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Background: Ischemic stroke is one of the leading causes of human death and disability.
Brain edema and peri-infarct astrocyte reactivity are crucial pathological changes, both
involving aquaporin-4 (AQP4). Studies revealed that acute inhibition of AQP4 after stroke
diminishes brain edema, however, its effect on peri-infarct astrocyte reactivity and the
subacute outcome is unclear. And if diffusion-weighted imaging (DWI) could reflect the
AQP4 expression patterns is uncertain.

Methods: Rats were subjected to middle cerebral artery occlusion (MCAO) and allocated
randomly to TGN 020-treated and control groups. One day after stroke, brain swelling and
lesion volumes of the rats were checked using T2-weighted imaging (T2-WI). Fourteen
days after stroke, the rats successively underwent neurological examination, T2-WI and
DWI with standard b-values and ultra-high b-values, apparent diffusion coefficient (ADC)
was calculated correspondingly. Finally, the rats’ brains were acquired and used for glial
fibrillary acidic protein (GFAP) and AQP4 immunoreactive analysis.

Results: At 1 day after stroke, the TGN-020-treated animals exhibited reduced brain
swelling and lesion volumes compared with those in the control group. At 14 days after
stroke, the TGN-020-treated animals showed fewer neurological function deficits and
smaller lesion volumes. In the peri-infarct region, the control group showed evident
astrogliosis and AQP4 depolarization, which were reduced significantly in the TGN-020
group. In addition, the ultra-high b-values of ADC (ADCuh) in the peri-infarct region of the
TGN-020 group was higher than that of the control group. Furthermore, correlation
analysis revealed that peri-infarct AQP4 polarization correlated negatively with astrogliosis
extent, and ADCuh correlated positively with AQP4 polarization.

Conclusion: We found that acutely inhibiting AQP4 using TGN-020 promoted
neurological recovery by diminishing brain edema at the early stage and attenuating
peri-infarct astrogliosis and AQP4 depolarization at the subacute stage after stroke.
Moreover, ADCuh could reflect the AQP4 polarization.

Keywords: ischemic stroke, astrogliosis, AQP4 polarization, glymphatic system, ultra-high b-values diffusion
weighted imaging
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INTRODUCTION

Ischemic stroke is a leading cause of death and disability in
humans, with few pathophysiological therapies other than
recanalizing occluded blood vessels (1, 2). Acutely inhibiting
aquaporin-4 (AQP4) was proposed recently as a promising new
pathophysiological therapy targeting central nervous system
(CNS) edema post-injury (3, 4). Because water transportation
through AQP4 is a passive process, depending on osmotic
gradients. AQP4 contributes to the formation of cellular toxic
edema at first, but it is also essential for the resolution of
vasogenic edema in CNS injury. And studies revealed that
AQP4 deficient animals displayed higher levels of CNS water
content than control animals at a later phase of CNS injury (5).
AQP4 is the most abundant aquaporins in the brain, it has a
polarized distribution tendency on the astrocyte endfeet facing
vessels under physiological conditions, this distribution
tendency is critical for the formation and resolution of
edema, and clearance of interstitial solutes in the brain (6).
Commonly, methods of inhibiting AQP4 mainly include gene
knockout, small interfering RNA, heavy metal ions, and small
molecule inhibitors (7). Small molecule inhibitors have the
potential to be applied in clinical for their security. N-(1,3,4-
thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride
(TGN-020) is one of them and has been proven to inhibit
AQP4 in vitro and in vivo via the intracellular ubiquitin-
proteasome system (8, 9).

AQP4 is implicated not only in edema formation and
resolution, but also in astrocyte migration and astrogliosis (10,
11). However, the changes in peri-infarct astrocyte reactivity
related to acute inhibition of AQP4 have not been clarified,
which are crucial for peri-infarct tissue repair and neurological
function recovery. After stroke, reactive astrogliosis and loss of
perivascular AQP4 polarization occur and persist for long time
in the peri-infarct area (12–14). Reactive astrogliosis is beneficial
for limiting the infarct territory initially; however, its increasing
dysregulation at the recovery stage accentuates inflammation
and inhibits axon regeneration, thus interfering with long-term
sensorimotor functional recovery (15, 16). Besides, loss of
AQP4 polarization impairs the glymphatic system, a newly-
discovered waste clearance system in the brain (17), causing
toxic protein deposition and cognitive deficits (18, 19).
Modulating reactive astrogliosis and the loss of AQP4
polarization in the peri-infarct area might be beneficial
therapeutic strategies during later stages to promote
neurological function recovery.

In this study, we acutely inhibited AQP4 using TGN-020 in
transient middle cerebral artery occlusion (MCAO) rats,
evaluated the brain edema and infarct volume at 1 and 14
days, and the peri-infarct astrogliosis extent, AQP4 expression
patterns, and neurological function at 14 days after MCAO. In
addition, we analyzed correlations of the AQP4 expression
patterns and the ultra-high b-values apparent diffusion
coefficient (ADCuh). We aimed to investigate the effect of
acutely inhibiting AQP4 on peri-infarct astrocyte reactivity and
subacute outcome and the feasibility of ADC to reflect the
expression patterns of AQP4.
Frontiers in Immunology | www.frontiersin.org 2
MATERIAL AND METHODS

Animals
This experiment was approved by the Fudan University
Institutional Animal Care and Use Committee. A total of 16
adult (260–280 g) Sprague–Dawley rats (Charles River
Laboratories, Beijing, China) were used in this experiment.
They were maintained under an automatically controlled 12 h
light–dark cycle, with freely accessible food and water. After
fasting for 1 day, the rats were subjected to 90 min of MCAO and
then allocated randomly to the TGN-020 treated group or the
control group (n = 8 per group). The ischemic lesion and edema
volume were checked by MRI 1 d post-stroke. At 14 days post-
stroke, neurological function, MRI, and histology features were
evaluated in turn. One rat in the TGN-020-treated group and
three rats in the control group died from severe ischemic stroke.
Finally, six rats of each group were included in the data analysis.

Surgical Procedure and Treatment
For all rats, the left middle cerebral artery was occluded by the
same researcher as in our previous study (20). Specifically, the
anesthetized rats were immobilized in a supine position using a
tooth holder and all limbs were tied up. A skin incision was made
in the midline of the neck, and the muscle and fascia were
separated to expose the left internal carotid artery (ICA), external
carotid artery, and common carotid artery. Then, a poly L-lysine
coated nylon filament (2634A4, Cinontech Co. Ltd., Beijing,
China) was inserted into the left ICA to block blood flow to
the MCA. The TGN-020 treated group was administrated
intraperitoneally with TGN-020 (200 mg/kg) at 10 minutes
after successful occlusion. The control group was given the
same volume of 0.9% normal saline at the same timepoint.
After occlusion for 90 minutes, the filament was withdrawn
gently to allow reperfusion under anesthesia.

MRI and Quantitative Analysis
The MRI images were captured using a 3.0T horizontal magnet
(Discovery MR750, GE Medical Systems, Milwaukee, WI, USA)
with a 60-mm-diameter gradient coil (Magtron Inc., Jiangyin,
China). Anesthetized rats were scanned in the prone position,
with continuous monitoring of their temperature, heart rate, and
respiration. The main scan parameters were as follows: For fast spin
echo T2-weighted imaging, repetition time (TR)/echo time (TE) =
4000 ms/96 ms, field of view (FOV) = 6 cm × 6 cm, matrix = 256 ×
256, slice thickness = 1.8mm, interslice distance = 2mm, number of
slices = 15. For ultra-high diffusion-weighted imaging (DWIuh),
TR/TE = 3000/minimum, FOV = 6 cm × 6 cm, slice thickness = 1.8
mm, interslice distance = 2 mm, number of slices = 15, b values =
2000, 2500, 3000, 3500, 4000, and 4500 s/mm2. Standard DWI
(DWIst) was performed with the same parameters as DWIuh,
except that the b values = 0, 800 s/mm2. T2-WI was scanned at 1
day and 14 days post-stroke, while DWIst and DWIuh were
scanned at 14 days post-stroke.

All MRI data were processed and measured on the GE
ADW4.6 workstation using Functool software, and DWI
images were processed to generate ADC maps. The ischemic
lesion volume was calculated as percentage of hemispheric lesion
May 2022 | Volume 13 | Article 870029
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volume (%HLV) after correction of hemispheric space-
occupying effects, according to methods proposed by Gerriets
et al. (21). The percentage of brain swelling volume (%BSV) was
used to quantitatively evaluate the extent of brain swelling. The
specific equations used are as follows:

%HLV = ½contralateral hemisphere volume −

ipsilateral hemisphere volume − infarct volumeð Þ�
=contralateral hemisphere volume

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

 � 100

%BSV =   ipsilateral hemisphere volume=

contralateral hemisphere volume

0
BB@

1
CCA� 100:

Imaging artifacts increase when the b-values rise, especially in
the cortical region, thus the estimation of ADCuh was only
carried out in the peri-infarct striatum. Equivalent regions of
interest (ROIs) were drawn in the peri-infarct striatum and
corresponding contralateral area on ADCuh maps. The ratio of
ipsilateral ADCuh to contralateral ADCuh was used for
comparisons between groups.

Sensorimotor and Cognitive
Function Examination
A neurological behavior scale of 0 to 20 scores was used to assess
the sensorimotor function of the rats, as in our previous study
(22). Higher scores represent more neurological deficits. The Y-
maze was used to test the spatial working memory of the rats,
based on the inherent characterization of rats to explore a novel
environment without the need to learn skills. The maze is
consisted of three identical arms (50 cm × 16 cm × 32 cm),
and the angle between each arm was 120°. Rats were placed at the
end of the initial arm and were allowed to explore freely for 5
minutes. The sequence and total number of arm entries were
recorded using a video camera. Entrance into different arms for
three consecutive times was recorded as a correct alternating
response. Rodents with impaired working memory could not
memorize which arm was just visited and thus had lower
spontaneous alternation rates. Correct alternating response
times were counted, and the spontaneous alternation rate was
calculated using the following equation:

Spontaneous alternation rate = ½correct alternating response times=

N − 2ð Þ� � 100%,  where N is the total number of arm entries :

Immunofluorescence Staining and
Quantitative Analysis
Rats were perfused with phosphate buffer, followed by 4%
paraformaldehyde, and then their brains were removed and
postfixed overnight at 4°C. After dehydration, wax leaching,
embedding, and slicing, three serial coronary brain sections
Frontiers in Immunology | www.frontiersin.org 3
(thickness: 5 mm) for each animal were obtained at approximately
0.24 mm relative to the bregma, according to the atlas reported by
Paxinos andWatson (2005).Well preserved sectionswerepickedand
immunostained using anti-glial fibrillary acidic protein (GFAP,
1:1000, Abcam, Cambridge, MA, USA) and anti-AQP4 (1:1000,
Abcam) antibodies. Alexa Fluor 488- and 568-conjugated donkey
anti-rabbit and anti-mouse antibodies (1:1000, Abcam) were used as
secondary antibodies. Finally, the sections were incubated with 4′,6-
diamidino-2-phenylindole, dihydrochloride (DAPI, 1: 1000; Sigma-
Aldrich, St. Louis, MO, USA).

Immunofluorescence sections were scanned using a Vslide
scanning microscope (Nikon, Chiyoda, Tokyo, Japan) with a ×20
primary objective. All images were acquired using constant
scanning settings, and further semi-quantitatively analyzed to
characterize the expression patterns of AQP4 and GFAP using
Image J (National Institutes of Health, Bethesda, MD, USA).

To evaluate AQP4 expression and polarization in the peri-
infarct area, the mean fluorescence intensity of AQP4 emission
channels was measured, and AQP4 polarization was calculated
as the ratio of the low-threshold AQP4-positive area to the high-
threshold AQP4 positive area (23). The percentage of GFAP
immunostained area of the ROIs (GFAP area%) was used to
analyze reactive astrogliosis. ROIs (600 mm × 300 mm) were
placed in the peri-infarct cortex and striatum separately for
analysis. Immunostained sections that had similar lesion
morphologies and anatomical structures to those in the
ADCuh images were picked for analysis, and ROIs in the peri-
infarct striatum were placed according to those ROIs placed in
the ADCuh images. All histological data were normalized by
contralateral values and were calculated twice to minimize
measurement error.

Statistical Analysis
All data were presented as the mean ± the standard deviation
(SD), P < 0.05 was considered to be statistically significant. One-
way analysis of variance (ANOVA) and post hoc least significant
difference (LSD) tests were used to compare differences among
groups. Pearson Product correlation analysis was performed to
analyze correlations. The above data analyses were carried out
using GraphPad Prism, version 8.0 (GraphPad Software Inc., La
Jolla, CA, USA).
RESULTS

T2-WI Revealed That Acute Inhibition
of AQP4 Decreased Edema and the
Infarct Volume
Ischemic lesion volume and brain swelling extent of the rats were
derived from T2-WI at 1 day and 14 days post stroke (Figure 1).
One day post stroke, the TGN-020-treated group presented
significantly decreased infarct and swelling volumes (%HLV:
39.05 ± 6.43, %BSV: 111.98 ± 7.18), compared with those of the
control group (%HLV: 57.94 ± 6.68, %BSV: 129.32 ± 4.69).
Fourteen days later, the ischemic lesion volume and brain
May 2022 | Volume 13 | Article 870029
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swelling extent of both groups had decreased. The TGN-020-treated
group had a smaller infarct volume (%HLV: 24.30 ± 1.88) than that
of control group (%HLV: 45.25 ± 3.11). Regarding the extent of
brain swelling, no significant difference was found between two
groups. Our results showed a 67% smaller lesion volume with 86%
less swelling in TGN-020-treated rats compared with those of the
control rats at 1 day-post stroke (both P < 0.01), and a 53% smaller
lesion volume at 14 days (P < 0.001).
Acute Inhibition of AQP4 Ameliorated
Neurological Deficits
At fourteen days post stroke, the sensorimotor function of the
rats was evaluated using the behavior scale. Significantly fewer
sensorimotor deficits were observed in the TGN-020-treated
group (P < 0.001 vs. the control group). Spatial working
memory was assessed using Y maze spontaneous alternation,
in which the TGN-020-treated group showed a superior
cognition performance compared with that of the control
group (P < 0.001) (Figure 2).
Frontiers in Immunology | www.frontiersin.org 4
Acutely Inhibiting AQP4 Ameliorated
Peri-Infarct Astrogliosis and Loss of
AQP4 Polarization
In the peri-infarct cortex and striatum, the TGN-020-treated
group showed fewer and smaller astrocytes than those in the
control group. AQP4 in the control group was located diffusely
on the neuropil, while AQP4 in the TGN-020-treated group was
distributed mainly in the perivascular district, which is close to
the polarized distribution under normal conditions.
Corresponding immunofluorescence images of each group are
shown in Figure 3. Quantitively, in the peri-infarct area, the
TGN-020-treated group exhibited smaller cortical and striatal
GFAP area (7.57 ± 2.18 and 10.72 ± 2.32, respectively) than those
of the control group (both P < 0.001). The AQP4 expression
intensity (the AQP4 mean fluorescence intensity) of the two
groups were similar (P > 0.05). The cortical and striatal AQP4
polarizations of the TGN-020-treated group were higher than those
of the control group (cortex: 0.78 ± 0.06 in TGN-020-treated group
vs. 0.48 ± 0.09 in the control group, P < 0.01; striatum: AQP4
polarization: 0.75 ± 0.07 in TGN-020-treated group vs. 0.43 ± 0.15
B C

A

FIGURE 1 | Comparison of ischemic lesion volumes and brain swelling volumes between groups. (A) Representative T2-WI images of rats in the TGN-020-treated
and control groups at 1 day and 14 days post-stroke. (B) The ischemic Lesion volumes of each group at 1 day and 14 days post-stroke. (C) The brain swelling
volumes of each group at 1 day and 14 days post-stroke. **P < 0.01, ***P < 0.001.
May 2022 | Volume 13 | Article 870029
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in the control group, P < 0.001). Further correlation analysis showed
that peri-infarct AQP4 polarization correlated negatively with the
astrogliosis area (r = −0.72, P < 0.01).

Relationship of the ADCuh With AQP4
Expression Patterns
On the standard ADC (ADCst) maps, there were no evident
signal differences between the peri-infarct area and contralateral
hemisphere in all rats, while on the ADCuh maps, the peri-
infarct area appeared as dark rings surrounding the ischemic
core in the two groups of rats (Figure 4). The ratio of the
ipsilateral to contralateral ADC was used for group comparison,
and was only analyzed in the striatum for restriction of ADCuh
map’s artifacts. No significant difference in ADCst was found
between the TGN-020-treated group and the control group (P >
0.05), while the TGN-020-treated group had a slightly but
significantly increased ADCuh (0.78 ± 0.04) compared with
that of the control group (0.73 ± 0.03, P < 0.05).

Both groups of rats showed reactive astrogliosis and loss of AQP4
polarization in the peri-infarct area, in which the ADCuh decreased
concurrently (Figure 4). Further correlation analysis showed that the
peri-infarctADCuhcorrelatedpositivelywithAQP4polarization(r=
0.64,P< 0.05), but had no statistical correlationwith theAQP4mean
fluorescence intensity (r = 0.03, P = 0.92).
DISCUSSION

In the present study, acute inhibition of AQP4 using TGN-020
decreased the edema and infarct lesion volume 1day post-stroke,
attenuated peri-infarct astrogliosis, AQP4 depolarization, and
infarct lesion volume, promoting neurological recovery at 14
days post-stroke. Additionally, we found that AQP4 polarization
correlated negatively with astrogliosis, and ADCuh could reflect
the AQP4 polarization.
Frontiers in Immunology | www.frontiersin.org 5
Our results showed that acute inhibition of AQP4 by TGN-020
reduced brain edema 1day post-stroke, which is consistent with
previous research (24, 25). Traditionally, it is thought that post-
stroke edema comprises cytotoxic edema and vasogenic edema, in
which AQP4 plays inductive and counteractive roles, respectively,
with edematous fluid mainly coming from blood plasma (26, 27).
However, recently, researchers found that cerebrospinal fluid
immediately flowed towards the brain parenchyma through the
influx pathway of the glymphatic system after ischemic stroke, and
an absence of AQP4 reduced the cerebrospinal fluid influx
significantly (4, 28). Regardless, the traditional or newly-found
mechanism of edema both suggest that acute inhibition of AQP4
could reduce post-stroke edema at the early stage (29, 30).
However, perivascular AQP4 is essential for the dissipation of
vasogenic edema and the glymphatic clearance of Ab and tau (8,
9). The deficiency of AQP4 would cause the accumulation of water
and neurotoxic protein in the recovery stage of CNS injury (3, 31).
In this study, we further investigated the peri-infarct expression
patterns of AQP4 14 days after acute inhibition of AQP4. No
differences in AQP4 expression intensity were found between the
TGN-020 group and the control group, but AQP4 polarization of
the TGN-020 group was higher than that of the control group, in
other words, the perivascular AQP4 was increased in the TGN-020
group when compared with the control group. As is shown in our
study, swelling extent of the ipsilateral hemisphere has turned to
normal in both groups 14 days post stroke. These AQP4might not
contribute to water transmembrane diffusivity, but play roles in
neurotoxic waste elimination. Researchers found that toxic
molecules present in the area of liquefactive necrosis can leak
across the glial scar and were removed by the glymphatic system in
peri-infarct tissue (32). So, it can be inferred that the higher AQP4
polarization of the TGN-020 group is beneficial for glymphatic
clearance and neurological recovery.

For ischemic stroke and other multiple CNS diseases, peri-
infarct reactive astrogliosis is usually accompanied by loss of
BA

FIGURE 2 | TGN-020-treated rats showed improved neurological function. (A) Comparison of neurological scores between groups revealed fewer sensorimotor
deficits in the TGN-020 treated rats compared with those in the control rats. (B) Comparison of spatial working memory by spontaneous alternation in the Y maze
showed that the TGN-020 treated rats had better cognitive function than the control rats. ***P < 0.001.
May 2022 | Volume 13 | Article 870029
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AQP4 polarization in the same area (23, 33–35). Our experiment
showed that the polarization of AQP4 correlated negatively with
the astrogliosis area, indicating that the astrogliosis extent might
affect the polarization of AQP4. The close relationship between
astrogliosis and AQP4 polarization was also discovered in rodent
models of traumatic brain injury and multiple microinfarcts,
though needing further investigations to determine the
underlying mechanisms. Some researchers regard the loss of
AQP4 polarization as an important feature of reactive astrocytes
rather than a pathological consequence of endfeet damage (34,
36). We consider that the decreased astrogliosis after acute
inhibition of AQP4 might contribute to the preservation of
AQP4 polarization.

The reactive astrogliosis that occurs after ischemic stroke is
extremely complex and incompletely understood, playing both
detrimental and beneficial roles on neurological recovery (37–
39). Some studies found that reactive astrocyte was beneficial for
Frontiers in Immunology | www.frontiersin.org 6
vascular repair and axonal regrowth after CNS injury (40, 41),
while other studies revealed that reactive astrocyte could restrict
neural repair by expressing growth inhibitory factors and
forming glial scars (42). These contradictory roles of reactive
astrocytes may be due to different reactive phenotypes induced
by injury (43, 44). The reactive astrocytes in neuroinflammation
of ischemia could be classified into A1s and A2s, which exert
different functions (45, 46). The A1s exert the neurotoxic role
with classical complement cascade gene upregulation, while the
A2s upregulate many neurotrophic factors to promote neuronal
recovery (47, 48). Therapies aimed at enhancing pro-reparative
functions and reducing harmful functions in reactive astrocytes
may benefit the outcome of ischemic stroke (49).

In this study, acute inhibition of AQP4 reduced peri-infarct
astrogliosis and preserved AQP4 polarization, accompanied by a
decreased lesion volume and improved neurological function.
AQP4 is implicated in astrocyte migration and astrogliosis after
B C D E

A

FIGURE 3 | Peri-infarct astrogliosis and AQP4 expression patterns in the two groups of rats. (A) Immunostaining of GFAP (red) and AQP4 (green) in the peri-infarct
cortex and striatum in TGN-020- treated rats and control rats. White boxes in the first column indicate the ROIs used for GFAP and AQP4 analysis. The arrows show
AQP4 located in the perivascular region. Scale bars = 500 and 50 µm. (B–D) Comparisons of GFAP-positive area and AQP4 expression patterns in the peri-infarct
cortex and striatum between the two groups. (E) Correlations between peri-infarct AQP4 expression patterns and the extent of astrogliosis. ***P < 0.001.
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brain insult (50, 51), which was supported by the reduced peri-
infarct astrogliosis after inhibition of AQP4 observed in our study.
Moreover, we inferred that the reduced astrogliosis might
attenuate inflammation and promote neural rejuvenation by
reducing the number of neurotoxic A1s astrocytes, contributing
to peri-infarct tissue repair and functional outcomes. Reactive
astrocytes of different phenotypes exhibit double-edged effects on
pathological progression (49, 52, 53), our experiments and
substantive studies that demonstrated inhibiting reactive
astrogliosis facilitated neural rejuvenation and the long-term
functional outcome might be attributed to a decrease of the
neurotoxic A1s astrocytes (54–56). Besides, we speculated that
the preserved AQP4 polarization benefits the cognitive recovery of
TGN-020-treated rats by increasing the drainage of toxic
extracellular fluid in the core of the infarct. Perivascular AQP4
is a critical component of the brain glymphatic system (57, 58).
The loss of AQP4 polarization would impair the clearance
efficiency of the glymphatic system, resulting in toxic protein
deposition and the induction of cognitive deficits after stroke (59,
60). Therapeutic strategies that improved the AQP4 polarization
might be effective to enhance the glymphatic function and
contribute to the neurological recovery (61).

Deciphering changes in AQP4 are helpful to understand its
roles in the pathology of ischemic stroke; however, most
Frontiers in Immunology | www.frontiersin.org 7
analytical methods remain highly invasive or destructive.
According to the literature, aquaporin overexpression produces
contrast in DWI by increasing tissue water diffusivity (62).
ADCuh (b values > 2000 s/mm2) could reflect the expression
level of aquaporin by estimating water transmembrane diffusivity
(63). However, the relationship between ADCuh and aquaporin
expression patterns in different studies are controversial. Some
studies found that ADCuh correlated positively with the
aquaporins expression intensity in tumors (64, 65), however,
studies on ischemic stroke showed that ADCuh correlated
negatively with aquaporin expression intensity (66–68). In our
study, ADCuh correlated positively with the polarization of
AQP4 rather than its expression intensity. This was probably
the result of no adequate deviations among the AQP4 expression
intensity of rats in this study, which did not allow us to infer a
statistically significant correlation with ADCuh. Besides, the
polarization of AQP4 might be more consequential for the
functions of the protein than its expression intensity, as
implied by other studies (69, 70).

The present study had certain limitations. Firstly, the
inconsistency of lesion volumes before intervention between
groups was avoided to the greatest extent, however, it could
still not be excluded from the analysis. Longitudinal studies
including data before inhibiting AQP4 might be more
B

C

D

A

FIGURE 4 | Correspondence between ADC and AQP4 expression patterns. (A) Representative ADCst and ADCuh maps, and AQP4 staining patterns in TGN-020-
treated and control rats. (B) Anatomical reference showing the ROIs (red boxes) used to estimate the ADCuh in the peri-infarct striatum. (C) Comparison of ADCuh
in the peri-infarct striatum between the two groups. (D) Correlations between the peri-infarct AQP4 expression patterns and ADCuh. ***P < 0.001. Con, contralateral;
CTX, cortex; IPS, ipsilateral; STR, striatum.
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conclusive. Secondly, because higher b-value images lead to more
imaging artifacts, the correlations between ADCuh and AQP4
expression patterns were only analyzed in the peri-infarct
striatum, thus further studies should be carried out using MRI
machines with a higher performance. Thirdly, we didn’t use the
gene transcriptome analysis or key molecular markers
immunostaining to differentiate the specific changes of two
groups of reactive astrocytes after acute inhibition of AQP4,
which will be carried out in our further studies. Besides, we only
evaluate the role of AQP4 inhibition after ischemia onset,
without investigating the effect of AQP4 inhibition on
astrocyte and venules after recirculation, giving the TGN-020
along with the removal of filament in establishing the artery
occlusion stroke animal model may be helpful to answer that.

In conclusion, we found acutely inhibiting AQP4 with TGN-
020 not only decreased the edema at the early stage of ischemic
stroke but also reduced peri-infarct astrogliosis and AQP4
depolarization, promoting sensorimotor and cognitive recovery
at the subacute stage. This study extends the evaluation
timepoint of previous studies investigating the effect of TGN-
020 on ischemic stroke, providing further supportive evidence
that acute inhibition of AQP4 after stroke is a viable therapeutic
strategy. Furthermore, we revealed that AQP4 polarization
correlated negatively with astrogliosis in the peri-infarct area,
indicating therapies targeting astrogliosis might be effective to
preserve AQP4 polarization and promote neurological recovery
in ischemic stroke. And our results showed that ADCuh could
reflect the AQP4 expression patterns, it might be a useful tool to
decipher the AQP4 expression noninvasively.
Frontiers in Immunology | www.frontiersin.org 8
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