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Chronic viral infections where the antigen persists long-term, induces an exhaustion
phenotype in responding T cells. It is now evident that immune checkpoints on T cells
including PD-1, CTLA-4, and PSGL-1 (Selplg) are linked with the differentiation of
exhausted cells. Chronic T cell receptor signaling induces transcriptional signatures that
result in the development of various exhausted T cell subsets, including the stem-like T cell
precursor exhausted (Tpex) cells, which can be reinvigorated by immune checkpoint
inhibitors (ICIs). While PSGL-1 has been shown to inhibit T cell responses in various
disease models, the cell-intrinsic function of PSGL-1 in the differentiation, maintenance,
and reinvigoration of exhausted T cells is unknown. We found Selplg”” T cells had
increased expansion in melanoma tumors and in early stages of chronic viral infection.
Despite their increase, both WT and Se/p/g'/ T cells eventually became phenotypically and
functionally exhausted. Even though virus-specific Sejplg”” CD4* and CD8* T cells were
increased at the peak of T cell expansion, they decreased to lower levels than WT T cells at
later stages of chronic infection. We found that Sejplg”~ CD8" Tpex (SLAMF6"TIM3'°, PD-
1*TIM3*, TOX*, TCF-17) cell frequencies and numbers were decreased compared to WT
T cells. Importantly, even though virus-specific Selplg”~ CD4* and CD8* T cells were
lower, they were reinvigorated more effectively than WT T cells after anti-PD-L1 treatment.
We found increased SELPLG expression in Hepatitis C-specific CD8" T cells in patients
with chronic infection, whereas these levels were decreased in patients that resolved the
infection. Together, our findings showed multiple PSGL-1 regulatory functions in
exhausted T cells. We found that PSGL-1 is a cell-intrinsic inhibitor that limits T cells in
tumors and in persistently infected hosts. Additionally, while PSGL-1 is linked with T cell
exhaustion, its expression was required for their long-term maintenance and optimal
differentiation into Tpex cells. Finally, PSGL-1 restrained the reinvigoration potential of
exhausted CD4* and CD8" T cells during ICI therapy. Our findings highlight that targeting
PSGL-1 may have therapeutic potential alone or in combination with other ICls to
reinvigorate exhausted T cells in patients with chronic infections or cancer.

Keywords: PD-1, PSGL- 1, immune checkpoint inhibitors, LCMV (lymphocytic choriomeningitis virus), melanoma,
T cell exhaustion, immune checkpoints, chronic infections
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INTRODUCTION

Viral pathogens have evolved multiple mechanisms to evade the
immune response and prevent their elimination by the host.
While T lymphocytes are key players that mediate destruction of
virally infected cells during chronic viral infections such as in
Hepatitis B and C, human immunodeficiency virus (HIV), and
chronic Lymphocytic choriomeningitis (LCMV) viral infection,
the pathogen is never eliminated (1). The persisting antigen
induces a state of T cell exhaustion characterized by diminished
effector cytotoxic and helper functions (1). T cell exhaustion is a
complex process that is still not fully understood. However, the
LCMV clone 13 (Cl13) chronic infection model has helped
uncover some of the phenotypic and functional changes and
mechanisms that drive T cell exhaustion (2-5). Exhausted T cells
are characterized by their upregulated and sustained expression
of immune inhibitory receptors such as PD-1, CTLA-4, TIM-3,
LAG-3, PSGL-1 and many others (6-8). Importantly, the
upregulation of these inhibitory receptors promotes T cell
dysfunction by diminishing T cell receptor (TCR) signaling
(9). Subsets of exhausted CD8" T cells have also been
identified including stem-like progenitor exhausted T cells
(Tpex) and terminally exhausted T cells (Tex) (10, 11). Tpex
cells can self-renew and give rise to Tex cells, and although less
functional than effector T cells arising from acute viral infection,
Texs retain sufficient function to restrain viral replication (12—
14). Importantly, in the context of immune checkpoint inhibitors
(ICIs), Tpex cells are the cells that respond to these treatments as
shown by their increased proliferation and expansion (11).
Furthermore, Tpex expansion after ICI therapy subsequently
results in the increase in Tex cells, which have higher cytotoxic
functions that mediate antigen clearance (11).

In addition to CD8" T cells, CD4" T cells are also functionally
exhausted during chronic viral infection and their helper functions
are compromised (15). Both CD4" and CD8" T cells upregulate
and express high levels of inhibitory receptors and lose their
effector functions (16, 17). This impaired effector function is
evident in the sequential loss of anti-viral cytokine production,
including IFN-y, TNF-o, and IL-2 (18, 19). Limited IL-2
production by CD4" T cells is detrimental to the adaptive
immune response as this cytokine is critical for sustaining CD8"
T cells during viral infection (20, 21). While CD4" T cells initially
differentiate towards a Th1 phenotype during Cl13 infection, they
eventually transition and acquire a Tth phenotype at late stages of
chronic viral infection (22). Virus-specific CD4" Tth cells produce
IL-21 which sustains CD8" T cell responses and stimulates
antibody production, which together decrease viremia (22, 23).
Although exhausted, CD4" T cells continue to assist in the anti-
viral response, as evidenced by the life-long viremia observed in
Cl13 infected mice that are depleted of CD4" T cells (15).

While the mechanisms of T cell exhaustion are not fully
known, the ability to reinvigorate these cells is of great clinical
interest. Indeed, T cell function can be improved to promote

resolution of chronic viral infections (19, 24, 25). Moreover,
immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-
1/PD-L1 to reinvigorate exhausted T cells can improve immunity
against tumors (26, 27). ICIs have had impressive clinical success
and are now standard therapies for multiple cancer types
including metastatic melanoma (28). While ICI therapy is
promising, few cancer patients respond to current treatments
and ICI resistance mechanisms are currently being investigated
(29). Recent studies in this area have found molecular
mechanism of “scarring” in exhausted T cells, in which
permanent transcriptional and epigenetic changes sustain their
dysfunctional phenotypes (30-32). The differentiation and
maintenance of the T cell exhausted state and the molecular
players regulating this process continue to be an area of clinical
interest since ICIs aim to reverse this phenotype.

P-selectin glycoprotein ligand-1 (PSGL-1, Selplg) is a
transmembrane protein that is expressed on all hemopoietic
cells, including myeloid and lymphoid cells (33). Although
PSGL-1 was initially known for its role in cellular migration
through engaging selectins (34), PSGL-1 has been identified as a
new immune checkpoint which can inhibit T cells (8, 35).
Furthermore, PSGL-1 on T cells was recently shown to engage
V-domain Ig suppressor of T cell activation (VISTA) which can
inhibit T cell proliferation and promote tumor progression (36,
37). PSGL-1 inhibitory functions were observed in Selplg”” Cl13-
infected mice, where virus-specific CD4* and CD8" T cells were
increased, had decreased inhibitory receptor expression, and
increased effector functions which led to viral clearance (8).
Selplg’” mice were also shown to have increased anti-tumor
immunity to melanoma (8). Additionally, during acute viral
infection, Selplg”™ T cells were increased at both the effector and
memory stage (38). However, the cell-intrinsic PSGL-1 function in
the differentiation of exhausted CD4" and CD8" T cells and its role
during the reinvigoration process after ICI therapy is unknown.

In this study, we found a cell-intrinsic role for PSGL-1
expression in the maintenance of exhausted CD4" and CD8" T
cells. We observed a PSGL-1 inhibitory function in CD8" T cells
as shown by the increased expansion of Selplg”” CD8" T cells in
B16-GP5; melanoma tumors. During Cl13 infection, Selplg”
CD4" and CD8" T cells increased at early stages of Cl13
infection, however, these cells eventually decreased to lower
levels than those of WT T cells at later stages of chronic
infection. We found that Selplg”” CD8" T cells had a decrease
in the frequencies of Tpex stem-like cells. While both WT and
Selplg’” CD4" and CD8" T cells eventually became functionally
exhausted, Selplg”” T cells had superior reinvigoration after anti-
PD-L1 treatment. Finally, we found that PSGL-1 gene expression
was increased in virus-specific CD8" T cells from chronically
infected Hepatitis C patients and decreased in virus-specific
CD8" T cells from Hepatitis C spontaneous resolvers. Our
findings highlight an important function of the PSGL-1
immune checkpoint in regulating the expansion, maintenance,
and reinvigoration of exhausted T cells.
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RESULTS

Virus-Specific Selplg”- CD4* and CD8* T
Cells Initially Expand but Decrease Over
the Course of Chronic Viral Infection

To investigate the cell-intrinsic role of PSGL-1 in T cells over the
course of chronic viral infection, we co-injected small numbers
(1-2 x10°) of TCR transgenic (Tg) CD4" and CD8" T cells
specific for LCMV into WT mice. Naive WT (CD45.1") and
Selplg”” (Thyl.1") P14* CD8" and WT (CD45.1%) and Selplg”
(Thyl.1") SMARTA" CD4" T cells were adoptively transferred
in WT (CD45.2"Thy1.2") hosts at 1:1 equal ratio (Figure 1A).
After one day, mice were infected with LCMV Cl13 and T cell
responses were analyzed at 9, 15, 21, and 30 days post-infection
(dpi) (Figure 1A). We compared the frequencies of WT and
Selplg’™ P14* CD8" T cells in the spleen and observed a higher
frequency and ratio of Selplg”” P14* T cells to WT at 9dpi,
however, Selplg” P14" T cell frequencies decreased by 15dpi and
remained lower than WT at 30dpi (Figures 1B, C). We also
observed lower frequencies of Selplg” P14* T cells compared to
WT T cells in lymph nodes at 30dpi (Figure 1D). We next
examined the ratio and frequencies of CD4" T cells and observed
an initial increase in Selplg’”” SMARTA* CD4"* T cells at 9dpi,
which then significantly decreased throughout infection
compared to WT T cells (Figures 1E, F). These findings
showed the cell-intrinsic PSGL-1 inhibitory function in virus-
specific T cells at the peak of anti-viral T cell expansion and

revealed that virus-specific CD4" and CD8" T cells required
PSGL-1 expression for their long-term maintenance during
chronic viral infection.

Effector Function of Selplg™” T Cells at
Early and Late Stages of Chronic Viral
Infection

We next characterized the exhaustion phenotype in T cells
during chronic viral infection. We first assessed ex vivo
cytokine production in the spleen of infected mice and
observed similar frequencies of IFN-y* WT and Selplg”” P14"
T cells at 9 and 30dpi (Figure 2A). Exhausted T cells are
characterized by their loss of polyfunctionality, and we
confirmed a decrease in IFN-y"TNF-0." production by both
WT and Selplg” T cells, however Selplg’”” P14" T cells had a
slight increase in these cytokine® cells at 9 and 30dpi
(Figure 2A). We further characterized CD8" T cell effector
functions and observed high expression of IFN-y"CD107" and
GranzymeB* T cells, with no differences between WT or Selplg”
P14" T cells at 9 or 30dpi (Figure 2B). We evaluated
proliferation by Ki67 staining and observed up to ~90% Ki67"
P14" T cells at 9dpi and ~20% Ki67" P14" T cells at 30dpi, noting
no differences between WT and Selplg” P14" T cells (Figure 2C).
We next evaluated functional changes in CD4" T cells and
observed similar IFN-y production in both WT and Selplg”
SMARTA" T cells at 9dpi (Figure 2D). Although IFN-y" cells
increased by 30dpi, there were no differences between WT and
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FIGURE 1 | Selp/g'/ - CD4* and CD8* T cell kinetics over the course of chronic viral infection. WT and Selplg”” P14 and SMARTA T cells were adoptively transferred
at equal ratios into naive WT recipients and infected with CI13 one day after (A). Ratio of WT and Selplg”” P14 T cells in the spleen at the indicated timepoints (B)
and representative FACs plots (C). Frequencies of WT and Selplg”” P14 T cells in the lymph nodes at 30dpi (D). Ratio of WT and Se/p/g’/ " SMARTA T cells in the
spleen (E) and representative FACs plots (F). *p < 0.05, “*p < 0.01, **p < 0.001, (unpaired t-test). Data are representative of four independent experiments all with
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Selplg” T cells (Figure 2D). We observed a slight increase in
IEN-y"TNE-o* Selplg” SMARTA" T cells at 9dpi, however these
levels were like WT T cells at 30dpi (Figure 2D). Selplg”
SMARTA" T cells had increased Ki67" cells at 9dpi, but no
differences were observed between WT and Selplg” SMARTA' T
cells at 30dpi (Figure 2E). We next evaluated PD-1 expression on
both P14" and SMARTA" T cells and observed high PD-1
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FIGURE 2 | PSGL-1-deficient CD4* and CD8" T cell effector functions. Spleens were isolated from CI13 infected mice at 9 and 30dpi and ex vivo stimulated with cognate
peptide. Frequency of IFN-y* and IFN-y* TNF-o" of WT and Selplg”” P14™ T cells (A). Frequencies of IFN-y* CD107* and GranzymeB* (B) and Ki67* (C) WT and Selplg”
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expression at 9dpi, with no differences between WT and
Selplg”™ T cells (Figures 3A, B). Although PD-1 expression
decreased by 30dpi compared to 9dpi, expression levels
remained high, with no differences between WT and Selplg”” T
cells (Figures 3A, B). These findings showed that P14" and
SMARTA" Selplg”” T cells are phenotypically and functionally
exhausted to similar levels as WT T cells by 30dpi.
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(MFI) and representative histogram of PD-1 expression levels on WT and Selplg”” P14* T cells (A) and SMARTA* T cells (B). Data are representative of four independent
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Selplg™~ Tpex CD8* T Cells Are Decreased
During Chronic Viral Infection

Since we observed a decrease in the frequencies of Selplg”” P14*
cells by 30dpi (Figure 1), we next determined whether this
decrease was due to changes in Tpex or Tex cells. Using the
same co-transfer approach, we analyzed the frequencies of Tpex
(SLAMF6"TIM3') and Tex (SLAMF6'°TIM3™) cells in WT and
Selplg” P14" T cells. We observed a decrease in Tpex frequencies
and a slight increase in Tex frequencies in Selplg”” P14" T cells at
21dpi (Figures 4A, B). We quantified the absolute number of
Tpex and Tex cells in the spleens of infected mice and found
decreased numbers of Tpex and Tex in Selplg”” P14* T cells
compared to WT T cells at 21 and 30dpi (Figures 4C, D). We
observed decreased frequencies of PD-1"TIM3", TOX", and
TCE-1" Selplg”” P14" T cells at 21dpi, which are also markers
of Tpex cells (Figures 4E-G). These findings showed that in
Selplg”” P14* T cells, frequencies of Tpex cells were decreased,
which may result in the decreased maintenance of the exhausted
Selplg”™ T cells over the course of chronic infection.

PSGL-1 Deletion in CD8" T Cells
Combined With Anti-PD-L1 Treatment

Can Synergize to Reinvigorate Exhausted
T Cells

We next evaluated whether blocking the PD-1 pathway
reinvigorated the response of exhausted Selplg”” P14" T cells. We
co-transferred WT and Selplg” P14" T cells in WT mice, infected
with Cl13, and injected either IgG or anti-PD-L1 starting at 30dpi
and every 3 days to 42dpi (Figure 5A). We evaluated T cell
frequencies and phenotype in blood before (30dpi) and during
antibody treatment (Figure 5A). We observed a significantly
higher frequency of WT P14* T cells (~3.5%) than Selplg”” P14*
cells (~1%) at 30dpi before antibody treatment (Figure 5B).
However, at 35dpi, the frequency of Selplg’” P14" T cells
increased to similar levels as WT P14" cells and remained higher
to 45dpi (Figure 5B). Since WT and Selplg”” P14" T cells were
initially injected at a 1:1 ratio, we determined ratio and fold change
throughout the course of anti-PD-L1 treatment. At 30dpi, WT
P14" T cells represented ~80% of the transferred population while
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P14* T cells before (30dpi) and after anti-PD-L1 treatment (B). Ratio and fold change of WT and Sejplg”” P14* T cells before (30dpi) and after (40dpi) anti-PD-L1 treatment
(C). Frequencies of Ki67* (D), IFN-y* and IFN-y* CD107* (E), and IFN-y* TNF-oi* (F) of WT and Selplg”” P14* T cells. Frequencies of WT and Selplg”” SMARTA* T cells
before (30dpi) and after anti-PD-L1 treatment (G). Ratio and fold change of WT and Selplg”” SMARTA T cells before (30dpi) and after (40dpi) anti-PD-L1 treatment (H).
Frequencies of Ki67* (I) and IFN-y* and IFN-y" TNF-oi* (J) of WT and Selplg”” SMARTA* T cells. *p < 0.05, **p < 0.01, **p < 0.005 ***p < 0.001, (unpaired t-test). Data
are representative of three independent experiments all with five or more mice per group (error bars, s.e.m.).

Selplg” P14" T cells were ~20% (Figure 5C). However, by 35dpi
and onwards, Selplg” P14" T cells increased to ~50% of the
transferred cells, and they remained increased at 45dpi
(Figure 5C). We determined the fold change of P14" T cells
before and after treatment and observed that Selplg”” P14* T cells
had a greater fold change from pre-treatment compared to WT
P14" T cells (Figure 5C). Since we observed an increase in Selplg”
P14" T cells after anti-PD-L1 treatment, we determined whether
there was a difference in their proliferation compared to WT
T cells. Although Selplg”” P14" trended for higher Ki67"
cells, there was no statistical significance compared to WT T cells

pre-treatment (30dpi) (Figure 5D). However, after anti-PD-L1
treatment, Ki67" WT P14" T cells increased from ~18% pre-
treatment to ~46% by 35dpi and decreased thereafter (Figure 5D).
Ki67" Selplg”” P14" T cells increased from ~34% pre-treatment to
~82% by 35dpi and were significantly higher than WT T cells at
45dpi (Figure 5D). We also observed a significant increase in the
frequencies of IFN-y", IFN-y*CD107*, and IFN-y"TNF-o.* Selplg”
P14" T cells during anti-PD-L1 treatment (Figures 5E, F). These
findings showed that anti-PD-L1 treatment reinvigorated the
proliferation and effector function of exhausted Selplg”” P14" T
cells more than WT P14" T cells.
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Selplg™”- CD4* T Cells Were Reinvigorated
After Anti-PD-L1 Treatment

We next determined whether anti-PD-L1 treatment changed
Selplg’”” SMARTA™ T cell responses. WT and Selplg”- SMARTA*
T cells were co-transferred into WT mice, which were then
infected with ClI13 (Figure 5A). T cells were analyzed in the
blood at 30dpi, before IgG and anti-PD-L1 injections, and during
antibody treatment (Figure 5A). We observed significantly lower
frequencies of Selplg”” SMARTA" T cells than WT T cells at
30dpi, before anti-PD-L1 treatment (Figure 5G). However, after
anti-PD-L1 treatment, Selplg”” SMARTA" T cells increased to
similar frequencies as WT T cells (Figure 5G). WT and Selplg”
SMARTA™ T cells were co-transferred at a 1:1 ratio, but this ratio
changed to 4:1 by 30dpi (Figure 5H). Selply”” SMARTA™ T cells
increased after anti-PD-L1 treatment and approached a 1:1 ratio
with WT T cells at 45dpi (Figure 5H). In addition, Selplg”
SMARTA" T cells had a higher fold change from pre-treatment
than WT SMARTA" T cells (Figure 5H). We next assessed
proliferation and observed a significant increase in Ki67" Selplg””
SMARTA" T cells at 35dpi with no differences at later timepoints
(Figure 5I). We observed a significant increase in IFN-y" and
IEN-y"TNE-0" in Selplg”” SMARTA" T cells which peaked at
40dpi (Figure 5J). These findings showed that anti-PD-L1
treatment increased the accumulation, proliferation, and
effector function of exhausted Selply”” SMARTA" T cells more
than WT T cells.

Selplg™”- CD8* T Cells Are Increased in
Melanoma Tumors

We next assessed whether PSGL-1 expression impacted the
CD8" T cell response in melanoma tumors. We co-transferred
WT and Selplg”” P14" T cells at a 1:1 ratio in WT mice and one
day later, subcutaneously injected B16-GP;; melanoma cells
(Figure 6A). We observed increased frequencies of Selplg”
P14" T cells in tumors compared to WT T cells 15 days after
tumor injection (Figure 6B). Consistent with the increased
frequencies, we also observed increased numbers of Selplg””
P14" cells per gram of tumor (Figure 6C). We noted that the
1:1 pre-injection T cell ratio changed to 1:4 in tumors, with the
increase of Selplg”” P14* T cells (Figure 6C). We observed no
differences in proliferation of WT or Selplg” P14" T cells in
tumors as measured by Ki67" cells (Figure 6D). We also noted
that both WT and Selplg”” P14* T cells in tumors had similar
frequencies of IFN-y" and IFN-y"CD107a" T cells (Figure 6E).
We next evaluated donor T cell frequencies in pooled tumor
draining lymph nodes (TdLN) and observed similar frequencies
of WT and Selplg”” P14" T cells (Figure 6F). Furthermore, there
were no differences in cell numbers or the ratio of WT to Selplg”
P14" T cells, in TALN (Figure 6G). We did note a significant
increase in Ki67" cells in Selplg” P14* T cells in the TALN
(Figure 6H). We next evaluated whether anti-PD-L1 treatment
changed the frequencies of WT and Selplg”” P14" T cells and
found similar ratios between IgG and anti-PD-L1 treated mice
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FIGURE 6 | PSGL-1-deficient CD8" T cells are increased in melanoma tumors. WT and Selplg”” P14 T cells were adoptively transferred at equal ratios into naive
WT recipients and injected with B16-GPg3 tumors s.c. one day later (A). Frequencies of WT and Selplg”” P14* T cells in tumor (B). T cell numbers per gram of
tumor and ratio of WT and Selplg”” P14 T cells (C). Frequencies of Ki67* (D), IFN-y" and IFN-y* CD107* (E) of WT and Selplg”” P14* T cells. Frequencies of WT
and Selplg”” P14" T cells in pooled tumor draining lymph nodes (TALN) (F). Numbers and ratio (G) and Ki67* (H) of WT and Selplg”” P14* T cells in pooled TdLNs.
Ratio of T cells (I), Tpex frequencies (J), and GranzymeB™ T cells (K), and tumor mass (L) in IgG or anti-PD-L1 treated mice. *p < 0.05, *p < 0.01, ***p < 0.001,
(unpaired t-test). Data are representative of three independent experiments all with nine or more mice per group (error bars, s.e.m.).

Frontiers in Immunology | www.frontiersin.org

June 2022 | Volume 13 | Article 869768


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Viramontes et al.

Exhausted T Cell PD-L1/PSGL-1 Inhibition

(Figure 6I). We observed that compared to IgG treated mice,
anti-PD-L1 treatment decreased the frequencies of Selplg”
SLAMF6" TIM3'" (Tpex) cells (Figure 6J). We observed
increased GranzymeB* Selplg”” P14" T cells after anti-PD-L1
treatment (Figure 6K), and no significant differences in tumor
mass between IgG and anti-PD-L1 treated mice (Figure 6L).
These findings showed that Selplg”” P14* T cells were increased
in B16-GP33; melanoma tumors.

SELPLG Is Increased in HCV-Specific
CD8" T Cells During Chronic Hepatitis C
Viral Infection

We next determined the relevance of PSGL-1 (SELPLG)
expression in CD8" T cells from patients with Hepatitis C
infection and analyzed RNA sequencing data from the Hensel
et al. study (31). In short, low-input RNA sequencing was
performed on HCV-specific CD8" T cells from blood of
patients infected with chronic Hepatitis C virus (cHCV) and
HCV patients who were spontaneous resolvers (SPR) that
cleared the viral infection. We observed significantly increased
SELPLG expression in CD8" T cells from ¢cHCV patients
compared to SPR patients (Figure 7). These findings showed
that SELPLG was highly expressed in CD8" T cells during
chronic Hepatitis C viral infection and was decreased when the
virus was eliminated from the host.

DISCUSSION

While T cell immune checkpoints are known to prevent antigen
clearance during chronic viral infection and cancer, they have

CD8* HCV* T cells
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2,

0.7 1
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SELPLG Expression (log10 (FPKM))
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Chronic SPR
FIGURE 7 | SELPLG is upregulated in CD8" T cells in patients with chronic
HCV. Fragments per kilo base per million mapped reads (FPKMs) of SELPLG
expression in HCV-specific CD8™ T cells isolated from blood of chronically HCV

infected patients or patients who spontaneously resolved their infection (SPR).
*p < 0.05 (unpaired t-test). Each dot represents one patient (error bars, s.e.m.).

important inhibitory functions that fine-tune T cell receptor
signals and thresholds that shape T cell differentiation (39).
Studies showed that PD-1 and CTLA-4 expression were
important in T cell differentiation since deficiency in these
immune checkpoints resulted in their acquisition of aberrant
cellular states (39). Furthermore, a cell-intrinsic role for PD-1
expression in P14" CD8" T cells was shown to be necessary for
their long-term maintenance during Cl13 infection (40). Like this
PD-1 study, we also found that cell-intrinsic PSGL-1 expression
was required for the long-term maintenance of P14" T cells
during Cl13 infection, as Selplg” P14" T cells were decreased at
late stages of viral infection. Furthermore, Selplg”” P14" T cells
showed defective differentiation as these cells had decreased
frequencies of Tpex cells which sustain the exhausted T cell
population long-term. Tpex cells have been shown to be stem-
like and survive to give rise to Tex cells, which although destined
to die, retain some effector functions that restrain viral replication
(41). Even though these exhausted T cells are dysfunctional, they
continue to provide limited protection to the chronically infected
host (42). We found that numerically, Selplg”” P14" Tpex cells
were decreased at late stages of Cl13 infection, indicating that this
defective differentiation correlated with their decrease over the
course of infection (41). Since Selplg” P14" T cells drastically
declined during Cl13 infection compared to WT T cells and we
observed no differences between their proliferation suggests that
Selplg”” P14" T cells had a decreased ability to survive, which
could also be explained by their diminished Tpex population.
This contrasts with what was observed in Selplg”” mice infected
with Arm or Cl13 where T cell survival was increased, in part due
to the viral clearance that occurs in Selplg'/ " infected mice (8, 38).
The importance of immune checkpoints in T cell differentiation
was also highlighted in studies using WT and Selplg” SMARTA"
and P14" T cells transferred in WT Arm infected mice, which
showed that even though more memory Selplg”” TCR transgenic
T cells developed, they failed to be recalled during a secondary
infection (38). A similar phenotype in defective memory
differentiation was also observed in PD-1-deficient T cells
responding to respiratory viral infection (43). While these prior
findings were observed during acute viral infection, our findings
now revealed that cell-intrinsic PSGL-1 expression also regulated
exhausted CD8" T cell differentiation during chronic viral
infection. Our approach examining the differentiation of these
transferred Selplg”” T cells in a host that is chronically infected
with persistent antigen showed an important function for PSGL-1
expression in the differentiation and maintenance of these cells.

ICI efficacy to combat cancers and chronic viral infections is
achieved through their ability to reinvigorate exhausted T cells
(26,27, 44-46). The restoration of effector functions in exhausted
T cells can lead to control of chronic viral infection as observed
after anti-PD-1 and anti-CTLA-4 treatment (46). Furthermore,
targeting PD-1 and CTLA-4 in the clinic has shown efficacy in
cancer patients, with these now being the standard of care in
melanoma (47, 48). While current ICIs have shown some
efficacy, most patients continue to be unresponsive due to
multiple resistance mechanisms (49-51). Here we show that
the combination of anti-PD-L1 and PSGL-1-deficiency
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synergized to reinvigorate exhausted virus-specific CD4" and
CD8" T cells, as shown by their greater expansion and function
than WT T cells. The Tpex subset is the key cell-type responding
to anti-PD-1/PD-L1 blockade (41). For Selplg” CD8" T cells, it is
remarkable that prior to anti-PD-L1 treatment, Selplg”” Tpex
cells were significantly decreased compared to WT Tpex cells.
We observed that despite this disadvantage, Selplg”” CD8* T cells
had a more significant expansion than WT T cells during anti-
PD-L1 therapy, supporting the concept that Selplg” CD8" T cells
may be more sensitive to anti-PD-L1 blockade. This may be due
to improved TCR signaling in Tpex cells lacking both PSGL-1
and PD-1 inhibitory signaling. We also observed that virus-
specific Selplg” CD4" T cells were significantly decreased prior
to anti-PD-L1 treatment, almost undetectable in the blood of
infected mice, but were reinvigorated after treatment more than
WT CD4" T cells. It is significant that both Selplg”~ CD4* and
CD8" T cells were reinvigorated more than WT T cells after anti-
PD-LI treatment, indicating that targeting PSGL-1 and PD-1/
PD-L1 may increase ICI efficacy by boosting both CD4" T cell
helper function and CTL activity. Indeed, CD4" T cell help is key
in curtailing chronic viral replication, therefore increasing their
function is anticipated to improve antigen clearance (15). While
we only targeted the PD-1/PD-L1 pathway in our studies, our
findings highlight the possibility that blocking other immune
checkpoints such as CTLA-4, TIM-3, and LAG-3 in combination
with PSGL-1 may be a new strategy to reinvigorate exhausted T
cells and increase ICI efficacy. Indeed, targeting the PSGL-1
immune checkpoint has been shown to improve anti-tumor
immunity in melanoma (52).

We showed that while PSGL-1 restrained virus-specific CD4"
and CD8" T cells during chronic viral infection, it was also
necessary for their maintenance in the persistently infected host.
Furthermore, Selplg”” CD8" T cells were increased in aggressive
B16 melanoma tumors showing that PSGL-1 inhibited the anti-
tumor T cell response. Even though virus-specific Selplg”” CD4"
and CD8" T cells were decreased in Cl13 mice, they were more
responsive to anti-PD-L1 therapy as shown by their increased
expansion and function after treatment. We found that SELPLG
expression was increased in virus-specific CD8" T cells in
patients with chronic hepatitis C infection, whereas levels
decreased in patients that cleared the virus, indicating that
PSGL-1 is part of the T exhaustion phenotype in patients. This
finding can also be explained by the difference in the status of T
cell activation between cured and chronically infected patients,
since SELPLG is increased in activated T cells. Our findings
indicate that targeting PSGL-1 may hold therapeutic potential
alone or in combination with other ICIs to reinvigorate
exhausted T cells in chronically infected or cancer patients.

MATERIALS AND METHODS

Mice

C57BL/6] were purchased from Jackson Laboratory and then
bred in specific-pathogen-free (SPF) facilities and maintained in
biosafety level 2 (BSL-2) facilities after infection in the vivarium

at UC Irvine. P14 and SMARTA TCR transgenic mice were
obtained from The Scripps Research Institute (originally from
Dr. Charles D. Surh). These mice were bred to Ly5.1 (B6.SJL-
Ptprc? Pepcb/Boy]) mice and to Thyl.l (B6.PL-Thy 1%/CyJ).
Selplg”” mice were purchased from Jackson Laboratory and
bred with the TCR transgenic mice in house. Both female and
mice were used and greater than 6 weeks of age. All experiments
were approved by the animal care and use committees at UC
Irvine (AUP-18-148).

Virus Infection and Titers

LCMYV Clone 13 (Cl13) strain was propagated in baby-hamster
kidney cells and titrated on Vero African-green-monkey kidney
cells. Frozen stocks were diluted in Vero cell media and mice
were infected by intravenous injection of 2x10° plaque-forming
units (PFUs) of LCMV Cl13.

Adoptive Transfer

Naive WT or Selplg’” P14 and SMARTA T cells were isolated
from mouse spleens by magnetic sorting (Stem Cell
Technologies, using negative selection) in accordance with the
manufacturer’s protocol. WT and Selplg’” P14 and SMARTA T
cells were transferred in equal numbers (1x10° P14 and 2x10°
SMARTA) in 200uL PBS into naive C57BL/6 mice by
intravenous (i.v) injection. One day later, WT mice were
infected with 2x10° PFU LCMV Cl13 by i.v. injection. For the
melanoma tumor model, naive WT or Selplg” P14 T cells were
isolated from mouse spleens by magnetic sorting (Stem Cell
Technologies, using negative selection) according to the
manufacturer’s protocol. WT and Selplg”” P14 T cells were
transferred in equal numbers (1x10°) in 200uL of PBS into
naive C57BL/6 mice by intravenous injection (i.v). One day
later, mice were injected with 200uL of 1x10° B16-GPs5 tumor
cells by subcutaneous (s.c) injection.

Flow Cytometry

Cells from the spleens, lymph nodes (inguinal, axial, brachial),
and tumors were dissociated in HBSS. For cell surface staining,
2x10° cells were incubated in staining buffer (PBS, 2% fetal
bovine serum (FBS) and 0.01% NaN3) for 20 minutes at 4°C
with antibodies for expression of surface proteins at a 1:200
dilution. For intranuclear transcription factor staining, cells were
fixed and permeabilized using a Foxp3/transcription factor
fixation/permeabilization kit (Fisher) according to
manufacturer’s protocol. For functional assays, cells from
infected mice were cultured for 4 hours at 37°C with 2ug/mL
of GP3;3.4; or GPg gy peptides (AnaSpec) in the presence of
brefeldin A (1pg/ml; Sigma-Aldrich), and IL2 (50u/ml). The cells
were then stained with antibodies for expression of surface
proteins, fixed and permeabilized using a Cytofix/Cytoperm kit
(BD Bioscience), and stained with antibodies for intracellular
cytokine detection at a 1:100 dilution. To evaluate cell
degranulation, splenocytes were incubated with anti-CD107c.
The culture media used for the 4-hour incubation was RPMI-
1640 containing 10 mM HEPES, 1% non-essential amino acids
and L-glutamine, 1mM sodium pyruvate, 10% heat-inactivated
FBS, and penicillin/streptomycin antibiotics. The following
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antibodies were used in this study: Biolegend CD8 (53-6.7), CD4
(RM4-5), Vo2 (B20.1), CD90.1(0X-7), CD45.1 (A20), CD1070,
(1D4B), IFNyY (XMGL1.2), TNFo. (MP6-XT22), PD-1 (RMP1-30),
TIM-3 (RMT3-23). Cell Signaling Technology TCF-1 (C63D9),
Miltenyi Biotec TOX (REA473). BD Biosciences Vb8.1.2 (MR5-
2), Ly-108 (13G3), Ki67 (RUO). Invitrogen GranzymeB (GB12).

Anti PD-L1 Blockade

200ug (200uL PBS) of rat anti-mouse PD-L1 (10F.9G2) was
administered by intra peritoneal (i.p) injection five separate times
in WT mice. Antibody injections started at 30 days post Cl13-
infection and continued every three days until 42 days post
infection (30-, 33-, 36-, 39-, and 42-dpi). In vivo mAb were
purchased from BioXcell (New Hampshire, USA). For the tumor
study, WT mice were co-injected with WT and Selplg”” P14* T cells
(1x10° cells of each) iv. and then injected with 1x10° B16-GP;;3
melanoma cells s.c. IgG (200pg) or anti-PD-L1(200pg) (10F.9G2)
was injected i.p. at day 8, 10, 12 post melanoma cell injection and
mice euthanized at 15 days post melanoma cell injection.

B16-GP33 Melanoma Tumor Processing

WT and Selplg” P14" T cells were transferred in equal numbers
(1x10°) in 200pl into naive C57BL/6 mice by intravenous
injection (i.v). One day later, mice were injected with 200pl of
1x10° B16-GPs3 tumor cells by subcutaneous injection (s.c). At
day 15 after B16-GPs; injection, tumors were excised, minced,
and digested in gentleMACS C Tubes for 40 minutes at 37°C
using a gentleMACS Dissociator (Miltenyi Biotec). Tumor
digestions were then passed through a 70-um cell strainer to
obtain a single-cell suspension. Cells were plated at 2x10° in 96
well plates and stained for flow cytometry.

Human HCV Data Analysis

Low-input RNA sequencing of HCV-specific CD8" T cells was
performed by Hensel et al., 2021 (31) [GSE150345]. Briefly,
HCV-specific CD8" T cells transcriptome analysis was done
using an Illumina NextSeq 500 platform. For our analysis, RNA
reads were aligned to the human reference genome and post-
processing of the low-input sequencing data was performed at
the Institute for Genomics and Bioinformatics (UCI IGB) at UC
Irvine. Gene expression levels were compared in chronically
infected HCV patients and HCV spontaneous resolved (SPR)
HCV patients.

Data Analysis

Flow cytometry data was analyzed with FlowJo software. Graphs
were made using GraphPad Prism software. GraphPad Prism
was used for statistical analysis to compare outcomes using a
two-tailed unpaired t-test. Significance was set to p <0.05 and
represented as *<0.05, **<0.001, ***<0.005, and ****<0.0001.
Error bars show standard error of the mean (s.e.m.).
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