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Group 2 innate lymphoid cells (ILC2s) were identified in 2010 as a novel lymphocyte
subset lacking antigen receptors, such as T-cell or B-cell receptors. ILC2s induce local
immune responses characterized by producing type 2 cytokines and play essential roles
for maintaining tissue homeostasis. ILC2s are distributed across various organs, including
the intestine where immune cells are continuously exposed to external antigens. Followed
by luminal antigen stimulation, intestinal epithelial cells produce alarmins, such as IL-25,
IL-33, and thymic stromal lymphopoietin, and activate ILC2s to expand and produce
cytokines. In the context of parasite infection, the tuft cell lining in the epithelium has been
revealed as a dominant source of intestinal IL-25 and possesses the capability to regulate
ILC2 homeostasis. Neuronal systems also regulate ILC2s through neuropeptides and
neurotransmitters, and interact with ILC2s bidirectionally, a process termed “neuro-
immune crosstalk”. Activated ILC2s produce type 2 cytokines, which contribute to
epithelial barrier function, clearance of luminal antigens and tissue repair, while ILC2s
are also involved in chronic inflammation and tissue fibrosis. Recent studies have shed
light on the contribution of ILC2s to inflammatory bowel diseases, mainly comprising
ulcerative colitis and Crohn’s disease, as defined by chronic immune activation and
inflammation. Modern single-cell analysis techniques provide a tissue-specific picture of
ILC2s and their roles in regulating homeostasis in each organ. Particularly, single-cell
analysis helps our understanding of the uniqueness and commonness of ILC2s across
tissues and opens the novel research area of ILC2 heterogeneity. ILC2s are classified into
different phenotypes depending on tissue and phase of inflammation, mainly inflammatory
and natural ILC2 cells. ILC2s can also switch phenotype to ILC1- or ILC3-like subsets.
Hence, recent studies have revealed the heterogeneity and plasticity of ILC2, which
indicate dynamicity of inflammation and the immune system. In this review, we describe
the regulatory mechanisms, function, and pathological roles of ILC2s in the intestine.
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INTRODUCTION

The intestine is one of the largest organs continually exposed to
the external environment and it harbors an immune system to
protect the host from pathobionts (1). Innate lymphoid cells
(ILCs) are newly classified lymphocyte subsets that serve as a
frontline defense, particularly in the mucosal tissues (2, 3).
Unlike T- and B-cells, ILCs do not express adaptive antigen
recognition receptors, and as such their expansion and activation
are not driven in an antigen-specific manner, but rather by
cytokine signals in the local microenvironment in each tissue.
Although ILCs cannot induce antigen-specific reactions, they
quickly respond to external antigen from the local
microenvironment and rapidly produce various cytokines
including interleukins (IL) and interferon (IFN) to maintain
tissue homeostasis. ILCs are classified into three groups based on
lineage-determining transcription factors and cytokine
production, mirroring T helper cell subsets (2, 3). Group 2
ILCs (ILC2s) require transcription factors GATA3 (4, 5) and
RORa (6, 7) for differentiation and produce signature “Type 2”
cytokines, such as IL-4, IL-5, IL-9, and IL-13, as well as IL-6, IL-
10, IL-17, and amphiregulin (AREG) (8–12). ILC2s were first
reported as natural helper cells, nuocytes, and innate type 2
helper cells, and were detected in mesenteric adipose tissue,
mesenteric lymph nodes, spleen, liver, lung, and small intestine
(13–15). More recently, ILC2s have been found in various organs
that are confronted with external antigen, such as the intestine,
respiratory system, and skin, and also in those that are not
continually challenged, such as liver, heart, muscle, and brain
(16). Recent advancement of single cell omics and mass
cytometry technologies have revealed that ILC2s possess tissue-
specific phenotypes and contribute to the tissue-specific
regulation of inflammation, allergic immunity, parasite
infection, metabolism, and tissue repair (16–19).

In the intestine, epithelial cells respond to bacteria, parasites,
and allergen within the intestinal lumen, and produce alarmins,
such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP),
which subsequently activate ILC2s to proliferate and produce
cytokines (16). Recent studies have reported abundant regulation
of ILC2s beyond alarmins, including neuro-immune crosstalk,
which is mediated by neurotransmitters and cytokines.
Activation of tissue-resident ILC2s causes not only local
inflammation but also subsequent tissue remodeling and organ
fibrosis associated with intestinal chronic inflammatory
conditions, such as inflammatory bowel disease (IBD),
including ulcerative colitis (UC) or Crohn’s disease (CD) (17).
However, negative clinical trial results regarding targeting type 2
immune responses have encouraged us to explore the complexity
of ILC2 and other type 2 immune cells, and their cytokine
production. New technologies, including single-cell analysis,
have been used to better decipher the functions and
heterogeneity of ILC2s. Initially, ILC2s were thought to have
roles in defending against parasitic infection and promoting
allergic pathology (20), whereas studies of ILC2s in the context
of IBD are developing. In this review, we focus on the roles of
ILC2s in the intestine and discuss their regulation,
neuroimmunology, fibrosis, and contribution to IBD.
Frontiers in Immunology | www.frontiersin.org 2
REGULATION OF ILC2

ILC2s are localized in the lamina propria below the epithelial
layer and are activated following epithelial damage by parasites
and allergens in the mucosal tissues. This process is mediated by
alarmins, such as IL-25, IL-33, and TSLP, which initially activate
expansion and cytokine production in ILC2s when triggered by
mucosal barrier damage (Figure 1). ILC2s responding to IL-33
produce the growth factor AREG, which binds to epithelium-
expressed epidermal growth factor receptor (11). AREG has a
critical role for epithelial cell proliferation and differentiation
through the epidermal growth factor receptor pathway (21, 22).
A recent study demonstrated that secretion of IL-33 was
significantly accelerated in the colons of mice treated with
dextran sulfate sodium (DSS) and injecting recombinant
murine IL-33 improved epithelial damage, pro-inflammatory
cytokine secretion, and loss of barrier function in DSS-induced
colitic mice (23). Anti-colitic effect of IL-33 was observed in
RAG2-/- or diphtheria toxin-treated DEREG mice where whole
T cells or Tregs are depleted respectively (23). This suggests that
ILC2 has significant roles in anti-colitic effect upon stimulation
of IL-33 which is also known to enhance suppressive function of
Foxp3+ regulatory T cells (Tregs) through its receptor ST2 (24)
or stimulate CD103+ dendritic cells (DCs) to produce IL-2 and
expand Tregs (25). In the small intestine, tuft cells, which exist in
the epithelial layer of the intestinal tract and project microvilli
into the lumen, produce IL-25 to sustain ILC2 homeostasis in the
resting lamina propria (26). Together with high expression of IL-
17RB (27), tuft cell-derived IL-25 activates ILC2s to produce IL-
13, which affects epithelial crypt progenitors to promote
differentiation of tuft and goblet cells, resulting in further
activation of ILC2s in a positive feedback circuit of type 2
inflammation (26). This feed-forward pathway is constrained
by CISH, a suppressor of cytokine signaling family member (28)
and CISH-deficient ILC2s show excessive proliferation and
cytokine production, resulting in increased tuft cells in the
small intestinal (29). TSLP, which belongs to the IL-2 family
with structural similarities to IL-7, is released from epithelial cells
(30). TSLP incorporates the TSLP receptor (R) and the a-subunit
of the IL-7R, and this ternary molecular complex activates
multiple signaling pathways, such as the JAK1 and 2, STAT3
and 5, MAPK, PI3K, and NF-kB pathways (31–33). TSLP
enhances the type 2 immune response, in particular the
activation of ILC2s, resulting in increased type 2 cytokines IL-
4, IL-5, and IL-13 (34–39). These effector cytokines are also
regulated at the post-transcriptional level. Tristetraprolin,
encoded by Zfp36, is an RNA-binding protein that destabilize
mRNA. In the Zfp36-/- mice, ILC2 produces excessive Il5 and
Il13 in the small intestine and other organs (40). Taken together,
ILC2 in the intestine is regulated at the transcriptional and post-
transcriptional level upon cytokine stimulation.

Neuroimmunology: ILC2 Neuro-Immune
Crosstalk
The gastrointestinal tract is one of the most innervated organs,
particularly by enteric neurons and extrinsic sympathetic and
parasympathetic nerves, such as the vagus nerve (41). This
May 2022 | Volume 13 | Article 867351

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sunaga et al. Heterogeneity of Intestinal ILC2s
neuronal regulation shapes the levels of inflammation and
homeostasis in the gut via controlling the epithelia, stroma,
and immune cell compartments. The immune and neuronal
systems interact bidirectionally, namely through neuropeptides
and neurotransmitters that regulate immune cell functions, while
inflammatory mediators from immune cells enhance neuronal
activation. This “neuro-immune crosstalk” plays critical roles in
tissue homeostasis (42–44). In addition to the intestinal
macrophage (45), T-cell (46, 47), and ILC3 (48), ILC2s have
been investigated for neuro-immune crosstalk from the early
stages following identification (49, 50). ILC2s express receptors
for neuropeptides and neurotransmitters, and are regulated
through these receptors. Neuromedin U (NMU), a
neuropeptide secreted from sensory cholinergic neurons, is
detected in the intestine with high levels of expression and
exerts biological activities through two G protein-coupled
receptors: NMU receptor 1 (NMUR1) and 2 (NMUR2).
NMUR1 is distributed in the peripheral tissues while NMUR2
is mainly observed in the central nervous system (51). Among
the immune cells reported to express NMUR1 at a significant
level, ILC2s predominantly express NMUR1 compared to other
immune cell subsets, such as T cell, mast cell, and other groups of
ILCs (52–56). NMU induces activation, proliferation, and type 2
cytokine secretion in ILC2s through NMUR1 (54–56). Although
NMU regulation of ILC2s has been elucidated mainly in the field
of allergic respiratory diseases, this relationship has also been
revealed in the mouse gastrointestinal tract, indicating that NMU
induces ILC2 activation, proliferation, and secretion of the type 2
cytokines IL-5, IL-9, and IL-13 (55). Calcitonin gene-related
peptide (CGRP) is a later-identified neuropeptide that regulates
ILC2s and is expressed and released by sensory neurons and
Frontiers in Immunology | www.frontiersin.org 3
ILC2s themselves (57–59). ILC2s express the receptor for a-
CGRP in homeostatic and inflammatory conditions, and a-
CGRP suppresses ILC2 proliferation by activating a cAMP
response module, while promoting IL-5 expression (59).
Single-cell RNA sequencing has revealed that expression of
Calca, which encodes a-CGRP, is induced in intestinal killer-
cell lectin like receptor G1 (KLRG1)-positive ILC2s in a food
allergy model, but it is expressed in choline O-acetyltransferase
(ChAT)+ sensory neurons in the steady state (59). These
paradoxical functions of CGRP in terms of pro- and anti-
inflammatory influence on immune responses may represent
key roles for maintenance of epithelial cell homeostasis by
adjusting immune responses to neuronal signals. In particular,
IL-5 enhanced by a-CGRP promotes repair of epithelial cell
damage, while a-CGRP prevents excessive type 2 inflammation
by suppression of ILC2 proliferation (59). Of note, ChAT+ ILC2s
are strongly induced by type 2 inflammatory conditions, such as
helminth infection, Alternaria sensitization, and IL-25 and IL-33
treatment (38). In addition, ILC2s purified from the small
intestine or cultured under IL-2, IL-7, and IL-33, express both
muscarinic (Chrm4 and Chrm5) and nicotinic (Chrna2, Chrna5,
Chrna9, and Chrna10, Chrnb1 and Chrnb2) acetylcholine (ACh)
receptors. Therefore, ILC2s can respond to ACh to produce IL-5
and IL-13, and induce goblet cell hyperplasia, eosinophil
accumulation, and helminth expulsion in the small intestine,
which are partially abrogated in ILC-specific deletion of ChAT.
Tuft cells also have the capacity to produce ACh and contribute
to the regulation of ILC2s (26, 60). Studies suggest that the
expression of CGRP and ChAT in ILC2s is similarly induced by
type 2 inflammation and positive autocrine loops of ILC2-ACh
or ILC2-CGRP potentially modify intestinal inflammation and
FIGURE 1 | Regulation and function of ILC2. Alarmins, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), activate innate lymphoid cells 2 (ILC2) to
expand and produce cytokines. Neural systems regulate ILC2s bidirectionally through neuropeptides and neurotransmitters. ILC2s require transcription
factors GATA3 and RORa, and subsequently produce various cytokines. IL-13 induces hyperplasia of goblet cells and contraction of smooth muscle in the
intestine, involved in clearance of antigens in the lumen. IL-5 regulates B-cell antibody production and enhances IgA production. Amphiregulin (AREG)
promotes epithelial cell proliferation and differentiation. IL-9 and IL-10 contribute to resolution of inflammation, while IL-9 also promotes regulatory T-cell
activation and IL-10 decreases eosinophil recruitment. ILC2 expresses IL-9 receptor and thus receives IL-9 autocrine feedback. Regarding ligands and
receptors, red indicates activation, blue indicates inhibition, and purple indicates both functions.
May 2022 | Volume 13 | Article 867351
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homeostasis, and also raise an interesting question to identify the
distinct roles of neuropeptides like CGRP and ACh released by
ILC2s and sensory neurons. Although ILC2s respond to ACh
both in the intestine and lung, ILC2s in the lung express the a7-
nicotinic ACh receptor in contrast to intestinal ILC2s, suggesting
tissue specificity of ACh receptor usage in ILC2s (61). Similar to
the CGRP, another vasodilative neuropeptide, vasoactive
intestinal polypeptide (VIP) is also involved in the regulation
of ILC2s. Intestinal ILC2s express the VIP receptor and produce
IL-5 when incubated with IL-7 and VIP (62). Reciprocally, IL-5
from ILC2s directly activates nociceptors, such as TRPV1 and
TRPA1, on afferent NaV1.8

+ neurons and upregulates the release
of VIP, which induces ILC2s and T-cells to release more IL-5 and
form a positive feedback loop of type 2 inflammation (63).

ILC2s are regulated by not only cholinergic neurons but also
adrenergic neurons. The b2-adrenergic receptor, a catecholamine
receptor expressed on ILC2s, recognizes noradrenaline released
from sympathetic neurons and downregulates ILC2 function and
type 2 inflammatory responses (64). Hence, both parasympathetic
neurons releasing ACh and sympathetic neurons releasing
noradrenaline affect suppression of ILC2-derived type
2 inflammation.
ILC2 IN INFLAMMATORY BOWEL
DISEASES

IBD, mainly comprising UC and CD, is chronic inflammatory
disease of the gastrointestinal tract, although the etiology of IBD
Frontiers in Immunology | www.frontiersin.org 4
remains unclear. To date, more than 200 IBD-associated genes have
been identified and impinge on the pathways associated
with cytokine signaling, bacterial recognition, and barrier function
(65–67). Accumulation of many studies reveals that abnormal
immune responses against microorganisms of the gut flora
initiates chronic intestinal inflammation in genetically susceptible
individuals (68). Furthermore, dysregulation of both innate and
adaptive immune pathways contributes to the pathogenesis of IBD
(69) (Figure 2). Detailed elucidation of the innate immune system,
including ILCs, is required to gain new insights into the
immunologic mechanisms of intestinal inflammation.

Compared with ILC1s and ILC3s, the role of ILC2s in IBD
patients is less well understood (19). This might be attributed to the
very low frequency of ILC2s in the entire human gastrointestinal
tract compared with the relatively high abundance of ILC1s in the
upper gastrointestinal tract and ILC3s in the ileum and colon (70).
At the time of IBD diagnosis, the frequency of ILC1s is increased in
patients with CD, and the frequency of NKp44+ ILC3s in inflamed
tissue is decreased in both CD and UC patients (71), consistent with
the previous literature showing that NKp44+ ILC3s produce IL-22
and IL-22-producing ILC3s are decreased in IBD (72–76). In
contrast, the frequency of ILC2s is increased in patients with UC
at diagnosis (71), while both ILC1s and ILC2s are increased in
patients with IBD established for at least 1 year (71). Although
reports of increased ILC2 frequency are traditionally present in CD
but not UC (77), a recent study suggests the involvement of ILC2s
with mucosal inflammation in both CD and UC. Impressively,
ILC2s show plasticity towards an ILC1 cytokine profile with IL-12
stimulation, and some ILC2s in the mucosa of CD patients acquire
FIGURE 2 | Pathophysiology of inflammatory bowel disease (IBD). Damaged epithelial cells enhance antigen presenting cell (APC) and macrophage uptake of antigens
such as bacteria in the gut lumen, leading to APC/macrophage activation. APCs and macrophages produce pro-inflammatory cytokines, including tumor necrosis factor
(TNF), IL-6, IL-12, and IL-23. Activated APCs present processed antigens to naïve helper T-cells (Tn) and promote the differentiation of Tn to effector T-cells, helper T-1
(Th1), Th2, and Th17 cells. Th1 and Th2 release type 1 cytokines (interferon [IFN]-g and TNF), and type 2 cytokines (IL-4, IL-5, and IL-13), respectively. Independent of
these, Th17 cells release IL-17, IL-21, and IL-22. Innate lymphoid cells 1 (ILC1s) and natural killer (NK) cells, ILC2s, and ILC3s are activated in a non-antigen-specific
manner in tissues and produce cytokines corresponding to adaptive Th cell phenotypes, Th1, Th2, and Th17, respectively. Inflammation in the lamina propria is involved
in the migration and trafficking of lymphoid cells from blood vessels and lymph nodes. Circulating lymphoid cells bearing integrin-a4b7 bind to the mucosal vascular
epithelium through mucosal addressin-cell adhesion molecule 1 (MAdCAM-1) and migrate to the inflamed intestine. T-cells expressing shingosine-1-phosphase receptor 1
(S1PR1) in the lymph node are recruited to the site of inflammation by stimulation with S1P. Each cytokine or molecule has been targeted for IBD treatment.
May 2022 | Volume 13 | Article 867351
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capacity to produce IFN-g in addition to IL-13, which could
potentially contribute to intestinal inflammation (78). IL-12 is
expressed and actively released in CD intestinal tissues (79), and
is the therapeutic target of ustekinumab, which is used to treat CD
and UC (80, 81). Notably, in IBD patients receiving vedolizumab, a
monoclonal antibody that targets integrin a4-b7 and blocks gut-
homing of activated immune cells, the frequencies of ILCs in
peripheral blood remained unchanged, suggesting that
distribution of ILCs is due to local proliferation or plasticity
rather than recruitment of ILCs to the intestine (71). Therefore,
the finding of increased frequency of ILC2s secreting IFN-g may
indicate that the plasticity of ILCs depends on the local
mucosal microenvironment.

IL-33 expression is enhanced in the inflamed mucosa of IBD
patients (24, 82) and experimental models of colitis (83), and has
been previously shown to play both protective and detrimental
roles in colitis, based on different models of colitis and analyses
of cell types. Genetic ablation of ST2, a receptor of IL-33, resulted
in amelioration of colitis induced by DSS or trinitrobenzene
sulfonic acid (84). In addition, ILC2s expand and produce more
Th2 cytokines during DSS-induced colitis, which is repressed in
the steady state by E-cadherin on colonic epithelial cells and
KLRG1 on ILC2s (85). Conversely, treatment with IL-33 or
transfer of ILC2s improve intestinal mucosal damage through
the AREG pathway in the DSS-induced colitis model (11). A
recent study has reported that the intracellular pattern
recognition receptor NOD2 drives early IL-33-dependent
expansion of ILC2s during CD ileitis, based on CD patient
samples and an established murine model of CD-like ileitis, the
SAMP1/YitFc mouse strain (86, 87). In addition to alarmins, CC
chemokine ligand 1 (CCL1) exerts unique roles on ILC2s in the
intestine. ILC2s express high levels of the Th2-type chemokine
receptor, C-C motif chemokine receptor 8 (CCR8), both in
mouse intestine and human peripheral blood. In addition, the
expression of CCR8 and its ligand CCL1 is upregulated in
patients with UC and in the DSS-induced colitis model (88).
In a helminth infection model, mice lacking CCR8 exhibit
reduced type 2 cytokines IL-5, IL-13, and IL-9, and greater
worm burden in the small intestine (89). This is not attributed
to aberrant migration but to impaired proliferation and cytokine
production in ILC2s in the lung and intestine, although CCL1/
CCR8 signaling contributes to mediating monocyte and
lymphocyte chemoattraction and is implicated in vascular
regulatory T-cell recruitment and function (90). Of note, ILC2s
are the major producers of CCL1, which forms a paracrine
CCL1/CCR8 feed-forward loop during helminth clearance (89).
Unlike parasite infection, the major source of CCL1 during DSS-
induced colitis is macrophages rather than ILC2s, but CCL1/
CCR8 signaling similarly protects hosts from both parasite
infection and acute intestinal damage in a DSS colitis model
(88). In addition, mice lacking CCR8 exhibit comparable
numbers of ILC2 and tissue-repairing cytokines, IL-10 and
AREG, but reduced numbers of intestinal IFN-g-producing
ILCs (88). However, these IFN-g-producing ILCs may also
have dual roles in colitis as discussed above. Further studies
are needed to disentangle the complex results of previous reports
Frontiers in Immunology | www.frontiersin.org 5
regarding the roles of ILC2s in colitis and clinical trials targeting
Th2 cytokines, and to further enhance our comprehension of the
contribution of ILC2s to immune mechanisms in IBD.

ILC2 Contribution to Intestinal Fibrosis
Inflammation and impaired tissue repair induce accumulation of
myofibroblasts, which produce extracellular matrix components,
resulting in organ fibrosis (91, 92). In the intestine, fibrosis can lead
to stenosis or perforation. Th2 cells produce type 2 cytokines, IL-4,
IL-5, and IL-13, generating various pathological changes, such as
infiltration of eosinophils, increased mucus production, and fibrosis
(93). Recent studies have revealed that not only Th2 cells but also
ILC2s producing type 2 cytokines in an antigen non-specific
manner play an important role in immune-mediated fibrosis and
modulation of tissue remodeling, causing dysfunction in various
organs. Regarding the lung, expression of IL-25 and the ILC2
population increase in the lungs of idiopathic pulmonary fibrosis
patients (94). Other alarmin cytokines, IL-33 and TSLP, are elevated
in idiopathic pulmonary fibrosis, cystic fibrosis, and steroid-
resistant asthma sufferers (95–98). These studies suggest that
alarmin cytokines have critical roles in lung fibrosis and
remodeling. In patients suffering from liver fibrosis of various
etiologies, such as virus infection, alcoholic liver disease, non-
alcoholic steatohepatitis, autoimmune hepatitis, and primary
cholangitis (99), numbers of liver-resident ILC2s are activated and
expanded followed by expression of IL-33 (100). A recent study has
revealed the contribution of ILC2s in skin fibrosis within systemic
sclerosis (101). Following activation by IL-33, ILC2s express the
growth factor AREG and participate in epithelial barrier function
and tissue repair in the intestine (11).

IL-13 produced by ILC2s is involved in expression of the tumor
necrosis factor family cytokine TL1A, overexpression of which
brings about intestinal fibrosis (102). Constitutive expression of
TL1A in lymphoid and myeloid cells leads to spontaneous
inflammation and fibrosis in the small intestine and colon (103,
104). TL1A is a ligand for death receptor 3 and enhances secretion
of pro-inflammatory cytokines through multiple cell lineages
(105). ILC2s highly express death receptor 3 and overexpression
of TL1A activates ICL2 expansion, independent of IL-25 or IL-33
(106). Notably inhibition of TL1A function by either anti-TL1A
neutralizing antibody or deletion of death receptor 3 reduces
numbers of intestinal fibroblasts and myofibroblasts in murine
DSS colitis, the model of human IBD (107). Deficiency of another
tumor necrosis factor family cytokine, LIGHT, in mice exacerbates
DSS colitis compared with controls and accumulates ILCs,
suggesting LIGHT plays roles in regulating inflammation in the
colon (108). Signaling through LIGHT receptor, lymphotoxin b
receptor, in epithelial cells and dendritic cells protects against
mucosal damage by inducing IL-22 from ILC3s (109). Although
Tnfsf14, the gene encoding LIGHT, is highly expressed in not only
ILC3s but also ILC2s (108, 110), the role of the LIGHT-
lymphotoxin b receptor interaction in ILC2s has not yet been
revealed and further research is needed.

Blocking IL-13 production from ILC2s by IL-25 neutralization
enhances IL-22 production from ILC3s, which repair epithelial
damage (111, 112). In murine models, IL-13 is associated with
May 2022 | Volume 13 | Article 867351
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chronic gut inflammation caused by trinitrobenzene sulfonic acid
(113) and triggers transforming growth factor b 1-dependent
fibrosis (114). Notably, IL-13 was identified as the key effector
cytokine in UC by affecting epithelial apoptosis, tight junctions,
and restitution velocity (115) and a promotor of collagen
accumulation in CD by inhibiting fibroblast matrix
metalloproteinase synthesis, resulting in fibrosis of intestine
tissue (116). These studies indicate that blockade of IL-13
improves inflammation and subsequent fibrosis in IBD patients.
However, clinical trials evaluating tralokinumab, an anti-IL-13
neutralizing antibody for moderate-to-severe UC (117), and
anrukinzumab, an anti-IL-13 monoclonal antibody for mild-to-
moderate UC (118), could not demonstrate statistically significant
therapeutic effects compared with placebo controls. Although the
effect of inhibiting IL-13 for IBD patients remains controversial, a
recent study that found a high frequency of autoantibodies against
integrin avb6 in UC patients suggests the possible contribution of
type 2 immune responses in the pathogenesis in IBD (119).
THE ROLES OF ILC2 FOR INFECTION
AND ALLERGY

As mentioned above, the exposure to pathogens such as parasites
and allergens triggers ILC2 activation in mucosal tissue. Parasites
and allergens contain catalytic enzymes that digest the mucosal
barrier and provoke massive epithelial cell death, leading to release
of IL-33, which rapidly activates ILC2s in the lung (120) and colon
(121, 122). Since IL-33 rescues RAG2-/-, but not RAG2-/- gc-/-,
mice from Clostridioides difficile (121) and amebic (122) infection,
IL-33-ILC2 exerts host protection from these intestinal infections.
In the nucleus of epithelial cells, endogenous IL-33 is highly
expressed upon tissue inflammation (123). Additionally, lipid
chemical mediators play critical roles in ILC2 activation (124,
125). ILC2s in the lung from wild-type, RAG2-/-, and STAT6-/-
mice express cysteinyl leukotriene receptor 1 (CYSLTR1), and are
induced to produce IL-4, IL-5, and IL-13 followed by stimulation of
leukotriene D4 (124). Similar to the lung ILC2, small intestine ILC2
expresses CYSLTR1 and CYSLTR2, and produces IL-13 upon
stimulation of leukotriene C4 and D4 (126). In small intestine,
tuft cells become the essential source of cysteinyl leukotriene and
activate ILC2s in cooperation with IL-25 following helminth
infection (126). An in vitro study of ILC2s isolated from human
skin showed that prostaglandin D2 induces ILC2 migration,
production of type 2 cytokines and other pro-inflammatory
cytokines, and upregulation of the expression of IL-33R and IL-
25R (125). A subsequent study demonstrated that testosterone
attenuates ILC2 function, and this result may explain the sex
difference in prevalence of allergic disease (127). However, these
ILC2 regulatory mechanisms have not yet been demonstrated in the
intestinal tract.

Activated ILC2s exert inflammatory responses mainly via type 2
cytokines. IL-5, IL-6, and IL-13 are ILC2-derived cytokines that
were identified when ILC2s were first discovered (13). IL-5 regulates
B-cell antibody production and enhances IgA production from B-
cells, while IL-5 and IL-13 are implicated in allergic inflammation
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and protection against helminth infection (13, 128). The recent
study demonstrates that ILC2s predominate in the stomach, are
induced by commensal bacteria, and protect against H. pylori
infection through B cell activation and IgA production (129). IL-
13 promotes intestinal smooth muscle contractility for exclusion of
enteric nematode parasites and is required for expression of STAT6
(130). IL-13 derived from ILC2s induces hyperplasia of goblet cells,
the columnar epithelial cell that lines gastrointestinal mucous
membrane and contains abundant mucin, and participates in
clearance of luminal antigens (131, 132). While activated ILC2s
produce large amounts of IL-5 and IL-13, the level of IL-4 is
generally low except in specific inflammatory conditions or disease
models (14, 133, 134). IL-4 released from ILC2s promotes food
allergy by blocking allergen-specific regulatory T-cells (135), and is
required for type 2 helper T-cell (Th2) differentiation following
helminth infection (136). Alternatively, ILC2s can also respond to
IL-4 derived from eosinophils or basophils and accelerate
proliferation and activation of ILC2s themselves. This feed-
forward loop contributes to amplification of type 2 inflammation
(137, 138). ILC2s also produce IL-9 following activation by IL-33,
but not IL-25 (139). IL-9 derived from ILC2s promotes regulatory
T-cell activation and effectively induces resolution of inflammation
(140). Moreover, ILC2 simultaneously expresses IL-9R during
helminth infection, suggesting an autocrine feedback of ILC2-
derived IL-9 (139). Conversely, a molecularly distinct subset of
ILC2s produce IL-10 following IL-2 activation and subsequently
decrease eosinophil recruitment, suggesting downregulation of
inflammation (12). Consequently, ILC2s interact with other
immune cells through various cytokine crosstalk pathways and
form amplification loops of type 2 immune responses with Th2
cells, eosinophils, and basophils.
HETEROGENEITY AND PLASTICITY
OF ILC2

Recent studies have shown the heterogeneity of ILC2 subsets
between tissues and implicated environmental factors in this
variability. In the lung, the existence of two different ILC2 subsets
—inflammatory ILC2 (iILC2) and natural ILC2 (nILC2)—have
been identified, and these have different phenotypes, such as ST2
(a heterodimer of IL-33R), Thy1, KLRG1, and IL-17RB (10). iILC2
cells express more IL-25R and develop into nILC2-like cells,
producing IL-5 and IL-13 after stimulation with IL-33 during
worm infection. Moreover, iILC2 migrate from the intestinal
lamina propria to other organs, including lung and liver,
dependent on chemotaxis mediated by sphingosine 1-phosphate
after injection of IL-25 or helminth infection (141). Although ILC2s
are largely tissue-resident (142, 143), the ability of ILC2s to migrate
suggests that ILC2s complement adaptive immunity by protecting
both local and distant tissue against infection.

In the small intestine, IL-33 promotes the generation of
iILC2s by induction of tryptophan hydroxylase 1, deletion of
which results in increased susceptibility to helminth infection
(144). However, in the colon, ILC2s express ST2. Following
administration of IL-33, these cells proliferate and demonstrate
May 2022 | Volume 13 | Article 867351

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sunaga et al. Heterogeneity of Intestinal ILC2s
high expression of IL-5 and IL-13, with lower expression of IL-17
(145). Compared with other organs such as lung or skin, ILC2s in
the small intestine express higher levels of IL-17RB, which forms
the IL-25R together with IL-17RA (146, 147). Enriched IL-17RB
in intestinal ILC2s suggests that IL-25 derived from tuft cells
promotes efficient activation of ILC2s and defense against
infection with helminths or other pathogens (26, 27, 148).
Although TSLP is primarily expressed in skin keratinocytes,
lung, and gut epithelial cells (31), the function of TSLP in the
gut has not yet been clearly identified in contrast to its role in
allergy and infection in the lung and skin (149).

The first cell population-specific RNA sequence study to
characterize murine ILC subsets in the lamina propria of the
small intestine identified the expression of genes associated with
lipid metabolism, such as Dgat2, Pparg, and Lpcat2, and a gene
associated with enteric neuron communication, Bmp2 (147). In
another single-cell sequencing study, graded expression of
GATA3 characterized four different groups of intestinal ILC2s
(150). ILC2s, which express high levels of marker genes, such as
Klrg1, Klf4, Ly6a, and Il2ra, uniquely expressed high levels of Il5,
Csf2, and Areg (150). As described above, single-cell RNA
sequencing assists to determine the heterogeneity of ILC2s,
particularly in the field of neuroimmunology. In studies of the
lung, ILC2s in Nippostrongylus brasiliensis-infected mice are
clustered into four subsets: resting nILC2s, Il5-high nILC2s,
Il13-high nILC2s, and iILC2s (57). The expression of a-CGRP
receptor is enriched within an Il5-high subpopulation of ILC2s
and a-CGRP promotes IL-5 production only at early time point
stimulations (57). Intestinal ILC2s express the components of the
a-CGRP receptor at steady state, while a-CGRP suppresses the
proliferation of ILC2s, but increases IL-5 levels during the early
inflammatory phase (59). Furthermore, ILC2s of the small
intestine express abundant NMUR1 gene, while adaptive
immune cells, ILC1s, and ILC3s do not (55).

In vitro studies demonstrate the plasticity of human ILC2s,
which switch phenotype between subsets such as ILC1s and ILC3s.
IL-12 promotes the conversion of ILC2s into ILC1-like cells,
characterized by expression of T-bet and production of IFN-g (78,
138, 151). Conversely, IL-4 derived from eosinophils promotes ILC2
maintenance and proliferation by preventing IL-12-mediated ILC2
differentiation into the ILC1 phenotype (138). Furthermore, the
ILC2 subpopulation that expresses c-Kit can convert into ILC3-like
cells, producing IL-17 in response to IL-1b and IL-23 (152).
Removal of the aryl hydrogen receptor, a transcription factor for
ILC3, activates intestinal ILC2s, whereas increased aryl hydrogen
receptor expression suppresses ILC2 function and enhances ILC3
function (153). As ILC3-to-ILC1 conversion has been reported (19,
154), ILC2s also demonstrate plasticity, resulting in ILC2
heterogeneity in the inflammatory gut.
CONCLUSION

ILC2s play important roles not only for protection against
infection but also for promotion of chronic inflammation and
tissue fibrosis. A variety of cytokines and cellular interactions
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with other immune cells and neuronal systems are involved in
the homeostasis of ILC2s, suggesting complexity of ILC2
regulation. Recent studies revealed the potential of intestinal
ILC2s, such as migration to other organs and plasticity of
conversion to ILC1s or ILC3s. In particular, single-cell analysis
can help our understanding of heterogeneity of ILC2s potentially
attributed to pathological mechanisms and aid in discovery of
therapeutic targets for chronic inflammation, including IBD.
Understanding uniqueness and commonness of ILC2 between
mice and humans, between the gut and other organs, and
between health and disease may help answer important
questions in gut biology: What role does ILC2 play in the
contexts such as IBD, infectious disease, colorectal cancer, food
allergy and intestinal fibrosis? What is the unique role of each
ILC2 subset in the clinical settings? How are these ILC2 subsets
dynamically regulated during the course of intestinal disease?
How does each ILC2 subset interact with the other ILC2 subsets
and other types of immune cells? What factors contribute to
diversification of ILC2 subsets? Can these ILC2 subsets be
targeted to develop effective therapeutic strategies for human
intestinal diseases? Further research on ILC2s in different
environments at different phases of intestinal inflammation
will provide a clearer view on the roles of ILC2 during colitis,
tissue regeneration, fibrosis, and cancer.
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