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Radiologically Isolated Syndrome (RIS) is characterized by MRI-typical brain lesions
fulfilling the 2009 Okuda criteria, detected in patients without clinical conditions
suggestive of MS. Half of all RIS patients convert to MS within 10 years. The individual
course of the disease, however, is highly variable with 12% of RIS converting directly to
progressive MS. Demographic and imaging markers have been associated with the risk of
clinical MS in RIS: male sex, younger age, infra-tentorial, and spinal cord lesions on the
index scan and gadolinium-enhancing lesions on index or follow-up scans. Although not
considered as a distinct MS phenotype, RIS certainly shares common pathological
features with early active and progressive MS. In this review, we specifically focus on
biological markers that may help refine the risk stratification of clinical MS and disability for
early treatment. Intrathecal B-cell activation with cerebrospinal fluid (CSF) oligoclonal
bands, elevated kappa free light chains, and cytokine production is specific to MS,
whereas neurofilament light chain (NfL) levels reflect disease activity associated with
neuroaxonal injury. Specific microRNA profiles have been identified in RIS converters in
both CSF and blood. CSF levels of chitinases and glial acidic fibrillary protein (GFAP)
reflecting astrogliosis might help predict the evolution of RIS to progressive MS. Innovative
genomic, proteomic, and metabolomic approaches have provided several new candidate
biomarkers to be explored in RIS. Leveraging data from randomized controlled trials and
large prospective RIS cohorts with extended follow-up to identify, as early as possible,
biomarkers for predicting greater disease severity would be invaluable for counseling
patients, managing treatment, and monitoring.

Keywords: multiple sclerosis (MS), radiologically isolated syndrome (RIS), prognosis, biomarkers, personalized
medicine, Kappa free-light chain index (kFLC index), glial fibrillary acidic protein (GFAP), neurofilament-light
chain (NfL)
1 INTRODUCTION

In 2013, the classical definitions of MS clinical courses were modified to take disease activity and
disease progression into account (1). Additionally, a clinically isolated syndrome (CIS), the first
attack of typical clinical MS symptoms, was defined as early-stage MS, later becoming relapsing–
remitting multiple sclerosis (RRMS) if subsequently clinically active and fulfilling the current MS
org April 2022 | Volume 13 | Article 8660921
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diagnostic criteria (1). Various signs and symptoms (namely,
fatigue, pain, bowel and bladder dysfunction, sleep disturbances,
and cognitive impairment) and increased healthcare usage may
occur in the latent period between the start of neuropathological
lesions and CIS, defining the concept of a prodromal phase of MS
(2). However, profiles associating multiple biological and clinical
features suggestive of MS should be carefully defined to reach
appropriate diagnostic specificity before they can be used as
markers to screen for MS in populations at risk, such as the
offspring of MS patients. In the absence of clinical conditions
suggestive of MS, only MRI lesions that fulfill the 2005
dissemination in space criteria (the so-called Okuda criteria)
have shown enough specificity for the risk of clinical conversion
during follow-up and therefore reached a consensus for the
definition of radiologically isolated syndrome (RIS) (3, 4).
With this definition, one-third of RIS patients experience their
first clinical event, typical of RRMS, after 5 years, while another
third show new brain lesions on follow-up scans (5). A long-term
retrospective multinational study showed that more than 50% of
RIS subjects converted to MS within 10 years, with 11.7%
meeting the criteria for primary progressive MS (PPMS) (6).

Predicting the evolution of RIS is of utmost importance for
adapting follow-up and therapeutic strategies for effective,
personalized care. In large cohorts, male sex and younger age
have been identified as baseline predictors of clinical conversion
(5–8). Validated MRI prognostic biomarkers are infra-tentorial
(IT) and spinal cord (SC) lesions on the index scan and the
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presence of gadolinium-enhanced (Gd+) lesions on index or
follow-up scans (5–8). Recently, studies have shown that the
presence of white matter lesions with a central vein sign (CVS)
or a paramagnetic rim sign in RIS patients is associated with the
presence of SC lesions, suggesting their potential for predicting RIS
evolution (9, 10). Optic nerve demyelination identified by visual
evoked potentials (VEP), thinning of the peripapillary retinal
nerve fiber layer (pRNFL) and the common ganglion cell and
inner plexiform layer (GCIP) at baseline and during follow-up on
optical coherence tomography (OCT) has also been correlated
with a higher risk of clinical conversion (8, 11).

Although RIS is not considered a distinct MS phenotype due to
the absence of MS symptoms (12), it certainly shares common
pathological features with CIS and early progressive MS,
encompassing several biological characteristics and markers,
forming a set of putative biological markers for the prognosis of
RIS (13–15). Except for oligoclonal bands (OCBs) from
cerebrospinal fluid (CSF), for 40 years now, have been considered
as a biomarker for MS (12), biological markers for early MS remain
largely unexplored in RIS. There is a need to identify biomarkers for
early MS that may help refine the risk stratification for clinical MS
and disability for early treatment. Exploring the pathophysiological
pathways for MS involving risk factors for MS, immune system
dysfunction, neuroaxonal injury and degeneration, and glial
activation in RIS might improve our understanding of this
complex disease (16). Additionally, biomarkers for RIS might
reveal early pathological features of MS that were unidentified in
FIGURE 1 | Biological markers predictive of clinical evolution in early multiple sclerosis. MS, multiple sclerosis; CSF, cerebrospinal fluid; RIS, radiologically isolated
syndrome; CIS, clinically isolated syndrome; PMS, progressive MS; 25(OH)D, 25-hydroxy vitamin D; EBNA1-IgG, Epstein–Barr Virus-encoded nuclear antigen 1
specific immunoglobulin G; OCBs, oligoclonal bands; CHI3L1, chitinase 3-like protein 1; CHI3L2, chitinase 3-like protein 2; GFAP, glial fibrillary acidic protein; NFL,
neurofilament-light chain; kFLC, kappa Free Light Chains; miRNA, microRNA.
April 2022 | Volume 13 | Article 866092

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rival et al. Biological Markers of RIS Prognosis
the later stages and may constitute future therapeutic targets to slow
the disease in its pre-symptomatic phase. In this review, we focus on
published biological markers predictive of disease activity and
progression at the earliest stages of MS, as depicted in Figure 1,
and discuss their potential interest in RIS subjects.
2 INFLUENCE OF RISK FACTORS FOR MS
ON THE EVOLUTION OF RIS

In the relatives of MS patients, the risk of MS is much greater and
correlates with the degree of kinship, origin, and sex, partly due to
several genetic risk factors for MS, especially human leukocyte
antigen (HLA) genes (16). Accordingly, there is a higher incidence
of RIS in healthy relatives of patients with MS compared to people
with healthy relatives (17). HLA-DRB1∗1501 is the main allele
responsible for the genetic risk of MS in patients with European
ancestry (18). It has also been associated with the risk of clinical
events in CIS patients (19), but not in RIS patients (20). Although
they are not routinely determined in MS and RIS, analysis of
genetic variants associated with MS might still have a minor
interest in clinical care.

Low sun exposure, poor vitamin D intake, and low 25-
hydroxy vitamin D (25(OH)D) levels in serum, smoking,
obesity, and a history of Epstein–Barr virus (EBV) infection
are all environmental risk factors for MS (21). Immunoglobulins
against EBV-encoded nuclear antigens (EBNA-1,2,3,4,6-IgG) are
associated with the risk of developing MS (22). Most of these
have also been linked to disease severity (25(OH)D, EBNA1-IgG,
obesity, and smoking) (23, 24). Smoking, especially in healthy
relatives of patients with MS, is associated with the presence of
white matter (WM) signal abnormalities, whereas obesity is
related to the presence of ≥9 WM signal abnormalities and
fulfillment of the Swanton criteria (17). Lower 25(OH)D levels
were associated with the risk of clinical events in a large cohort of
CIS patients in univariate analysis, but EBNA1-IgG and smoking
status as defined by cotinine levels (>14 ng/ml) were not (25). In
a small RIS cohort, there was no difference in 25(OH)D levels in
the serum of converters or non-converters (20). The predictive
value of 25(OH)D deficiency should be investigated further, as
the relatively minor clinical impact of vitamin D therapy in MS
may be enhanced if started before disease onset (26, 27).
3 PROGNOSTIC BIOMARKER
CANDIDATES FOR RIS

3.1 CSF B Cell Lineage and Biomarkers
3.1.1 CSF B Cells
B cells are a key component of acute and chronic inflammatory
activity in MS (28), with specific activated clones promoting
cytokine production, antigen presentation, differentiation into
plasma cells, T cell activation, and CNS invasion by immune cells
(29). Inflammatory aggregates of B cells in the subarachnoid
spaces were associated with a worse evolution of the disease (30).
In analyzing different B-cell subsets (transitional, mature naive,
Frontiers in Immunology | www.frontiersin.org 3
marginal zone, switched memory B cells, IgM-only, IgD-only B
cells, and plasmablasts), Guerrier et al. observed that double-
negative IgD2/CD272 B cells increased in CIS patients (31).
Analysis of the different subsets of T and B cells in RIS could
bring new insights into the mechanisms of MS and serve
as biomarkers.

3.1.2 Immunoglobulin G and M Intrathecal Synthesis
Clonally expanded B and plasma cells in the CNS locally produce
clonal IgGs, leading to CSF restricted oligoclonal bands (OCBs).
The presence of OCBs was the first established biological marker
for the diagnosis of MS (29) and predicts CIS conversion to
clinically definite MS (29). Moreover, RRMS or CIS patients with
intrathecal IgG synthesis had a higher risk of and shorter time-
to-EDSS worsening over a 4-year follow-up period (32).

In RIS, the presence of OCBs is predictive of clinical
conversion in adults (33) and children (34, 35) (Table 1),
although the presence of OCBs is not correlated with the
conversion time in adults (33). Conversely, the IgG index has
not shown an independent prognostic value (8, 20). In large
cohorts, abnormal CSF, defined as the presence of ≥2 OCBs and/
or an IgG index >0.7, revealed a relevant predictive value for
disease activity (5, 6, 8). It was also an independent predictor of
clinical conversion at 10 years in a multivariate analysis
compared to MRI and epidemiological data (6) but not in
shorter term studies (5) (Table 1). Interestingly, OCBs have
been accurately detected in tears and could be used as a
minimally-invasive diagnostic tool for RIS if further confirmed
in independent cohorts (38).

Intrathecal synthesis of IgM has been associated with higher
disease activity and shorter progression toward disability
compared with abnormal CSF in RRMS patients and an active
inflammatory disease phenotype in PPMS patients, but its
prognostic value has not been studied for RIS (39, 40).

3.1.3 Kappa-Free Light Chains
Kappa free light chains (kFLC) measured by nephelometry (41)
reflect the quantitative intrathecal immunoglobulin synthesis
with better accuracy than OCBs and IgG index for MS
diagnosis (42) and for predicting clinical conversion in CIS
(43), suggesting that it could represent a good candidate
biomarker for RIS prognosis. However, studies evaluating
small numbers of pooled RIS and CIS patients provide
divergent results, and sound investigations of kFLC in RIS are
needed (44, 45).

3.1.4 B Cell Cytokines and Chemokines
CXCL13 is a pro-inflammatory chemokine involved mainly in
the migration of B cells, a critical stage in the pathology of MS
(46). CXCL13 levels assessed in CSF by ELISA have been
associated with the conversion of CIS to MS, a higher relapse
rate and accumulation of disability (47–49). In only one study of
a few RIS patients (n = 4), the CXCL13 index in RIS showed no
difference from healthy controls or other stages of MS (50).

In the study by Guerrier, an imbalance in the cytokine
production by circulating B cells, especially the alteration of
April 2022 | Volume 13 | Article 866092
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IL-10 production with a high IL-6/IL-10-producing B-cell
ratio, was associated with clinical conversion and its delay in
a mixed cohort of CIS and RIS patients (31). Concentrations of
B cell-related factors, notably CD27, FCRL2, CXCL10, and
CXCL13, increase in MS CSF, especially in the early stages of
the disease (51). Further studies must confirm B-cell
phenotyping as a valuable prognostic biomarker.

3.2 Other Inflammatory Biomarkers
3.2.1 Soluble CD27
A soluble form of CD27 (sCD27) is released by activated T cells
and co-stimulates B and T cell activation and proliferation in
autoimmune diseases like MS (52–54). High sCD27 levels in
the CSF of CIS patients have been associated with a 5.5 times
higher annual relapse rate (53) and the CSF sCD27/T-cell ratio
increases in progressive MS (55). However, serum sCD27 levels
do not discriminate between MS patients and healthy
individuals (54).
Frontiers in Immunology | www.frontiersin.org 4
3.2.2 Interleukin-8
Interleukin-8 (IL-8) is a pro-inflammatory chemokine produced
by astrocytes and microglia in response to active intrathecal
inflammation (56). It activates monocytes and neutrophils (37)
and binds to oligodendrocytes and hypertrophic astrocytes in MS
(57). Elevated CSF IL-8 levels are predictive of MS conversion
following a CIS (37). In a small group of 18 RIS patients, a high
level of CSF IL-8 was an independent predictor of clinical
conversion (37), making IL-8 a candidate for RIS prognosis to
be further validated.

3.2.3 Interleukin 17A
Studies on experimental autoimmune encephalomyelitis, an
animal model of MS, highlighted the role of Th17
lymphocytes, characterized by interleukin 17A (IL-17A)
secretion, as strong inducers of pro-inflammatory responses
(58). In a large cohort of 1,327 MS spectrum patients (RIS-
CIS-RRMS), IL-17A levels were higher than in healthy controls
TABLE 1 | Prognostic value of oligoclonal bands and/or IgG index in cerebrospinal fluid in patients with radiologically isolated syndrome.

Study Patient characteristics End-point Statistical test Univariate
analysis

Multivariate
analysis

N (W%) Age*
(y)

Follow- up*
(y)

Abnormal CSF Lebrun et al. (8) 70 (75.7) 35.6 5.2 attack Log-rank test n.s. p = 0.02 #

Lebrun et al. (6) 415
(86.5)

37.2 6.7 attack or
progression

Cox proportional hazards models HR 2.15
[1.40–3.31]
P <0.001

HR 1.74
[1.07–2.85]
p = 0.027

Okuda et al. (5) 451
(78.4)

37.2 4.4–2.8 attack or
progression

Cox proportional hazards models HR 1.78
[1.11–2.87]
p =0.017

ns

Thouvenot et al. (36) 71 (76.1) 38.0 1.3 attack Cox proportional hazards models HR 2.9
[0.83–10.2]
p = 0.097

HR 2.22
[0.57–8.59]
p = 0.249

Lebrun et al. (7) 354
(74.6)

38.6 3.8 attack or
progression

Cox proportional hazards models HR 1.26
[0.51–3.09]
p = 0.61

–

Oligoclonal
Bands

Matute-Blanch et al.
(33)

75
(73.3)

36.6 2.8 attack Cox proportional hazards models HR 10.31
[1.37–
76.61]

p = 0.024

HR 14.70
[1.80–
120.15]

p = 0.012
Makhani et al. (34) 38 (71.1) 15.4 4.8–2.5 attack Cox proportional hazards models not shown HR 10.9

[1.4–86.2]
p = 0.020

Makhani et al. (35) 61 (68.9) 15.0 4.2–2.4 attack Cox proportional hazards
models

HR 4.1
[1.1–14.4]
p = 0.03

HR 3.0
[1.1–8.5]
p = 0.04

Lebrun et al. (8) 70 (75.7) 35.6 5.2 attack Fisher’s exact
test

p = 0.69 NA

Rossi et al. (37) 18 (50) 29.7 2 attack Multivariate logistic regression
model

not shown OR 4.45
[0.12–
154.07]
p = 0.400

Munoz et al. (20) 15 (73.3) 38 6.5 attack or
progression

Fisher’s
exact test

p = 0.200 NA

IgG index Lebrun et al. (8) 70 (75.7) 35.6 5.2 attack Fisher’s
exact test

p = 0.26 NA

Munoz et al. (20) 15 (73.3) 38 6.5 attack or
progression

Mann–Whitney U test p = 0.127 NA
April 2022 |
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in CSF but not in serum (59). Serum and CSF IL-17A did not
discriminate between MS subtypes and did not demonstrate any
prognostic value in 35 RIS patients (59).

3.3 Markers of Neuroaxonal Damage and
Glial Activation
3.3.1 Neurofilaments
Neurofilaments encompass a family of 5 intermediate filaments
(heavy, medium, light chains (NfL), a-internexin, and
peripherin) involved in axonal growth and stability as well as
mitochondrial and synaptic functions in central and peripheral
neurons (60). Neurofilaments can be released into the interstitial
fluid from injured neurons, either due to the loss of neuronal
membrane integrity or to active secretion related to axonal
damage or neurodegeneration. According to other brain
protein clearance, degraded neurofilaments may be absorbed
from interstitial fluid into lymphatic vessels or directly absorbed
by the blood vessels via perivascular drainage along the basement
membranes of capillaries (61). Different levels of blood–brain
barrier leakage induced by inflammation probably modify the
kinetics of the neurofilament-light chain, circulating between the
brain and blood compartments and its final blood concentration
(60). NfL in CSF (cNfL) has been associated with clinical activity
in CIS patients (62). cNFL can tell RIS apart from RRMS and
PPMS, but not from early-stage CIS or healthy controls (63).
Among 75 RIS patients, high cNfL measured by ELISA (Uman-
Diagnostics; Umeå, Sweden) has been associated with an
increased risk of conversion to CIS or to RRMS (CIS was
based on the 2010 McDonald criteria in this study) (33).

Recently, ultrasensitive technologies such as the single molecule
array (Simoa™) and the microfluidic platform (Simple Plex™ Ella)
have been developed, allowing for the accurate determination of
NfL levels in serum (sNfL) and highly correlated cNfL levels (64,
65). Using Simoa™, sNfL levels have been associated with disease
activity, treatment response, and long-term outcomes at different
stages of MS (66, 67) and identified as an independent predictor of
relapse in newly-diagnosed MS and CIS patients (68, 69). The
prognostic value of sNfL has not been investigated in RIS subjects.
However, in a large epidemiological study among US military
personnel, it was significantly higher among people who developed
MS within 6 years (70). sNfL might provide a potentially less
invasive option for assessing RIS prognosis when a lumbar
puncture cannot be performed.

3.3.2 Glial Fibrillary Acidic Protein
Glial Fibrillary Acidic Protein (GFAP) measurement has recently
been implemented with NfL in multiplex kits (2-PLEX B and 4-
PLEX A) by Quanterix®, making it possible to investigate
astrocytic activation along with neuroaxonal damage in serum
samples. GFAP is one of the major intermediate filament
proteins expressed in astrocytes. CSF GFAP levels correlate
with different subtypes of MS, reflecting different degrees of
damage to astrocytes and may represent a useful marker of
disease progression (71). CSF and serum GFAP (sGFAP) levels
are correlated with MS patients (72). sGFAP has been associated
with a higher Expanded Disability Status Scale (EDSS) score,
older age, longer disease duration, progressive disease course,
Frontiers in Immunology | www.frontiersin.org 5
and MRI pathology (73, 74). The positive correlation between
sGFAP and the clinical severity of the disease may highlight a
particular role of astrocytes in progressive MS and mark the
potential of sGFAP as a marker of disease severity (73). In RIS,
the prognostic value of sGFAP as a minimally invasive
biomarker of conversion to PPMS should be evaluated.

3.3.3 Chitinase 3-Like protein 1
Chitinase 3-like protein 1 (CHI3L1, also known as YKL-40) is a
protein of the chitin family mainly released in the CNS by activated
astrocytes (75), microglia, and macrophages (76) in response to
acute and chronic inflammation. It has been described as inhibiting
oxidant-induced injury, increasing Th2 immunity, and regulating
apoptosis (77). CSF CHI3L1 levels (cCHI3L1) measured by ELISA
predict conversion from CIS to clinically definite MS and
development of disability (75, 78). Indeed, cCHI3L1may reflect
non-lymphocytic low-grade inflammation leading to active
neurodegeneration (79), explaining its association with
neurological disability quantified by EDSS in PPMS (80).
However, all studies consistently show the absence of prognostic
value of cCHI3L1 in RIS (20, 33, 36), suggesting that astrocytic and
microglial activation is too scarce at the pre-symptomatic stage of
MS. However, chitotriosidase and chitinase 3-like protein 2
(CHI3L2), two other members of the chitin family with similar
properties, also need to be evaluated (75, 81, 82).

Although at a much lower concentration than in the CSF,
ELISA made it possible to quantify serum CHI3L1 (sCHI3L1)
levels, which are also associated with the risk of conversion to
RRMS in CIS patients (75). Additionally, sCHI3L1 is higher in
PMS patients than in RRMS patients and correlates with
disability as determined by EDSS in PMS patients (83).
However, the prognostic value of sCHI3L1 for the conversion
to CIS or to PMS in RIS patients has not been assessed.

Altogether, NfL, likely associated with acute neuroaxonal
injury, might have an interesting predictive value in the early
stages of MS for disease activity, whereas GFAP and sCHI3L1
seem rather to be associated with glial activation, and could be of
interest for predicting conversions to progressive MS. Their
association in a CSF or serum “glia score” (GFAP*CHI3L1/
NfL) better discriminates RRMS vs. PPMS than each
biomarker alone, CSF being more accurate than serum (AUC
0.80 vs. 0.68, respectively) (83).

3.4 Innovative Genomic, Proteomic, and
Metabolomic Approaches
3.4.1 MicroRNA
MicroRNA (miRNA) is an extremely stable class of non-coding
single-stranded RNA with post-transcriptional regulatory
functions (84) that can be detected in peripheral blood or CSF.
Some serum and CSF miRNA profiles have been associated with
MS (84, 85), while others predict clinical evolution in CIS
patients (86). In 15 RIS patients, miRNA specific profiles in
CSF (miR-144-3p, miR-448, and miR-653-3p) and in plasma
(miR-142-3p, miR-338-3p, miR-363-3p, miR-374b-5p, miR-
424-5p, and miR-483-3p) have been associated with the risk of
conversion after 5 years of follow-up (20) and require
further validation.
April 2022 | Volume 13 | Article 866092
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3.4.2 Mass Cytometry
Mass cytometry (CyTOF) can help decipher immune cell
phenotypes. In CSF from early MS patients, a B-cell
population expressing CD49d, CD69, CD27, CXCR3, and
HLA-DR could be a strong candidate for an MS-specific cell
type (51). In the blood of CIS patients, an increased proportion of
both a T-bet-expressing B cell subset and a CD206+ classical
monocyte subset has been identified, especially in very active MS
patients (disease activity after 6 months of disease modifying
therapy or two or more relapses within one year with residual
disability and radiological activity) (87).

These approaches provide new insights into the
pathophysiology of MS and allow the identification of
immunological biomarkers of early MS. Further studies will be
required to determine the exact role of new candidate biomarkers
and validate their diagnostic and prognostic value in RIS patients.

3.4.3 Proteomics and Metabolomics
In the past few years, technical breakthroughs have made it
possible to screen for many molecules as candidate biomarkers
through unbiased -omic approaches. SOMAscan™ has identified
specific protein profiles in the CSF extracellular vesicles of RRMS
patients (88). The Olink inflammation panel has identified
CCL11 and CCL20 as plasma biomarkers associated with MS
progression and severity (89).

Metabolomics can identify the disturbed pathways involved
in signaling and energy supply, providing potential signature
profiles for MS diagnosis, stages, and assessment of drug
responses, especially involving the alpha-linoleic acid pathway,
nucleotide metabolism, amino acid metabolism, tricarboxylic
acid cycle, D-ornithine, and D-arginine pathways (90).

The multi-omics-based algorithm based on protein profiling
by SOMAScan™ and nuclear magnetic resonance metabolite
measures has outperformed the current individual biomarkers
for predicting the risk of conversion to clinically definite MS in
CIS patients (91), although a reproducible MS-specific
metabolome-based signature remains to be identified. Applied
to RIS, these approaches could bring new insights into the
molecular pathways promoting the disease and more
accurately predict individual prognoses.
4 DISCUSSION

Prognostic values of several biological factors have been tested in
RIS owing to their interest in different subtypes of MS, especially
in CIS and early progressive MS.
Frontiers in Immunology | www.frontiersin.org 6
First, the most studied biomarker in MS and validated MS
diagnostic criteria, OCBs, remains the most relevant prognostic
biomarker for RIS. Physiologically linked to OCBs and with
greater accuracy in other phases of the disease, kFLC might be a
good candidate prognostic biomarker for RIS.

Secondly, although unavailable in routine clinical care, data
concerning NfL, IL-8, and miRNA profiles in CSF have
encouraged us to explore their potential as biomarkers for RIS
prognosis (Figure 1). Additionally, CHI3L1 and GFAP,
reflecting glial activation, need to be explored in CSF as
possible biomarkers for early PPMS and disability progression.

Finally, no peripheral biological markers have so far been
identified as providing additional prognostic value, except for the
miRNA profile. CHI3L1, GFAP, and NfL, accurately measurable
in blood, might also constitute potential peripheral biomarkers of
disease activity and progression.

Along with candidate biomarkers from current knowledge of
early MS and -omics approaches, therapeutic response
biomarkers may arise from ongoing randomized controlled
trials (RCTs) in RIS subjects [TERIS, NCT03122652 (92) and
ARISE, NCT02739542 (93)]. Leveraging samples and data from
RIS patients in RCTs and large prospective cohorts with
extended follow-up will be necessary to validate these
candidate biomarkers for RIS, which predict greater disease
severity. Moreover, identifying biological biomarkers obtained
from blood samples—far less invasive than a lumbar puncture—
should be a priority for future studies.
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