alpha
and IL-6 positive cells after flow cytometry. *p < 0.05, **p < 0.01 vs. IgG group, 2-tailed student’s t test. (F) Macrophage phagocytosis of PKH26-labeled (red)
apoptotic NPs after treatment with naïve and ALI BAL (representative photograph, 200 × magnification, upper panel). Blue: DAPI-stained nuclei. Quantitative analysis
of macrophage phagocytosis (lower panel). Data was presented as mean percentage of PKH26+ cells ± standard deviation, * p < 0.05 vs. naïve BAL; # p < 0.05 vs.
IgG, n=3. One-way ANOVA followed by Tukey’s multiple comparisons test.
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of neutrophils and macrophages on endothelial cells in response
to Siglec F expression. Thereby, we speculated that lack of SIRP-
alpha expression attenuated murine ALI possibly through
reducing the ratio of Siglec-F(-)/Siglec-F+ subtype
macrophages and neutrophils in KO mice, subsequently
suppressing the chemotaxis of macrophages and neutrophils in
vivo. That will be further clarified in the future.

It was well documented that macrophage phagocytosis plays
an important role in inflammation resolution (36). Our further
in vitro study confirmed that SIRP-alpha deficiency in
macrophages from KO mice or blocking SIRP-alpha activity
on macrophage surface by neutralizing antibody effectively
improved macrophage phagocytosis of apoptotic neutrophils,
and significantly reducing production of pro-inflammatory
cytokines and chemokines, such as TNF-alpha, IL-6 and
RANTES. The effects were also observed in macrophages
treated with BAL pre-neutralized by SIRP-alpha antibody, in
which blockade of soluble SIRP-alpha in BAL significantly
increased macrophage phagocytosis activity and reduced
production of pro-inflammatory cytokines and chemokines. It
should be noted that lack of SIRP-alpha on macrophage surface
did not affect the effects of soluble SIRP-alpha on macrophages,
because blocking soluble SIRP-alpha activity in BAL can
Frontiers in Immunology | www.frontiersin.org 10
effectively suppress macrophage phagocytosis and production
of pro-inflammatory cytokines in KO BMDMs (data not shown).
Therefore, membrane-bound and soluble SIRP-alpha both have
pro-inflammatory properties on macrophages. Soluble SIRP-
alpha may affect macrophage function through targeting
unknown receptor on macrophages.

CD47 is a ligand of SIRP-alpha. In addition to the suppressive
role of CD47 and SIRP-alpha interaction in tumor cell
phagocytosis (29, 37), CD47 and SIRP-alpha interaction can
promote trafficking of SIRP-alpha+CD103(-) dendritic cells into
mediastinal and mesenteric lymph nodes and driving Th17 and
Th2-biased responses. Additional reports showed that CD47/
SIRP-alpha interaction participated in the development of
ischemia reperfusion-induced acute kidney injury, colitis and
allergic asthma (18, 20, 38). Thus, we speculate that CD47/SIRP-
alpha interaction may be involved in the development of ALI. It
warrants us to future investigate the role of CD47 in SIRP-alpha
mediated murine ALI in the future.

According to the previous reports, SIRP-alpha activates
downstream intracellular molecule SHP-1, leading to the
suppression of macrophage activation and phagocytosis (39,
40); whereas activation of STAT3 (41, 42) and STAT6 (43, 44)
signaling can promote macrophage phagocytosis. Thus, we
A
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C

FIGURE 8 | Lack of SIRP-alpha improved macrophage phagocytosis through STAT3 and STAT6 signaling pathways. (A) Immunostaining for total SHP-1,
phosphorylated SHP-1 (p-SHP-1), phosphorylated STAT6 (p-STAT6) and acetylated STAT3 (a-STAT3) in WT and KO BMDMs 12 hours after LPS treatment. Red:
positively stained cells. Representative photograph, 200 × magnification. (B) Quantitative analysis for total SHP-1, p-SHP-1, p-STAT6 and a-STAT3 by ImageJ software.
Data was presented as mean relative fluorescence intensity over WT BMDMs ± standard deviation, *p < 0.05, **p < 0.01 vs. WT group, n=3, 2-tailed student’s t test. (C)
Phagocytosis activity of WT or KO BMDMs treated by 5 mM C188-9 (STAT3 inhibitor) or 5 mM AS1517499 (STAT6 inhibitor). The untreated cells were controls. Data was
presented as mean ± standard deviation, **p < 0.01 vs. untreated cells, n=3. (D) Immunostaining for a-STAT3 and p-STAT6 in WT or KO BMDMs after treatment with 5
µM TPI-1 (SHP-1 inhibitor) or untreated. Red: positively stained cells, representative photograph, 200 × magnification. (E) Quantitative analysis of a-STAT3 and p-STAT6
in TPI-1 treated WT or KO BMDMs by ImageJ software. Data was presented as mean relative fluorescence intensity over untreated WT BMDMs ± standard deviation, *p
< 0.05, **p < 0.01 vs. untreated cells, n=3. One-way ANOVA followed by Tukey’s multiple comparisons test. (F) Flow cytometry analysis for a-STAT3 and p-STAT6 in the
untreated or TPI-1 treated WT BMDMs. Representative histogram.
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speculate that lack of SIRP-alpha attenuated murine ALI possibly
through suppressing SHP-1 and activating STAT3 and STAT6
signaling pathways. To address this issue, we treated
macrophages with SHP-1, STAT3 and STAT6 inhibitors. The
results revealed that lack of SIRP-alpha suppressed activation of
SHP-1, and increased activation of STAT3 and STAT6. The
results indicated the role of SIRP-alpha in activation of SHP-1
and suppression of STAT3 and STAT6 signaling. Thus,
suppression of SHP-1 by inhibitor improved activation of
STAT3 and STAT6. The results demonstrated the suppressive
role of SHP-1 in activation of STAT3 and STAT6. According to
the previous reports (45–47), STAT3 and STAT6 can induce
anti-inflammatory responses and suppress transcription of pro-
inflammatory mediators, we speculate that the increased STAT3
and STAT6 signaling in SIRP-alpha deficient macrophages
contributed to the improved macrophage phagocytosis and
suppressed production of pro-inflammatory mediators.
Thereby, we conclude that lack of SIRP-alpha expression
attenuated ALI possibly through activation of STAT3 and
STAT6 signaling, and subsequently improving macrophage
phagocytosis. SIRP-alpha exerts pro-inflammatory effects by
activation of SHP-1 and inhibition of STAT3 and STAT6
signaling in macrophages (Figure 9).

However, it should be noted that LPS also increased
macrophage phagocytosis and induced additive effects in
conjunction with blockade of SIRP-alpha signaling in this
study. The results were consistent with a previous report by
Nepal S, et al, in which LPS treatment induced efferocytosis of
Frontiers in Immunology | www.frontiersin.org 11
apoptotic polymorphonuclear leukocytes (PMNs) by increasing
the expression of anti-inflammatory IL-4 and tumor necrosis
factor-stimulated gene-6 (TSG-6), subsequently activated STAT6
and the expression of growth arrest-specific 6 (Gas6) (48). The
role of LPS in activation of STAT6 and its homologous STAT6
(B) was also reported by another group (49). Thus, we explain
that LPS improved macrophage phagocytosis predominantly
through STAT3/STAT6 signaling, independent of SIRP-alpha
in this study (Figure 9). We expect that LPS-induced
improvement in macrophage phagocytosis should have
beneficial feedback effects on inflammation resolution and
tissue repair at later phase of inflammation, in together with
the increased differentiation of anti-inflammatory regulatory T
cells (50, 51).

Taken together, lack of SIRP-alpha expression attenuated
the severity of murine ALI. The effects were mediated through
improving STAT3 and STAT6 signaling, subsequently
increasing macrophage phagocytosis. Thus, SIRP-alpha plays
a pro-inflammatory role in murine ALI. Targeting SIRP-alpha
by neutralizing antibody and molecular intervention would be
a promising therapeutic approach in the treatment of
ALI/ARDS.
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FIGURE 9 | Schematic diagram of SIRP-alpha downstream signaling pathways
in modulation of macrophages and development of ALI/ARDS. In LPS-induced
ALI, the expression and release of soluble SIRP-alpha are increased, subsequently
activates SHP-1, and suppresses activation of STAT3 and STAT6. Activation of
STAT3 and STAT6 promotes macrophage phagocytosis, clearance of apoptotic
and dead cells in the inflamed lung tissues, subsequently improving inflammation
resolution and tissues repair in ALI/ARDS.
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