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Objective: In this study, we aimed to explore the alterations in gut microbiota

composition and cytokine responses related to disease progression, severity,

and outcomes in patients with hypertensive intracerebral hemorrhage (ICH).

Methods: Fecal microbiota communities of 64 patients with ICH, 46 coronary

heart disease controls, and 23 healthy controls were measured by sequencing

the V3-V4 region of the 16S ribosomal RNA (16S rRNA) gene. Serum

concentrations of a broad spectrum of cytokines were examined by liquid

chips and ELISA. Relationships between clinical phenotypes, microbiotas, and

cytokine responses were analyzed in the group with ICH and stroke-associated

pneumonia (SAP), the major complication of ICH.
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Results: In comparison with the control groups, the gut microbiota of the

patients with ICH had increased microbial richness and diversity, an expanded

spectrum of facultative anaerobes and opportunistic pathogens, and depletion

of anaerobes. Enterococcus enrichment and Prevotella depletion were more

significant in the ICH group and were associated with the severity and

functional outcome of ICH. Furthermore, Enterococcus enrichment and

Prevotella depletion were also noted in the SAP group in contrast to the

non-SAP group. Enterococci were also promising factors in the prognosis of

ICH. The onset of ICH induced massive, rapid activation of the peripheral

immune system. There were 12 cytokines (Eotaxin, GM-CSF, IL-8, IL-9, IL-10,

IL-12p70, IL-15, IL-23, IL-1RA, IP-10, RANTES, and TNF-a) changed significantly

with prolongation of ICH, and the Th2 responses correlated with the 90-day

outcomes. Cytokines TNF-a, IP-10, IL-1RA, IL-8, IL-18, and MIP-1b in SAP

group significantly differed from non-SAP group. Among these cytokines, only

IP-10 levels decreased in the SAP group. Enterococcus was positively

associated with IL-1RA and negatively associated with IP-10, while Prevotella

was inversely associated in both the ICH and SAP groups.

Conclusion: This study revealed that gut dysbiosis with enriched Enterococcus

and depleted Prevotella increased the risk of ICH and subsequently SAP. The

altered gut microbiota composition and serum cytokine profiles are potential

biomarkers that reflect the inciting physiologic insult/stress involved with ICH.
KEYWORDS

intracerebral hemorrhage, stroke-associated pneumonia, gut microbiota,
Enterococcus, Prevotella, cytokines
Introduction

Intracerebral hemorrhage (ICH) is a devastating disease and

a major public health issue worldwide (1). The fatality and long-

term mortality rate of ICH have not changed significantly in

recent years (2), and effective treatments have not yet been found

in the internal medicine and surgery fields (3–7). Thus,
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alternative treatment options are needed to improve ICH

prognosis and lower the risk of mortality.

The gut-brain axis is a bidirectional communication system

that involves multiple pathways including neural, hormonal, and

immunological signals with the microbiota as the central

mediator (8). Acute ischemia rapidly causes severe

gastrointestinal paralysis, ischemia and produces excess nitrate

leading to intestinal dysbiosis (9, 10). In turn, the intestinal flora

and their metabolites affect the outcome and prognosis of stroke.

The use of broad-spectrum antibiotics before a stroke can reduce

the overall diversity of intestinal microbes and reduce cerebral

infarction, which involves intestinal immune cell traffic to the

meninges (11). Further, germ-free mice with intestinal dysbiosis

after stroke had increased lesion volume and functional

impairment compared to normal control mice (9). Alterations

in gut microbiota composition affect the host immune system

with inflammatory cytokine production and immune cell

differentiation (12), enhancing the role of neuroinflammation

in ICH. Thus, the intestinal microbiota and the interplay with

the immune system are intervention strategies in the setting of

stroke. Notably, current studies focus on ischemic stroke while

the alteration of the microbiota and relative immune system in
frontiersin.org
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ICH are less studied, particularly in vivo. Here, we characterized

the microbiota and peripheral cytokine alterations in ICH

patients and analyzed the relationships between changes in

fecal microbiota and immune responses.
Materials and methods

The flow chart is shown in Figure 1. A total of 64 ICH patients,

46 coronary heart disease (CHD) controls, and 23 healthy controls

were enrolled from April 2018 to December 2020 in the neurology

department of Guangdong Provincial Hospital of Traditional

Chinese Medicine, Shenyang Second Hospital of Traditional

Chinese Medicine, The Fourth Affiliated Hospital of Guangzhou

Medical University, and the health examination department of

Guangdong Provincial Hospital of Traditional Chinese Medicine.

All subjects provided written informed consent to participate in

this study.

ICH was diagnosed according to American Heart

Association/American Stroke Association guidelines (13).

Stroke-associated pneumonia (SAP) following ICH is the most

common complication after stroke. In this study, the diagnosis

of SAP was based on modified Centers for Disease Control and

Prevention (CDC) criteria (14). The inclusion criteria were as

follows (1) age >18 years, (2) admission within 7 days of ICH

onset, and (3) informed consent obtained and the retention of

biological samples completed. The exclusion criteria were as

follows: (1) ICH caused by brain tumor, brain trauma, blood

diseases, cerebrovascular malformation, or aneurysm, (2) any

antibiotics, prebiotics, or probiotics treatment within four weeks

before admission, (3) active infection within two weeks before

admission, (4) liver and kidney dysfunction, (5) history of

gastrointestinal diseases such as gastrointestinal tumor,

inflammatory bowel disease, or active gastrointestinal bleeding

in the last 3 months, and (6) history of immune-related diseases

or receiving immunotherapy. Clinical data such as age, gender,

medical history, and neurological deficits were assessed and

collected by neurologists.
Sample collection

Stool and serum samples of patients with ICH were collected

at T1 (0–3 days after ICH), T2 (4–7 days after ICH), T3 (8–14

days after ICH), and T4 (14–30 days after ICH). In total, 170

stool and 184 serum samples were collected after the onset of

symptoms. The number of stool samples for T1 to T4 were 44,

33, 82, and 11, while the number of serum samples for T1 to T4

were 46, 34, 88, and 16. Venous blood (10 mL) was collected at

different phases on an empty stomach and centrifuged (3000

rpm, 10 min) within 6 h after collection. After centrifugation, the

serum was divided into cryovials and stored in an -80°C

refrigerator for cytokine analysis. Fecal Samples were collected
Frontiers in Immunology 03
in the morning, stored in the Fecal Microbial Collection and

Preservation Kit (ML-001A, Shenzhen Dayun Gene Technology

Co., Ltd.), and saved in an -80°C refrigerator within 72 h. Stool

samples of healthy controls (HC) and CHD group were collected

using the same methods. The specimens of all collaborative

subcenters were transported through a cold chain and stored

uniformly in the Biological Resource Center of Guangdong

Provincial Hospital of Traditional Chinese Medicine to avoid

repeated freezing and thawing.
DNA extraction, 16S ribosomal RNA gene
sequencing

According to the manufacturer’s instructions, the DNA was

extracted using the magnetic soil and stool genomic DNA

extraction kit (Magnetic Soil and Stool DNA Kit, Tiangen

Biochemical Technology Co., Ltd.). After extracting total DNA

from the stool samples, we used primers, 341F (CCTAYGGG

RBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT), to

amplify the V3-V4 region of the bacterial 16S rRNA gene. The

library was constructed using TruSeq DNA PCR-Free Library

Preparation Kit from Illumina. The constructed library was

subjected to Qubit quantification and library testing. After it was

quantified, the NovaSeq 6000 was used for sequencing.
Measurement of serum cytokine levels
by liquid chips and ELISA

This study examined 36 cytokines at different time points in

patients with ICH. The list of cytokines is: MIP-1a, SDF-1a, IL-27,
IL-1 b, IL-2, IL-4, IL-5, IP- 10. IL-6, IL-7, IL-8, IL-10, Eotaxin, IL-
12p70, IL-13, IL-17A, IL-31, IL-1RA, RANTES, IFN-g, GM-CSF,

TNF-a, MIP-1b, IFN-a, MCP-1, IL-9, TNF-b, CXCL-1, IL-1a, IL-
23, IL-15, IL-18, IL-21, IL- 22, CXCL-2 and TGF-b. Among these

cytokines, CXCL-2 (Shanghai Lianshuo Biotechnology,

AE91213Hu) and TGF-b (Shanghai Lianshuo Biotechnology,

AE98029Hu) were tested by ELISA according to the

manufacturer’s instructions. The remaining cytokines were

assessed by a multiplex liquid-chip assay based on Luminex

xMAP. Samples with cytokine values below the lower limit of

detection were designated as the lower limit of detection for that

specific cytokine. The detection limit was 0.3 ~ 13.7 pg/mL.
Statistical analyses

Categorical variables are presented as numbers and

percentages, and continuous variables are presented as mean ±

standard deviation (SD) or median (interquartile range (IQR)).

Comparisons between groups were performed with chi-square

tests for categorical variables. Continuous variables that followed
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https://doi.org/10.3389/fimmu.2022.869846
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2022.869846
the normal distribution were compared with the Student’s t test

or analysis of variance (ANOVA). Variables inconsistent with

the normal distribution and Levene’s test were compared with

the non-parametric Wilcoxon test or Kruskal-Wallis test.

Spearman’s rank correlations were calculated between the

re la t ive abundance of bacter ia l communit ies and

environmental variables or cytokine responses. The predictive

performance of ICH prognosis was assessed by comparing

receiver operating characteristic (ROC) curves. Statistical

analysis was performed using SPSS 26.0 (Statistical Package for

Social Sciences, Chicago, IL, USA) software. The analysis of

intestinal flora was performed using QIIME software (version

1.9.1) and the R language tool (version 3.4.0). Changes in

cytokine concentration were plotted using GraphPad Prism 9

(GraphPad Software, Inc.) software. A two-sided, P<0.05 was

considered statistically significant.
Results

Clinical characteristics of ICH and
control groups

The demographic and clinical information of the 64 ICH

patients, 46 CHD controls, and 23 healthy subjects included in

this study are shown in Table S1 in the appendix. As Table S1

shows, there was no statistical difference in age and gender

between the ICH group and the CHD group. Compared with the

CHD group, the ICH group had patients with a higher

proportion of hypertension history (76.563% vs 26.087%, P <
Frontiers in Immunology 04
0.001). The two groups had similar rates of smoking and alcohol

abuse histories. The median triglyceride in the CHD group was

higher than that in the ICH group (0.995 vs 1.43, P=0.012), while

the levels of total cholesterol, low-density lipoprotein, and high-

density lipoprotein were similar in the two groups. Compared

with the HC group, the proportion of men in the ICH group was

higher (59.375% vs 26.087%, P = 0.006) and the average age was

older (P < 0.001). The proportion of patients with a history of

hypertension, active smoking, drinking, and coronary heart

disease was higher in the ICH group than in the HC group.

Additionally, the median (interquartile range) of the ICH scores,

GCS at admission, and NIHSS score at admission of the ICH

group were 1 (2), 14 (6), and 10 (9) respectively. There were 27

(42.20%) patients with a neurological recovery defined as NIHSS

score improving ≥ 40% after 14 d of standard treatments. In

addition, there were 37 patients (57.81%) with functional

independence (mRS ≤ 2) at 90 d.
Patients with ICH have altered and more
diverse gut microbiota

We then characterized the ICH-associated gut microbiota by

high-throughput sequencing of the V3-V4 region of the 16S

rRNA gene. The gut microbial composition is shown in Figure

S1A. The bacterial diversity and richness in the ICH and the

control groups were measured by different methods using the

Simpson index, Shannon index, and richness index. ICH

patients had more diverse gut microbiota than the controls

(Wilcoxon rank-sum test, compared to HC group, P = 0.018
FIGURE 1

Flow chart and enrolled participants in the current study.
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for the Simpson index and P < 0.001 for the richness index,

Figure 2A; compared to CHD group, P = 0.002 for the Simpson

index and Shannon index and P < 0.001 for the richness index,

Figure 2B). Specifically, these results remained significant

according to longitudinal analyses (Kruskal-Wallis Test,

compared to HC group, P = 0.036 for the Shannon index, P <
Frontiers in Immunology 05
0.001 for the richness index, Figure S1B; compared to CHD

group, P = 0.027 for the Simpson index, P = 0.009 for the

Shannon index and P < 0.001 for the richness index, Figure S1C).

To determine whether there were significant differences in

the microbiota structure between ICH patients and controls,

principal coordinate analysis (PCoA) was used. The microbial
A

B

DC

FIGURE 2

Comparison of the microbial communities of the ICH and control groups. (A, B) Box plots depict differences in the fecal microbiota diversity indices
between the ICH and control groups according to the Simpson index, Shannon index, and richness index based on OTU counts. Each box plot
represents the median, interquartile range, minimum, and maximum values. OUT: operational taxonomic units. (C, D) PCoA with the Bray-Curtis
dissimilarities showing the gut microbiota composition among healthy controls (C) or CHD controls (D) and the patients with ICH.
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composition of the ICH group was significantly different from

that of the HC or CHD group according to Bray-Curtis

differences (Permutational multivariate analysis of variance

(PERMANOVA) test; ICH vs HC, R2 = 0.028, P < 0.001; ICH

vs CHD, R2 = 0.034, P < 0.001) (Figures 2C, D). Furthermore,

the PCoA also revealed that the gut microbiota changed

dynamically with the prolongation of ICH (Figures S1D, E).

These results suggested that the richness and diversity of gut

microbiota in patients with ICH were significantly different from

those of controls.
The gut microbiota profile shows
Enterococcus enrichment and Prevotella
depletion in the ICH group

To identify the most relevant taxa responsible for the observed

differences, supervised comparisons of the microbiota between the

ICH and control groups were performed by linear discriminant

analysis (LDA) effect size (LEfSe) analysis without any adjustment.

We used a logarithmic LDA score cutoff of 6.0 to identify important

taxonomic differences between the ICH and control groups and

found a notable difference in fecal microbiota. We identified,

through LEfSe analysis, 19 taxa that were differentially abundant

in the HC and ICH groups (Figure 3A) and 25 taxa in the CHD and

ICH groups (Figure 3B). We observed that the relative abundances

of Prevotella and Faecalibacterium were higher in the HC group

than those in the ICH group, while the relative abundances

of Enterococcus , Parabacteroides , Lachnoclostridium ,

Acidaminococcus, and Streptococcus were higher in the ICH

group than those in the HC group. Moreover, the relative

abundances of Prevotella and Roseburia were higher in the CHD

group, whereas the relative abundances of Enterococcus,

Parabacteroides, and Lachnoclostridium were higher in the ICH

group. Notably, the relative abundance of Enterococcus was higher

in patients with ICH compared to controls (Figures 3A, B).

Additionally, significant taxa were observed at different times

after ICH (Figure S2A, B). A generalized linear model (GLM)

was used to model the microbiota that were significantly different

between the ICH and control groups after controlling for possible

confounding factors (age, gender, antibiotic use, and comorbidities)

(15). As Tables S2A, B shows, Enterococcus, Parabacteroides,

Streptococcus, Veillonella, Clostridium _innocuum_group, and

Eubacterium_eligens_group differed significantly between the ICH

and control groups after adjustment. Further, we found that the

ICH score was the most important phenotype that contributed to

the flora variation in ICH (Figure S2D), suggesting that ICHwas the

major cause of microbiota alteration rather than hypertension or

other comorbidities.

In addition, we found that the relative abundance of

Enterococcus increased with a prolonged duration of ICH and
Frontiers in Immunology 06
was highest in the T4 phase (Figure S2C). Enterococcus was

correlated positively with the severity of ICH (admission and

discharge NIHSS (r = 0.337 and r = 0.394, P < 0.001), PSI score

(r = 0.324, P < 0.001), ICH score(r = 0.339, P < 0.001),

hematoma volume(r = 0.289, P < 0.001), length of ICU stay (r

= 0.181, P = 0.025), neutrophil-to-lymphocyte ratio (NLR) (r =

0.246, P = 0.002), and poor outcome of ICH (discharge and 90-

day mRS scores(r = 0.462 and r= 0.432, P < 0.001)) (Figure 3C).

Conversely, Prevotella and Roseburia were negatively related to

the severity and poor outcomes of ICH (Figure 3C).

To understand microbial community metabolism among the

ICH and control groups, MetaCyc was used, which is a database

of metabolic pathways and components covering all domains of

life (16). It showed that peptidoglycan biosynthesis V (b-lactam
resistance) (PWY-6470), the super pathway of b-D-

glucuronosides degradation (GLUCUROCAT-PWY),

Bifidobacterium shunt (P124-PWY), and hexitol fermentation

to lactate, formate, ethanol, and acetate(P461-PWY) were

enriched in the ICH group (Figure S2E), which were also

positively correlated with Enterococcus (r = 0.866, r = 0.659, r

= 0.697 and r = 0.655, respectively, P <0.001) (Figure S2F). The

functional capacities of the intestinal microbiome were predicted

based on 16S data using BugBase (17). At the organism level,

three potential phenotypes including anaerobic, facultatively

anaerobic, and containing mobile elements were predicted to

be significant in the ICH and control groups (P < 0.001) as

Figure S3 shows. Among these three phenotypes, the ICH group

had more mobile elements and facultative anaerobic bacteria

and less anaerobic bacteria as the disease progressed. Meanwhile,

the proportion of the facultative anaerobia phenotype was

significantly enriched in the ICH group in the T1-T3 phases,

with a mild recovery in phase T4. Collectively, these results

suggested changes in microbiota profile were closely related to

the disrupted intestinal microenvironment.
Enterococcus enrichment and Prevotella
depletion in the SAP group

We next examined the association between fecal microbiota

and ICH complications. Among the 64 ICH patients, 47 (73.4%)

were initially diagnosed with pneumonia (SAP), while the

remaining patients did not have SAP (non-SAP). The

demographic and clinical information of the 47 patients with

SAP and 17 non-SAP subjects in the T1 phase are shown in

Table S3. The SAP group had similar age and gender as the non-

SAP group. Additionally, the SAP group had higher rates of

midline shift (51.064% versus 11.765%, P = 0.008) and was likely

to have larger hematoma volume (median (IQR), 13 (21) versus

6.54 (12.5), P = 0.007), higher initial white blood cell count

(median (IQR), 10.7 (4.65) versus 6.92 (4.1), P = 0.003), higher
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A

B

C

FIGURE 3

Taxonomic differences of fecal microbiota in the ICH and control groups. (A, B) LEfSe analysis revealed significant bacterial differences in fecal
microbiota between the ICH (positive score) and control groups (negative score). LDA scores (log10) > 6 and P < 0.05 are shown (left panel). Cladogram
using the LEfSe method indicating the phylogenetic distribution of fecal microbiota associated with the ICH and control participants (median panel). The
relative abundance of Enterococcus was significantly higher in the ICH group than in the control groups. (P < 0.001) (right panel). (C) Heatmap of
Spearman’s rank correlation coefficient among clinical indexes and 11 genera (LDA scores (log10) > 4). *: P < 0.05, **: P < 0.01.
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neutrophil count (median (IQR), 8.36 (4.86) versus 4.45 (4.88),

P = 0.012), and higher NLR (median (IQR), 6.846 (6.112) versus

3.5 (5.406), P = 0.021). Compared to non-SAP group, the SAP

group also had a higher ICH score (median (IQR), 1 (2) versus 0

(1), P < 0.001), higher GCS, and higher NIHSS on admission

(median (IQR), 13 (7) versus 15 (0); 13 (12) versus 7 (5), P <

0.001). The non-SAP group had more patients with neurological

recovery after 14 d of standard treatments (76.471% versus

29.787%, P = 0.001). However, there was no difference in 90-

day functional independence between the two groups.

The gut microbial composition of SAP is shown in Figure S4A. In

the PCoA analysis, there was no difference between the patients with

and without SAP with respect to gut microbiota (PERMANOVA test,

R2 = 0.005, P = 0.572) (Figure 4A). While the SAP group was different

from the non-SAP group using analysis of similarities (ANOSIM)

(Kruskal-Wallis test, P < 0.001) (Figure 4B). The dysbiosis of gut

microbiota in patients with and without SAP are shown in Figure S4B.

Furthermore, the LEfSe algorithm was used to analyze the flora with

significant differences between the two groups. We found that 18 taxa

were differentially abundant in the two groups (Figure 4C). Among

them, Enterococcus, Parabacteroides, Blautia, Lachnoclostridium, and

Acidaminococcus were significantly enriched, and Prevotella were

depleted in patients with SAP compared to the non-SAP group. The

relative abundance of Enterococcus was higher in patients with SAP

than in non-SAP (P < 0.001) (Figure 4C); moreover, GLM further

confirmed that the Prevotella, Blautia, Ruminococcus_torques_group,

Sutterella, and Veillonella were different between the two groups after

controlling for age, hematoma volume, NIHSS score, and antibiotic use

(Table S2C). Enterococcus, Alistipes, Hungatella, and

clostridium_immocuum_group were enriched in the SAP group and

were positively correlated with the severity of ICH (admission and

discharge NIHSS, ICH score, and hematoma volume), severity of

pneumonia (NLR and PSI score (except Alistipes)), and poor outcome

of ICH (discharge and 90-day mRS scores (Figure 4D). Roseburia,

Fusobacterium, and Prevotella were enriched in the non-SAP group

and were negatively correlated with the severity and poor outcomes of

ICH. Enterotypes, clustering human fecal metagenomic samples based

on their taxonomic composition, are described as, “densely populated

areas in multidimensional space of community composition” (18).

Three types of enterotypes are traditionally reported, which are

independent of age, gender, cultural background, and geography. We

found that ET1 only appears in the SAP group (22%), and ET2 was

predominant in the non-SAP group (85%), with a high abundance of

Prevotella (Figures S4C, D). The important genera in different

enterotypes are shown in Figure S4E. Moreover, we found that the

relative abundances of Enterococcus, Parabacteroides, Lachnospira,

UCG_004, and Clostridium_innocuum_group were higher in the

patients with ICH after developing pneumonia than those before

developing pneumonia (Figure S4F, G), which indicated that

Enterococcus and Parabacteroides could be sensitive biomarkers in

the prediction of which patients with ICH develop stroke-

associated pneumonia.
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Altered cytokine responses in ICH
patients with alterations in taxonomic
compositions of the gut microbiota

Gut microbial dysbiosis is associated with abnormal immune

responses and is often accompanied by abnormal production of

inflammatory cytokines (19). Thus, we investigated the dynamic

changes of a broad spectrum of cytokines in the process of ICH

and assessed the relationship between cytokine responses and

clinical characteristics. Levels of different serum cytokines in the

process of ICH were shown in Figure S5. There were 12 cytokines

changed significantly at the four different time points (Kruskal-

Wallis Test, Eotaxin: P = 0.036; GM-CSF: P = 0.006; IL-8: P =

0.027; IL-9: P = 0.011; IL-10: P = 0.030; IL-12p70: P = 0.014; IL-15:

P = 0.006; IL-23: P = 0.015; IL-1RA: P = 0.003; IP-10: P < 0.0001;

RANTES: P = 0.028; and TNF-a: P = 0.012). Among these

cytokines, we found that levels of GM-CSF, IL-12p70, IL-15, IL-

1RA, IL-9, IL-23, and TNF-a were gradually increased with the

prolonging of time, and levels of these cytokines were positively

associated with the 90-day unfavorable outcomes (Figure 5A).

Moreover, levels of IL-10 were gradually decreased with the

prolonging of time despite a slight increase at the phase T2.

Levels of IP-10 decreased sharply from phase T1 to T2 and

increased from phase T2 to T4. Decreased IL-10 levels and

increased IP-10 levels were negatively associated with the 90-

day unfavorable outcomes (Figure 5A). Further, IL-1RA levels

were also positively related with the severity of ICH (admission

and discharge NIHSS (r = 0.401 and r = 0.482, P < 0.001), PSI

score (r = 0.360, P < 0.001), ICH score (r = 0.476, P < 0.001),

hematoma volume(r = 0.309, P < 0.001), length of hospital stay (r

= 0.244, P = 0.003) and length of ICU stay (r = 0.459, P < 0.001),

white blood cell and neutrophil counts (r = 0.395 and r = 0.303, P

<0.001), and poor functional outcomes of ICH (discharge and 90-

day mRS scores(r = 0.492 and r = 0.285, P < 0.001)) (Figure 5A).

These findings suggested that IL-1RA may be a strong cytokine to

predict the severity and poor functional outcomes of ICH. Next,

we investigated whether specific cytokine responses correlated

with the relative abundance of important genera. As Figure 5B

shows, Enterococcus was positively related to IL-1RA (r = 0.229,

P = 0.003) and negatively related to IP-10 as well as SDF-1a (r =

-0.315, P <0.001 and r = -0.253, P = 0.001). Conversely, Prevotella

was negatively corrected with IL-1RA (r = -0.427, P < 0.001) and

positively related to IP-10 and SDF-1a (r = 0.248, P = 0.001 and

r = 0.182, P = 0.019). Interestingly, Parabacteroides,

Anaeroplasma, Lachnospira, Roseburia, Faecalibacterium, and

Agathobacter were negatively associated with proinflammatory

cytokines such as IL-1a, IL-b, IL-6, TNF-b, and others, which

indicated that ICH onset was accompanied by a great alteration in

the intestinal microbiota and immune responses.

To further examine the cytokine responses in SAP subjects,

we found that there were six cytokines statistically significant

between the SAP group and non-SAP group (Wilcoxon rank-
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FIGURE 4

Comparison of the microbial communities of the SAP and non-SAP group. (A) PCoA plot with the Bray-Curtis dissimilarities demonstrates that
the bacterial communities were similar between the SAP (n = 131) and non-SAP group (n = 39). (B) Analysis of similarities (ANOSIM) in Bray-
Curtis distances showed that the SAP group differed from the non-SAP group. (C) LEfSe analysis revealed significant bacterial differences in fecal
microbiota between the SAP (positive score) and non-SAP groups (negative score). LDA scores (log10) > 6 and P < 0.05 are shown (left panel).
Cladogram using the LEfSe method indicating the phylogenetic distribution of fecal microbiota associated with the SAP and non-SAP groups
(median panel). The relative abundance of Enterococcus was significantly higher in the SAP group than in the non-SAP group (P < 0.001) (right
panel). (D) Heatmap of Spearman’s rank correlation coefficient among clinical indexes and significant genera (LDA scores (log10) > 4). *: P <
0.05, **: P < 0.01.
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sum test, SAP vs non-SAP, mean [SEM], IP-10:19.9 ± 3.8 vs.

22.54 ± 3.181, P = 0.006; IL-8: 20.53 ± 3.7 vs. 13.09 ± 4.675, P =

0.014; IL-1RA: 1087 ± 91.37 vs. 376.3 ± 74.39, P < 0.0001; TNF-

a: 3.261 ± 0.316 vs. 2.785 ± 0.393, P = 0.045; MIP-1b: 111.1 ±

10.15 vs. 70.34 ± 7.494, P = 0.013; IL-18: 10.67 ± 0.947 vs. 8.098 ±

1.141, P = 0.031) (Figure S6). Among these cytokines, IP-10 was

negatively related to Enterococcus and Parabacteroides

(r = -0.324 and r = -0.274, P < 0.001), and positively

correlated with Prevotella (r = 0.242, P = 0.002). IL-RA, on the

contrary, was positively correlated with Enterococcus and

Parabacteroides (r = 0.219, P = 0.005 and r = 0.231, P =

0.003), and negatively related with Prevotella and Roseburia (r

= -0.440 and r = -0.259, P < 0.001) (Figure 5C).
Enterococci are promising factors in the
prognosis of cerebral hemorrhage

To determine signature bacteria that could discriminate the

good or poor functional outcomes of short-term and long-term

prognosis, we incorporated robust statistical analysis and applied 5-

fold cross-validation together with random forest to create

classification models with consideration of the lowest error rate

and standard deviation. The random forest model was used to select

important genera. As Figure 6A shows, the combination of

Enterococcus, Prevotella, Lachnospiraceae_NK4A136_group,

[Clostridium]_innocuum_group, Fusobacterium, Romboutsia, and

Sellimonas could distinguish the good or poor outcomes of short-

term prognosis (discharge NIHSS score decrease > 40% for good

outcome), with an AUC of 0.8343 (95% CI = 0.7706–0.898).

Among these genera, Enterococcus was the major genus in the

signature biomarkers’ random seed, which indicated that

Enterococcus was likely to predict the short-term outcome of

ICH. Moreover, 17 genera including Eubacterium, Roseburia,

Fusobacterium, Enterococcus, and Prevotella consisted of the

random forest of long-term outcomes of ICH (90-day mRS ≤ 2

for good outcome), with an AUC of 0.8364 (95% CI = 0.7764–

0.8956) (Figure 6B).
Discussion

Previous studies have shown that commensal microbiota

played a critical role in degenerative and autoimmune diseases

of the central nervous system (20, 21). Stroke itself markedly

affects the composition of intestinal microbiota and these

changes, in turn, can determine stroke outcome (9). Few

studies have been conducted to reveal the characteristics of

the intestinal microbiota and peripheral immunity associated

with ICH in vivo. Here, we reported that ICH induced gut

microbiota dysbiosis, which was similar to previous studies on
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other acute CNS injuries (9, 11, 22). Additionally, we described

the cytokine response after ICH and its relationship to the

intestinal microbiota.

Our study revealed the richness and diversity of fecal

microbiota were altered in patients with ICH, in contrast to

those in the HC group and CHD group. The microbiota

structures were different between the ICH and control groups.

These observations were consistent with a previous study that

suggested the gut microbiota could be altered in ICH (22). In

terms of the composition of the gut microbiota, we determined

certain specific changes in the composition of the bacterial

genera in patients with ICH relative to controls by applying

the LEfSe algorithm. We observed a significant increase in

putative pathobionts in the ICH group. Enterococcus, a genus

of Firmicutes phylum, are considered commensal organisms of

the human gastrointestinal tract. However, they can also be

pathogenic, usually causing urinary tract infection, bacteremia,

endocarditis, burn and surgical wound infections, neonatal

sepsis, abdomen and biliary tract infections, and root canal

failure (23–25). In our study, Enterococci levels were higher in

the ICH samples, and this genus has been associated with

producing bacteriocins, which are linked to mobile elements

(24). Additionally, Enterococci are an important clinical cause of

bloodstream infection. The incidences of E. faecalis and E.

faecium bloodstream infections were 4.5 and 1.6 per 100000,

respectively, in a population-based study (26). The researchers

showed that E. faecium infections were associated with

gastrointestinal illness and affected patients who were invalid

and hospitalized, leading to a high mortality rate. Other studies

showed that Parabacteroides was also abundant in patients with

hypertension (27) and large artery atherosclerotic stroke or

transient ischemic attack (28). Similarly, the less studied

Acidaminococcus was enriched in hypertension subjects in

other cohorts as well (29–31). A higher abundance of

Lachnoclostridium could lower circulating levels of acetate,

resulting in increased visceral fat negatively impacting obesity

and type 2 diabetes (32). Lachnoclostridium has been found to

produce trimethylamine (32). Trimethylamine N-oxide

(TMAO) promotes atherosclerosis and is linked to platelet

hyperreactivity and inflammation, which in turn participates

the development of stroke and its secondary consequences (33).

Streptococcus was found to cause neurological damage by

producing neurotoxins such as streptomycin, streptodornase,

and streptokinase (34). The abnormal increase of these putative

pathobionts could produce endotoxins and neurotoxins and

were associated with high-risk factors of ICH, which may have

contributed to the development of ICH pathogenesis (34). The

three main depleted genera in the ICH group, Prevotella,

Faecalibacterium, and Roseburia, are major commensal or

beneficial microbes. Prevotella are linked to a plant-rich diet

composed of carbohydrates and fiber; although, in the gut, they

have been linked to inflammatory conditions (35, 36). One study
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FIGURE 5

Correlations among abundances of significant fecal microbiota, clinical indexes, and serum levels of cytokines. (A) Heatmap of Spearman’s rank
correlation coefficient among cytokines and specific clinical indexes. (B) Heatmap of Spearman’s rank correlation coefficient among cytokines
and significant genera between ICH and control groups. (C) Heatmap of Spearman’s rank correlation coefficient among significant cytokines
and significant genera between the SAP and non-SAP groups. *: P < 0.05. **: P < 0.01.
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found that subjects with a high Prevotella abundance lost more

weight when eating ad libitum whole-grain diets, suggesting

Prevotella may control body weight (37).Faecalibacterium and

Roseburia have been widely considered critical butyrate acid-

producing beneficial bacteria (38, 39), whose populations were

depleted in many diseases (29, 40, 41). Among these genera, our

study also showed that the Enterococcus and Parabaceroides

populations increased in the ICH group, and had a robust
Frontiers in Immunology 12
correlation with the severity of disease, inflammatory

conditions, and poor outcomes. However, some beneficial

microbes, such as Prevotella and Roseburia, correlated

inversely with the above-mentioned factors.

Recently, studies on SAP have increased significantly. SAP is

the major complication of ICH and has high mortality and

morbidity (42). However, there have been few advancements in

the prevention and treatment of SAP (43). Increasing evidence
A

B

FIGURE 6

Disease classification based on gut microbiota signature. Receiver operating characteristic curve (ROC) analysis of the sensitivity and specificity
of the differentially abundant genera as prognosis factors for ICH. Variable importance in random forests considering the mean decrease in
accuracy (MDA) (left) or mean decrease in Gini index (MDG) (right). (A) Model of 14-day outcome (discharge NIHSS) of ICH. (B) Model of 90-day
outcome (90-day mRS) of ICH.
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has shown that gut microbiota played an essential role in post-

stroke infection (44, 45). Therefore, in this study, we explored

the microbiota community of SAP after ICH. We found that

more patients with moderate to severe ICH were admitted to the

intensive care units of our clinical centers because of high SAP

rates. We then found that there were structural differences in the

gut microbial communities between the SAP and non-SAP

groups. Consistent with the altered gut microbiota in the ICH

patients, Enterococcus enrichment and Prevotella depletion were

also found in the SAP patients, and Enterococcus was positively

associated with the severity of ICH and SAP and poor outcomes

of ICH, whereas we found that Prevotella was inversely

associated. This suggested that Enterococcus enrichment and

Prevotella depletion not only promoted the progression of ICH

but also increased the occurrence of SAP. Similar to previous

studies, Prevotella was associated with a reduced risk of hospital-

acquired pneumonia in adult intensive care unit patients (46)

and was reduced in the oropharynx of adults and children with

asthma or chronic obstructive pulmonary disease (47).

Enterococcus was similarly abundant in SAP following acute

ischemic stroke (48) and acquired immune deficiency syndrome

(49), which showed that Enterococcus could be related to stroke-

induced immunodepression, a leading mechanism of SAP (50–

53). Furthermore, enterotypes could be the potential predictors

of SAP, as showed that ET1 was the best indicator in the SAP

group driven by Enterococcus, and ET2 was dominant in the

non-SAP group with a high abundance of Prevotella. However,

our cohort was composed of a small population from the

Southern and Northeast regions of China.

In terms of the potential microbial functions, our study

showed overgrowth of facultatively anaerobic and mobile

element-containing bacteria and the decrease of anaerobic

bacteria in patients with ICH, which indicated that the

alteration to the gut microbiota may be involved in the

development of brain injury. Interestingly, the Enterococcus

(facultatively anaerobic) increase and the Prevotella

(anaerobic) depletion were in agreement with our findings.

Further, we found that metabolic pathways of peptidoglycan

biosynthesis and hexitol fermentation to lactate, formate,

ethanol, and acetate had a positive association with

Enterococcus in the ICH. Peptidoglycan is an essential

molecule in the cell wall of both gram-positive and gram-

negative bacteria. In a previous study, intraperitoneal injection

of 2E7, to neutralize circulating peptidoglycan, suppressed the

development of autoimmune arthritis and experimental

autoimmune encephalomyelitis in mice (54), which indicated

that peptidoglycan could be related to the development of

autoimmune disease (55, 56). Peptidoglycan has been found in

human atherosclerotic lesions (57). Increased baseline levels of

peptidoglycan recognition protein-1 (PGLYRP-1), a pro-

inflammatory molecule that binds peptidoglycan, were

independently associated with an increased risk of first

atherosclerotic cardiovascular disease (ASCVD) in a ten-year
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cohort, suggesting that PGLYRP-1 may contribute to the

development of ASCVD (58). Cerebral ischemia is a

contributing mechanism to secondary injury after ICH. Lactate

accumulation induced by ischemic damages was observed in the

ICH model (59, 60). Lactic acid has been shown to exacerbate

ischemic brain injury by activating G protein-coupled receptor

81 (GPR81) and inhibition of GPR81 attenuated the ischemic

injury (61). Additionally, early elevated cerebral lactate levels in

extracellular fluid were associated with the occurrence of

pneumonia in patients with aneurysmal subarachnoid

hemorrhage, which may result from systemic hypoxemia or

lactatemia with a damaged blood-brain barrier (62). Further,

lactate accumulation in the colon could alter gut microbiota

composition (63) and modulate immune responses (64). In our

study, Lactobacillales (data not shown), Enterococcus, and

Streptococcus (lactic acid bacteria) were significantly enriched

in the ICH group compared to the HC group. These results

suggested that microbiota-derived lactate may participate the

secondary injury after ICH and increase the occurrence of SAP.

A growing body of evidence has suggested that intestinal

microbes modulated the induction, training, and function of

immune system responses, with gut microbiota dysbiosis related

to several autoimmune and immune-mediated inflammatory

diseases (65–67). Therefore, we investigated the dynamic

changes of a broad spectrum of cytokines following ICH and

evaluated the relationship between inflammatory cytokine

response and long-term outcomes of ICH and signature

microbiota. In our study, we found that Eotaxin, GM-CSF, IL-

8, IL-9, IL-10, IL-12p70, IL-15, IL-23, IL-1RA, IP-10, RANTES,

and TNF-a were changed significantly in the progression of

ICH. levels of GM-CSF, IL-12p70, IL-15, IL-1RA, IL-9, IL-23,

and TNF-a were increased and levels of IL-10 decreased

gradually, which positively correlated with 90-day poor

outcomes. Many studies revealed that GM-CSF promoted

leptomeningeal collateral growth, decreased the infarct size,

and improved long-term functional outcomes in the

experimental stroke (68, 69). GM-CSF was more than a

growth factor and researchers showed that GM-CSF also

promoted neuroinflammation by increasing LPS-induced

production of proinflammatory mediators (70). In line with

previous study, astrocyte-derived IL-15 significantly increased in

the ICH patients and experimental ICH and aggravated brain

injury following ICH through the proinflammatory response

amplification of microglia in the setting of ICH (71). Similarly,

astrocytic IL-15 also exacerbates brain damage after ischemic

stroke by enhancing cell-mediated immune responses (72).

Researchers found that IL-23 signaling could promote Th2

polarization and enhance Th2 expression in allergic

inflammation (73). Expression of IL-23 and IL-17 increased in

sequence following ICH and IL-23/IL-17 axis promoted

secondary brain injury in ICH model mice (74). However, IL-

17 levels did not increase in the acute phase in our study, which

indicates that IL-23 may influence ICH in a Th17-independent
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manner. Consistent with previous research, higher IL-1RA,

erythrocyte sedimentation rate, and CRP were correlated with

dependent stroke outcome (mRS >3) in acute ischemic stroke

(75). Moreover, IL-5, IL-6, IL-9, and IL-27 were also positively

correlated with long-term functional outcomes. Increased serum

levels of IL-6 and IL-10 were detected in intraparenchymal

hemorrhage (76), and higher admission IL-6 levels were

associated with unfavorable 90-day functional outcomes and

hematoma and perihematomal edema volumes (77).

Additionally, IL-6 and IL-10 levels were higher in hemorrhage

stroke patients with 1-month unfavorable outcomes (78).

Hematoma expansion is a major cause of morbidity and

mortality after ICH, and inflammation may be associated with

its pathogenesis. Higher plasma IL-10 levels were related to the

hematoma expansion in spontaneous ICH and worse 30-day

outcomes (79). However, a study on IL-10-/- mice showed that

the presence of IL-10 was protective against the development of

ICH (80). Although IL-10 is regarded as an anti-inflammatory

cytokine to prevent inflammatory and autoimmune pathologies

by limiting the immune response to pathogens (81), it also

exhibits proinflammatory activities. A study showed that IL-10

treatment stimulated lipopolysaccharide (LPS)-induced release

of IFN-g and enhanced activation of CTL and NK cells after LPS

injection, though IL-10 treatment upon LPS-induced IFN-g
release could not be reproduced in whole blood in vitro (82).

IL-5, IL-9, IL-10, IL-23, and IL-27 are also related to the Th2

response (T-cell response associated with allergies, progressive

systemic sclerosis, and autoimmune disorders) (83). Researchers

observed that IL-27 was upregulated centrally and peripherally

after ICH, and IL-27 treatment improved ICH outcomes by

reducing edema and increasing iron and hematoma clearance

(84). However, higher IL-27 levels were correlated with poor 90-

day outcomes in our results. The findings above suggested that

high-dose anti-inflammatory therapy in patients with

inflammatory disorders could be associated with undesired

proinflammatory effects in vivo.

In contrast, IL-21, CXCL1, IL-4, IL-31, IFN-g, SDF-1a, and
IP-10 were negatively associated with 90-day unfavorable

outcomes. Recently, IL-4/STAT6 signaling accelerated

microglia-and macrophage-mediated hematoma clearance and

improved neurofunctional recovery following ICH in blood and

collagenase injection models (85). Additionally, in a study about

the relationship between ex vivo cytokine synthesis and 3-month

outcomes after ischemic stroke, decreased release of IP-10,

TNFa, IL-1b, and IL-12; increased release of IL-10 and IL-8;

and higher plasma IL-6 levels were associated with poor

outcomes (86). Additionally, decreased release of IP-10 and

TNF-a after ex vivo blood stimulation with endotoxin was

associated with poor outcomes after stroke, suggesting that the

inhibition of both the MyD88-dependent and MyD88-

independent pathways of toll-like receptors (TLR)4 signaling

in blood cells was associated with poor prognosis in stroke

patients (87). Reduced IFN-g production caused by impaired NK
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and T cell response was the crucial stroke-induced defect in the

antibacterial defense. IFN-g supplementation effectively

i nh ib i t ed bac t e r i a l i n f e c t i ons a f t e r s t roke ( 50 ) .

Neovascularization after ICH is an important compensatory

response that mediates brain repair and improves the clinical

outcome. The Tp53 Arg72Pro single-nucleotide polymorphism

increased endothelial cell survival and triggered efficient

endothelial progenitor cell mobilization via vascular

endothelial growth factor and SDF-1a , resulting in

neovascularization after experimental ICH (88). In conclusion,

the onset of ICH induced massive, rapid activation of the

peripheral immune system and Th2 responses were correlated

with worse 90-day outcomes.

Furthermore, Enterococcus was positively associated with IL-

RA and negatively associated with IP-10 and SDF-1a, while
Prevotella showed an inverse association. Peptidoglycan is

detected by multiple pattern-recognition receptors and triggers

inflammatory responses in immune and nonimmune cells (89).

TLR2s are known to be the signaling receptors for

peptidoglycan, which induced IL-1RA gene expression by

activating the p38 stress-activated protein kinase (90). IP-10

has been shown to have direct antibacterial activity similar to a-
defensins, like against Escherichia coli and Listeria

monocytogenes (91). In addition, IFN-g signaling in enteric

glia cells (EGCs) maintains intestinal homeostasis and

immunity and improves tissue repair after intestinal damage

caused by pathogen infection. Researchers have identified IP-10

as the critical response cytokine in IFN-g signaling, thus the

IFNg–EGC–IP-10 axis is essential to the immune response and

tissue repair after infectious challenge (92). Collectively, this

evidence showed that Enterococcus interacted with cytokines

such as IL-1RA, IP-10, and SDF-1; promoted the TLR-2

pathway; inhibited the TLR-4 pathway (87); induced

neovascularization; and disturbed the homeostasis of the

intestinal microbiota to aggravate the inflammatory response

and worsen ICH outcomes.

S troke- induced immunosuppress ion (SIIS) was

characterized by decreased lymphocyte counts in the spleen,

blood, and thymus; impaired early NK and T cell responses, and

a shift from Th1 to Th2 (50). This syndrome increased the

susceptibility to stroke-associated infections. Among these

infections, SAP was the major acute type of ICH and can

worsen ICH functional outcomes (93). To elucidate the

molecular mechanisms of SAP, the peripheral suppression of

the immune system after the occurrence of ICH must be

considered. In this study, we found that there were six

cytokines that were significantly correlated with SAP,

including IP-10, IL-1RA, TNF-a, MIP-1b, IL-18, and IL-8. IP-

10 was the only cytokine that was decreased in the SAP group.

IFN-g plays a pivotal role in preventing bacterial infections after

stroke. Studies have revealed that supplementing with IFN-g by
adoptive transfer of IFN-g–producing lymphocytes or

recombinant IFN-g treatment inhibited bacteremia and
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pneumonia (50). However, this did not prove whether the

downstream effector of IFN-g was associated with stroke-

associated infections or not. IP-10, also called IFN-g-inducible
protein 10, is a chemokine secreted from cells stimulated with

type I and II IFNs and LPS (94). It is vital in controlling

pneumonia by enhancing IFN-g production and reinforcing

leukocyte antibacterial responses (95). In a previous study, at

the early stage of Klebsiella administration, anti-IP-10 antibody

treatment led to 10- to 100-fold increases in the number of

Klebsiella pneumoniae CFU isolated from lung homogenates

compared to IgG administration. Additionally, adenovirus-

mediated expression of IP-10 led to 30- to 100-fold reductions

in lung and blood CFU in Klebsiella-infected mice in the early

stage (95). Therefore, the IFN-g-IP-10 axis may be a candidate

pathway for immunotherapy of SAP or severe respiratory tract

infection. Decreased secretion of TNF-a and IFN-g has

contributed to spontaneous bacterial infections. However, a

reduction of endotoxin-induced TNF-a was observed 12 h and

2 d after middle cerebral artery occlusion and returned to control

levels on day 5 (50). Our study showed that TNF-a levels were

increased in the SAP group, which suggested that the increase of

TNF-a present during the late stage of stroke could also be

linked to SAP, as the duration of SIIS still remained unknown.

Stroke severity was the most important predictor of infection

risk, and increased plasma IL-1RA levels were independently

associated with infection risk after adjusting for stroke severity.

This suggested that IL-1RA was a strong predictor of post-stroke

infection (96). Moreover, in a previous study, the A2A2

genotype of the IL-1RA gene was associated with the risk of

adverse outcomes of severe community-acquired pneumonia in

Indian children (97), though there were some different findings

in other studies (98, 99). MIP-1b, an inflammatory chemokine,

has an impact on vasculopathy. Researchers have found that

MIP-1b inhibition improved endothelial progenitor cell (EPC)

function and enhanced EPC homing and ischemia-induced

neovasculogenesis (100). Increased IL-18 and IL-8 expressions

contributed to the development and severity of stroke (101–103)

and IL-18 also participated in hypoxic-ischemic brain injury

(104). Interestingly, a novel innate immunity pathway consisting

of lipoteichoid acid, produced by gram-negative bacteria, was

sensed by the NLRP6 inflammasome and exacerbated a systemic

gram-positive pathogen infection via the production of IL-18

(105). Unexpectedly, IL-18 was not associated with the genus

Enterococcus in our study. Further analysis showed an

association between the cytokines and genera and revealed

that increased bacteria in the SAP group, especially

Enterococcus, enhanced the expression of IL-1RA and

decreased IP-10 levels to promote SAP. Increased bacteria in

the non-SAP group, particularly Prevotella, were inversely

related to SAP.

Random forest analysis showed that Enterococci were the

critical biomarkers in determining either the good or poor

functional outcomes of short-term and long-term prognoses.
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Notably, Enterococci were the most important biomarkers in

predicting short-term functional outcomes, which was due to its

levels gradually increasing throughout the ICH process and

peaking at phase T4.

The major findings of our study were that the gut

microbiota changed dynamically throughout the duration of

ICH, and gut dysbiosis with Enterococcus enrichment and

Prevotella depletion not only promoted ICH but also SAP.

Moreover, we investigated the dynamic changes of a broad

spectrum of cytokines in the process of ICH and confirmed the

roles of these cytokines in patients with ICH, and examined the

relationship between genera and cytokine responses. Our study

does have some limitations. First, the age, gender, and

comorbidities of the ICH group and the control groups were

not identical, although a generalized linear model was applied

to control the possible confounding factors. Additionally, the

stool samples in different phases of the ICH process were

varied, as ICH could reduce gastrointestinal motility (22).

Second, short-chain fatty acid (SCFA) levels, which

potentially mediate gut-brain communication, were not

tested (106), although a number of studies have revealed that

SCFAs played a beneficial and anti-inflammatory role in stroke

(107, 108). Third, antibiotics are unavoidable, important

factors for ICH patients and gut microbiota. ICH patients in

this study were recruited from intensive care units and 73.4%

of them were diagnosed with pneumonia within 7 days of ICH.

Thus, we should consider the effect of antibiotics on intestinal

microbiota. However, the impact of different types of

antibiotics and their application times on intestinal flora in

vivo remains unknown, and it is difficult to control the

antibiotics used in unpredictable medical conditions. Finally,

for the study scale, we did not analyze the correlations between

every taxon and every cytokine tested in this study under the

consideration of the limited statistical power of multiple

comparisons. Consequently, the related changes in the

microbiota and serum cytokines were analyzed under the

assumption that the altered microbiota may trigger

peripheral inflammatory responses that contributed to ICH

or SAP. Additionally, the specific mechanisms underlying the

microbiota and ICH process were not explored in this study.

Therefore, in a future study, we plan to simulate the intestinal

alteration by enriching Enterococcus or depleting Prevotella in

experimental ICH to verify the potential targets and elucidate

their causal relationship in the gut-brain axis. Moreover,

specific immune responses stimulated by a particular species,

or a group of gut microorganisms, need to be investigated. We

will analyze the dynamic changes in cytokine responses in

patients with SAP in our subsequent studies to identify the

changes in inflammatory responses. More study patients will be

enrolled in the future to support our findings. As discussed,

SIIS was a key mechanism of ICH and SAP. More information

about SIIS including the duration, the cytokine storm, and its

activation is needed.
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Conclusion

In summary, to the best of our knowledge, this is the first

study to show that patients with Enterococcus enrichment and

Prevotella depletion in the gut microbiota had increased risk of

ICH and SAP in vivo. Changes in a broad spectrum of cytokines

associated with the signature microbiota proved that microbiota

alterations with aberrant host immune responses were related to

ICH pathogenesis. Elucidation of the interaction between

intestinal microbiota and the peripheral immune response

would help to understand ICH pathogenesis. The altered gut

microbiota composition and serum cytokine profiles are

potential biomarkers that reflect the inciting physiologic

insult/stress involved with ICH. Gut microbiota modulation

may help to the development of intervention strategies

targeting microbiota dysbiosis for ICH.
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