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Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 has become a global
health issue. The clinical presentation of COVID-19 is highly variable, ranging from
asymptomatic and mild disease to severe. However, the mechanisms for the high
mortality induced by SARS-CoV-2 infection are still not well understood. Recent studies
have indicated that the cytokine storm might play an essential role in the disease
progression in patients with COVID-19, which is characterized by the uncontrolled
release of cytokines and chemokines leading to acute respiratory distress syndrome
(ARDS), multi-organ failure, and even death. Cell death, especially, inflammatory cell
death, might be the initiation of a cytokine storm caused by SARS-CoV-2 infection. This
review summarizes the forms of cell death caused by SARS-CoV-2 in vivo or in vitro and
elaborates on the dedication of apoptosis, necroptosis, NETosis, pyroptosis of syncytia,
and even SARS-CoV-2 E proteins forming channel induced cell death, providing insights
into targets on the cell death pathway for the treatment of COVID-19.
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INTRODUCTION

Human coronaviruses (HCoVs) are known respiratory pathogens that could cause multiple
respiratory diseases, ranging from the common cold and bronchitis to serious pneumonia (1, 2).
Three of these viruses have been causing serious symptoms over the last years, including Severe
Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome Coronavirus (MERS), and
now SARS Coronavirus 2 (SARS-CoV-2), especially SARS-CoV-2, which is responsible for the
Coronavirus Disease 2019 (COVID-19) and has become a pandemic worldwide, causing millions of
deaths and massive property losses (3–7). SARS-CoV-2 is a single-stranded RNA virus; belongs to
the b-coronavirus; contains 29,903 nucleotides; encodes 16 non-structural proteins (NSP1–NSP16),
9 putative accessory factors, and 4 structural proteins, i.e., spike (S), envelope (E), membrane (M),
and nucleocapsid (N); and spreads via respiratory droplets or close contact, which triggers mild or
severe diseases (8–11) (Figure 1A). The main clinical symptoms of infected patients are cough,
fever, and tachypnea; a CT scan usually reveals multiple patchy shadows. Severe infection can cause
cytokine storms within the body, leading to multi-organ failure and even death (12–14). Cytokine
storm is a life-threatening systemic inflammatory response syndrome that can be induced by
pathogens, autoimmune disorders, or inflammatory cell death (15–18).

The autopsy of patients infected with SARS-CoV-2 is of great significance to truly understand the
pathological changes of COVID-19 (19–27). Gupta et al. have well-reviewed that SARS-CoV-2
org May 2022 | Volume 13 | Article 8702161
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infection caused various injuries ranging from substantial
respiratory to many extrapulmonary organs failure, including
thrombotic complications, myocardial dysfunction and
arrhythmia, acute coronary syndromes, acute kidney injury
(AKI), gastrointestinal symptoms, hepatocellular injury,
hyperglycemia and ketosis, neurologic illnesses, ocular symptoms,
and dermatologic complications (28). Here, we mainly
summarized how the different types of cell death caused by
SARS-CoV-2 infection contribute to the organic failure directly,
or indirectly, and discussed the therapy targets on the cell death
signaling transduction molecules for treatment for COVID-19.
MULTIPLE CELL DEATH PATHWAYS
WERE INDUCED IN SARS-COV-2
INFECTION

The cytopathic effect of cell death caused by the virus invading
the host cells is a common result after the infection (29). Cell
death in some instances can inhibit viral replication, but in more
cases, it can enhance viral dissemination and affect the
physiology of cells, leading to tissue and organ damage (30).
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The replication of coronaviruses in cells is regulated by many
host factors, which can induce drastic structural and
physiological changes in cells (2). During infection, SARS-
CoV-2 could induce diverse cell death pathways (31, 32), such
as apoptosis, necroptosis, pyroptosis, and NETosis in the host
cells (Figure 1B).

Apoptosis is a major type of programmed cell death,
morphologically characterized by cellular shrinkage, nuclear
condensation, chromosomal DNA fragmentation, cytosolic
membrane blebbing, and apoptotic body formation. It is
triggered by the extrinsic (death receptor pathway) pathway, or
the intrinsic (mitochondrial pathway) pathway, involving a
group of cysteinyl aspartate proteases (caspases) cleavage
(activation) (33–37).

SARS-CoV-2 infection can induce apoptosis via a variety of
signaling pathways. It has been reported that the accessory
protein ORF3a of SARS-CoV-1 caused cell death, vesicle
formation, and Golgi fragmentation in VERO cells (38). To
survey whether SARS-CoV-2 ORF3a can induce apoptosis, Ren
and colleagues (39) overexpressed SARS-CoV-2 ORF3a in
cultured HEK293T, HepG2, and VERO E6 cells; then stained
the cells by annexin V-fluorescein 5-isothiocyanate (FITC)/
propidium iodide (PI); and analyzed the apoptotic cells by flow
A

B

C

FIGURE 1 | The schematic of SARS-CoV-2-induced cell death. (A) The SARS-CoV-2 virus particle and genome. The genome is a single-stranded RNA genome of which
the full length is 29,903 bp. It includes ORF1a and ORF1b, which encode the 16 non-structural proteins, 9 accessory factors, and 4 structural proteins: spike protein (S),
envelope protein (E), mbrane protein (M), and nucleocapsid protein (N). (B) SARS-CoV-2 induces various cellular stress: apoptosis, triggered by the extrinsic pathway (death
receptor pathway), or the intrinsic pathway (mitochondrial pathway), involving the caspase cleavage. SARS-CoV-2 ORF3a caused apoptosis via the caspase-8/Bid extrinsic
pathway; ORF7b can activate TNFa-induced apoptosis. Membrane (M) protein with nucleocapsid (N) protein via interacting with PDK1 and inhibiting the activation of PDK1-
PKB/Akt signaling to trigger caspase-dependent apoptosis. Another structural protein spike of SARS-CoV-2 also induced autophagy and apoptosis by ROS-suppressed
PI3K/AKT/mTOR signaling; necroptosis, mediated by RIPK1/RIPK3/MLKL. MLKL can be recruited by the autophosphorylated RIPK3 and subsequently phosphorylated by
RIPK3 of human MLKL. Phosphorylated MLKL will form an MLKL pore, resulting in necroptosis. Nsp12 interacted with RIPK1 and activated it; NLRP3 inflammasome,
consisting of NLRP3, ASC, and caspase-1, activated by N protein of SARS-CoV-2 interacted directly with NLRP3; SARS-CoV-2 E proteins form cation channels to trigger
cell death independent of MLKL and gasdermins; NETosis, triggered by neutrophils and formed neutrophil extracellular traps (NETs) to release of chromatin structures
containing myeloperoxidase and antimicrobial proteins to neutralize intruders. MPO, myeloperoxidase; NE, Neutrophil Elastase. Ferroptosis, triggered by iron accumulation
and overload, or reactive oxygen species (ROS). (C) Pyroptosis, mediated by the gasdermin (GSDM) protein family. The N-terminal fragments of GSDM protein could induce
the formation of membrane pores. SARS-CoV-2 S induces cell–cell fusion and syncytia formation driving caspase-9/GSDME-mediated syncytia pyroptosis.
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cytometry. They found that SARS-CoV-2 ORF3a caused
apoptosis via the caspase-8/Bid extrinsic pathway, which can
be restored by z-VAD-fmk, a pan-caspase inhibitor. Importantly,
SARS-CoV-2 ORF3a showed weaker proapoptotic activity than
SARS-CoV-1 ORF3a in cultured cells, which might lead the virus
to spread more widely. Consistently, two more groups
demonstrated that SARS-CoV-2 ORF3a inhibited autophagic
flux by blocking the fusion of autophagosomes/amphisomes
with lysosomes, causing lysosomal destruction, which allowed
the virus to escape the degradation by lysosomal (40, 41). These
studies facilitated strategies targeting SARS-CoV-2 ORF3a or
autophagic pathway for conferring potential protection against
the spread of SARS-CoV-2. In support of this concept, a study by
Gassen and colleagues demonstrated that targeting autophagic
pathways on the polyamine pathway, and the control of BECN1
abundance through AKT1/SKP2 signaling by exogenous
administration of spermidine and spermine, the selective
AKT1 inhibitor MK-2206, and the BECN1-stabilizing
anthelmintic drug niclosamide inhibited SARS-CoV-2
propagation in vitro and in vivo (42). Thus, both MK-2206
and niclosamide might be promising candidates for clinical trials.

ORF7b is another accessory protein of SARS-CoV-2, which
can induce the transcription of IFN-b, TNF-a, and IL-6,
activating type-I IFN signaling through IRF3 phosphorylation
and activating TNFa-induced apoptosis in HEK293T cells and
VERO E6 cells (43).

The membrane glycoprotein M of SARS-CoV-2 could trigger
caspase-dependent apoptosis with the assistance of the
nucleocapsid (N) protein via interacting with PDK1 and
inhibiting the activation of PDK1-PKB/Akt signaling.
Disruption of the M–N interaction by certain rationally
designed peptides, abolished M-induced apoptosis, shedding
light on a new aspect of drug designs on M–N interaction to
prevent SARS-CoV-2 infection, which caused apoptosis (44).

Another structural protein spike of SARS-CoV-2 also induced
autophagy and apoptosis in human bronchial epithelial and
microvascular endothelial cells by reactive oxygen species
(ROS)-suppressed PI3K/AKT/mTOR signaling, which then led
to inflammatory responses, raising important implications for
developing anti-inflammatory therapies, such as ROS and
autophagy inhibitors, for COVID-19 patients (45).

In addition, a clinical report showed that a total of 17 of the 18
patients who died of COVID-19 suffered from lymphocytopenia,
which is the main feature of severe COVID-19 disease (46).
TUNEL staining showed that spleens and hilar lymph nodes
(LNs) exhibited many lymphocyte apoptosis processes, which
were caused by SARS-CoV-2 promoting Fas-mediated apoptosis
of T and B lymphocytes.

Further, elevated serum levels of creatinine, tubular necrosis,
and renal inflammation were observed in critically ill COVID-19
patients, consistent with AKI symptoms (47–49). To identify and
uncover mechanisms specifically related to a SARS-CoV-2
protein that can induce cell death in AKI after SARS-CoV-2
infection, the SARS-CoV-2 nucleocapsid (N) structural protein-
expressing plasmid was delivered into the normal mouse kidneys
using a well-established non-invasive ultrasound-microbubble
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technique, which can induce AKI and exacerbate AKI under
ischemic stress conditions. The mechanism lies in SARS-CoV-2
N interacting with Smad3 and enhances TGF-b/Smad3 signaling
to arrest the G1 cell cycle leading to renal tubular epithelial cell
apoptosis as labeled by TUNEL-positive cells. Moreover, both
deletion of Smad3 and treatment with SIS3, the inhibitor of
Smad3, can restore the SARS-CoV-2 N-induced AKI, which
indicated that targeting Smad3 may represent a novel therapy for
COVID-19-associated AKI (50).

Although we have summarized the apoptosis caused via
different mechanisms induced by SARS-CoV-2, the underlying
mechanisms of the massive inflammatory responses triggered by
SARS-CoV-2 are largely limited. In contrast to necrosis,
apoptosis is a form of clear cell death because the apoptotic
bodies can be cleared through the phagocytic pathway by
neighboring cells, without the release of cellular contents (51).
We wonder whether inflammatory cell death occurred during
SARS-CoV-2 infection. Indeed, analysis of the postmortem lung
sections of fatal COVID-19 patients revealed that not only
apoptosis but also necroptosis occurred in the lung, and the
necrotic cell debris promoted massive inflammatory cell
infiltration leading to lung damage in COVID-19 patients (52).

Necroptosis is an inflammatory type of programmed cell
death mediated by RIPK1/RIPK3/MLKL. The occurrence of
programmed necrosis could induce a series of morphological
alterations in cells: with slight changes in the ultrastructure of the
nucleus (especially the expansion of the nuclear membrane and
the formation of small, irregular, and circumscribed patches by
chromatin condensation), with increasing lucent cytoplasm and
swelling organelles, the increased permeability of the cell
membrane causes the cell to grow in size, resulting in the cell
rupturing and the outflow of intracellular contents and
provoking the inflammatory response of the surrounding
tissues (53, 54). Mixed-lineage kinase domain-like (MLKL) is
the main effector protein in necroptosis, which contains an N-
terminal coiled-coil domain and a C-terminal kinase-like
domain. MLKL can be recruited by the autophosphorylated
RIPK3 and subsequently phosphorylated by RIPK3 at the
threonine 357 and serine 358 residues of human MLKL (serine
at positions 345, 347, and 352 and threonine at position 349 for
mouse MLKL) (55–57). Phosphorylated MLKL will oligomerize
and traffic to the plasma membrane, forming an MLKL pore,
resulting in necroptosis (58).

As an important mediator of inflammation and cell death,
RIPK1 can mediate the activation of caspase-8 to promote
apoptosis or promote necroptosis by activating RIPK3 and
MLKL (59–62). Based on some evidence of RIPK1 activation
found in COVID-19 (63–65), Xu et al. used the lung pathological
samples of COVID-19 patients and cultured human lung
organoids and ACE2 transgenic mice infected by SARS-CoV-2
to explore the role of RIPK1 in SARS-CoV-2 infection. Although
autopsy detection revealed that the expression of its downstream
signaling molecule RIPK3 was found to be very low, and
phosphorylated RIPK3 and MLKL were also undetectable, they
found that the RNA-dependent RNA polymerase of SARS-CoV-
2, NSP12, directly interacted with RIPK1 to promote its
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhu et al. SARS-CoV-2 Infection-Induced Cell Death
activation, resulting in the transcriptional induction of
proinflammatory cytokines and host factors including ACE2
and EGFR, which promote viral entry into cells (66). As
multiple RIPK1 inhibitors (Nec-1s, GSK′481/GSK′772, etc.)
have been advanced beyond Phase I safety studies in human
clinical trials (67, 68), the authors suggested that the RIPK1
kinase inhibitors may provide effective therapy for severe
COVID-19.

During SARS-CoV-2 infection, the inhibitor of necroptosis
did not completely block IL-1b secretion, suggesting that there
may be other pathways involved in the inflammatory responses
such as pyroptosis (52).

Pyroptosis is a lytic and inflammatory type of programmed
cell death, which is characterized by the swelling of cells, forming
a big balloon on the plasma membrane, destructing the cell
plasma membrane, releasing the cellular contents, and causing
lysis of cells (69, 70). This type of cell death is mediated by the
gasdermin (GSDM) protein family (71), which is activated and
cleaved by caspase protein or other proteases (72–79). The N-
terminal fragments of GSDM protein could induce the formation
of membrane pores, disrupting the cell membrane and causing
eventual lysis (80, 81).

The participation of the inflammasome in COVID-19 has
been highly speculated as to its main contribution to excessive
inflammatory responses upon SARS-CoV-2 infection (82, 83).
The NLRP3 inflammasome, consisting of NLRP3, ASC, and
caspase-1, is activated in response to SARS-CoV-2 infection
and is active in COVID-19 patients, which is associated with
the clinical outcome of the disease (84). Furthermore, Pan and
colleagues found that the N protein of SARS-CoV-2 interacted
directly with NLRP3, promoted the recruitment of ASC, and
facilitated NLRP3 inflammasome assembly, which resulted in the
maturation of proinflammatory cytokines and triggered
proinflammatory responses in cultured HEK293T or A549
cells. Notably, treatment with MCC950 (a specific inhibitor of
NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1) or
genetic deletion of Nlrp3 inhibited N protein-induced lung
injury and cytokine production (85). However, in cultured
Calu-3 cells, the inhibitors of caspase-1 and NLRP3 had no
effects on the production of IL-1b induced by SARS-CoV-2
infection but blocks caspase-8 using the inhibitor, or siRNA
knockdown decreased the production and secretion of IL-1b
(52). In this scenario, it is important to further determine specific
mechanisms by which SARS-CoV-2 triggers the inflammasome
activation and investigate which specific inflammasome
platforms are activated during the disease for effective
therapeutic strategies to target COVID-19.

NETosis, a form of regulated neutrophil death, is characterized
by the formation and release of neutrophil extracellular traps
(NETs), which are networks of myriad pathogen-associated
molecular patterns (PAMPs), consisting of extracellular fibers
composed of DNA containing histones and granule-derived
enzymes (such as lactoferrin, cathepsins, neutrophil elastase (NE),
and myeloperoxidase (MPO)), as well as cytoplasmic and
cytoskeletal proteins. In addition to the NADPH oxidase (NOX)/
ROS-, peptidylarginine deiminase 4 (PADI4)-, and NE-dependent
Frontiers in Immunology | www.frontiersin.org 4
pathways on the activation of NETosis, RIPK3/MLKL-mediated
necroptosis and GSDMD-driven pyroptosis linked the excessive
inflammatory response to NETosis (86–89). Emerging evidence
from the clinic severe cases of COVID-19 implicated that
NETosis and NET formation/release played a central role in
the pathophysiology of inflammation, coagulopathy,
immunothrombosis, and even organ damage during SARS-CoV-
2 infection (90–94). With the growing roles of NETosis and NETs
in COVID-19 reported, targeting dysregulated NETosis and NET
formation/release is a new aspect of severe COVID-19 treatment.
NETosis inhibitors (fostamatinib targeting SYK, etc.), or NET
degraders (GSK 484 targeting PAD 4, Dornase alfa degrading
cfDNA) were used in preclinical or clinical development as anti-
COVID-19 drugs, which was well-summarized by other groups (93,
95–97). Here, we emphasized the Food and Drug Administration
(FDA)-approved alcoholism-averting drug, disulfiram, which was
identified as an inhibitor of GSDMD pore formation by covalently
modifying human/mouse Cys191/Cys192 in GSDMD and
preventing IL-1b release and pyroptosis (98). Although the
linkage of GSDMD-mediated pyroptosis with NETosis has been
reported (99, 100), Egeblad and colleagues recently found that
treatment with disulfiram reduced NET formation, as well as lung
inflammation and perivascular fibrosis in a golden hamster SARS-
CoV-2 infection model via downregulated innate immune and
complement/coagulation pathways (101).
SARS-COV-2 S INDUCED CELL–CELL
FUSION AND SYNCYTIA DEATH

Cell fusion between eukaryotic cells is a common phenomenon,
caused by various pathogens, including bacteria, parasites, and
viruses, which involves a broad range of physiological and
pathological processes (102). The virus-mediated cell–cell
fusion will lead to the fusion of cell membrane and
cytoplasmic contents between cells, forming the multinucleated
giant cells, also known as syncytia. SARS-CoV-2 infection can
induce cell–cell fusion and syncytia formation, which has been
widely confirmed in the lungs and other tissues of infected
patients (103–105), or in vitro cell culture systems (106–108),
which was well-summarized by Schwartz and colleagues (109).
Syncytia formation was mediated by cell–cell fusion occurring
between the surfaces of cell membranes. Within the syncytia,
cellular contents from different cells mixed and interacted,
triggering various cellular responses. We aimed to discuss the
fate determination of syncytia and its role in COVID-19
progress, providing insights into targeting syncytia death on
COVID-19 treatment.

Recent works reported that both DNA damage response and
cGAS-STING signaling pathway were activated upon cell–cell
fusion, which was important for host antiviral responses (110,
111). Furthermore, Zhang and colleagues demonstrated that the
multinucleate syncytia formed by SARS-CoV-2 infection could
internalize multiple lines of lymphocytes to form typical cell-in-
cell structures, remarkably leading to the death of internalized cells
(112). Moreover, we found that syncytia formed by HeLa–spike
May 2022 | Volume 13 | Article 870216
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cell fusion with HeLa-ACE2 cells died in parallel with the
increased activity of caspase-3/7/9 and the cleavage of GSDME
(108). Interestingly, the deletion of caspase-9 not only blocked the
cleavage of GSDME and cell death but also abolished the S2′
fragment of SARS-CoV-2-S-Flag induced by cell–cell fusion,
indicating a linkage between caspase-9 and SARS-CoV-2 S
protein cleavage. Thus, targeting caspase-9 might be a promising
strategy to prevent syncytia cell death (Figure 1C). To extend the
pathophysiological role of this caspase-9/GSDME-mediated
syncytia pyroptosis, single-cell RNA-sequencing (scRNA-Seq)
data from eight normal human lung transplant donors with a
total of 42,225 cells were analyzed, showing that both ACE2 and
GSDME were expressed in AT2 cells in the human lung. Finally,
we proposed that this lytic pyroptosis of syncytia may contribute
to the excessive inflammatory responses in severe COVID-19
patients. In line with this idea, treatment with caspase-9 selective
inhibitor, z-LEHD-fmk, markedly reduced SARS-CoV-2-induced
lung damage in K18-hACE2 transgenic mouse model, which was
evidenced by the reduced hemorrhage and inflammatory cell
infiltration, as well as the alleviated proinflammatory response in
the lung (113), while the authors demonstrated that this effect was
due to intrinsic apoptosis inhibition by z-LEHD-fmk. Whether
apoptosis switched to pyroptosis needs further investigation.
SARS-COV-2 E PROTEINS FORM
CATION CHANNELS TO TRIGGER
CELL DEATH

Interestingly, consistent with the executors of pyroptosis (GSDMs)
or necroptosis (p-MLKL) destroying the membrane integrity by
forming either pores or channels, the envelope (E) protein, another
structural protein of SARS-CoV-2, can form a cation channel to
induce rapid cell death in myriad susceptible cell types and robust
secretion of cytokines and chemokines in macrophages resulting in
acute respiratory distress syndrome (ARDS)-like damages in vitro
and in vivo (Figure 1B). Using a planar lipid bilayer recording
system, the authors found that BE-12 (berbamine), a type of
bisbenzylisoquinoline alkaloid, might be a candidate inhibitor for
2-E channels. Furthermore, to improve the antiviral activity, four
more channel inhibitors (BE-30~33) were designed and synthesized
based on BE-12. Finally, a new class of 2-E channel inhibitor BE-33
was identified, which exhibited not only high efficiency for antiviral
activity both in vitro and in vivo but also negligible cytotoxicity,
raising a promising antiviral strategy targeting 2-E channel (114).
To discover SARS-CoV-2-E channel inhibitors, Wang and
coworkers developed a cell-based high-throughput screening
(HTS) assay and screened 4,376 compounds. Proanthocyanidins,
a natural product widely used in cosmetics, were identified (115).
DISCUSSION AND PERSPECTIVES

The abovementioned different types of cell death induced by
SARS-CoV-2 infection have been demonstrated in all kinds of
Frontiers in Immunology | www.frontiersin.org 5
cells including epithelial cells, macrophages, and neutrophils. It
was reported that ACE2-mediated SARS-CoV-2 spike infection
could induce inflammatory responses and apoptosis of
human bronchial epithelial and microvascular endothelial
cells via enhancing autophagy, which might result in
organ dysfunction (45). It was also found that SARS-CoV-2
N protein-mediated AKI may be caused by tubular epithelial
cell apoptosis through the TGF/Smad3 signaling-dependent G1
cell cycle arrest (50). Using gene expression profiling, Jha et al.
revealed that the apoptosis signaling pathway was activated in
SARS-CoV-2-infected human lung epithelial cells, which may
lead to cardiovascular complications of COVID-19 (116). A
recent study showed that the non-structural protein 6 (NSP6)
of SARS-CoV-2 could induce NLRP3-dependent pyroptosis in
lung epithelial cells via binding to the vacuolar ATPase proton
pump component ATP6AP1, while pharmacological
rectification of autophagic flux by 1a,25-dihydroxyvitamin
D3, metformin, or polydatin could be a novel therapeutic
strategy to reduce pyroptosis in lung epithelial cells and
improve clinical outcomes of COVID-19 (117). T- and B-
lymphocyte apoptosis was also observed after SARS-CoV-2
infection, which may be the cause of lymphopenia, a
common symptom in severe COVID-19 patients (46, 118).
Aside from apoptosis, SARS-CoV-2-induced lymphocyte loss
may also be due to cell–cell fusion-mediated syncytia death,
which could be a potential therapeutic target for antiviral
therapy in patients with COVID-19 (112). It was found that
apoptotic markers were increased in plasmacytoid dendritic
cells (pDCs), a cell type that is specialized in antiviral immunity
to produce abundant type I interferons (IFNs). Hence, the
diminished pDCs in COVID-19 patients may be associated
with increased cell apoptosis (119). Ongoing pyroptosis was
also found in circulating monocytes from COVID-19 patients
with increased caspase-1 activation and lytic death (120, 121).
Abundant cleared caspase-3 positive macrophages have been
found in the lungs of patients with COVID-19, indicating that
apoptosis may mediate the death of macrophages in COVID-19
lung tissues (66). Furthermore, SARS-CoV-2 spike infection
can upregulate caspase-3 and caspase-6 expression to induce
apoptosis in THP-1-like macrophages, which is likely mediated
by the increase of ROS and intracellular calcium release (122).
The pathological investigation of a clinical study demonstrated
that SARS-CoV-2 infection caused severe lung injury via cell
pyroptosis in pneumocytes and apoptosis in endothelial cells
(123). Additionally, SARS-CoV-2 infection-induced apoptosis
of endothelial cells may also lead to endotheliitis in various
tissues including the lung, heart, kidney, and liver (124).
Moreover, SARS-CoV-2 can promote NET formation in
neutrophils under a process called NETosis, a form of
neutrophil death, leading to multi-organ damage during the
pathogenesis of COVID-19. Indeed, increased concentration of
NETs has been detected in circulating and lung-infiltrating
neutrophils from COVID-19 patients. Mechanistically, SARS-
CoV-2-induced release of NETs might be mediated by ACE2,
serine protease, virus replication, and PAD-4 (92, 125).
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SARS-CoV-2 infection can cause severe respiratory tract
disease and lung injury and threaten human life, while there is
still no special prevention or treatment at present. When the
virus infects cells, many factors are involved in the pathogenesis
of the host disease, leading to human death. In this review, we
focused on the multiple types of cell death such as apoptosis,
necroptosis, pyroptosis, NETosis, and other undefined death
triggered by SARS-CoV-2 infection in vivo or in vitro; then we
discussed the relationship between inflammatory cell death and
cytokine storm, raising the possibility for targeting cell death
pathway for the treatment of COVID-19 (Figure 2). Among
these, we highlighted some potential compounds or drugs
targeting the molecules of cell death pathway, such as RIPK1
(66), caspase-9 (108), Smad (50), SARS-CoV-2 Orf3a (39–41),
and E protein (114). What is more, iron metabolism
dysfunction has also been found in COVID-19 patients; for
example, the serum ferritin levels were higher in severe
COVID-19 patients than in mild cases, which may cause iron
accumulation and overload, which trigger ferroptosis (126).
Yang and Lai hypothesized that ferroptosis might serve as a
new treatment target, and the improved ferrostatin-1 and
liproxstatin-1 analogs might be potential drug candidates for
COVID-19 (127). Interestingly, disulfiram, an alcoholism-
averting drug approved by the FDA, was recommended to be
Frontiers in Immunology | www.frontiersin.org 6
a potential therapeutic target for SARS-CoV-2 infection in
Phase 2 clinical trials by targeting SARS-CoV-2 main
protease, 3CLpro (128–130). However, it has been identified
that disulfiram is covalently targeted on human/mouse Cys191/
Cys192 of GSDMD protein leading to blocking the GSDMD
pore formation, IL-1b release, and pyroptosis (98).
Furthermore, another study showed that disulfiram can
inhibit the NET formation and protect rodents from SARS-
CoV-2 infection (101). All these raise a common point that one
drug/compound might target various proteins even on multiple
signaling pathways to either synergically exert effects or trigger
off-target toxicities. Therefore, we need to deeply explore the
cell types of death caused by SARS-CoV-2 infection, reveal the
molecular mechanism of cell death, and accurately regulate cell
death by using specific pharmacological therapies to reduce the
occurrence and prognosis of COVID-19.

Nevertheless, the impact of the damaged or dead cells on the
injured tissues and organs is still not well understood.
Furthermore, whether cytokines released by cell death
participate in cytokine storms has not been well described yet.
However, research on the mechanism of SARS-CoV-2
infection-induced cell death may provide additional
perspectives for antiviral therapies and the development of
anti-SARS-CoV-2 drugs.
FIGURE 2 | Potential compounds or drugs that targeted different cell death pathways. The potential therapeutics of drugs or compounds to inhibit cell death, including
the use of z-VAD-fmk, a pan-caspase inhibitor, to reduce the caspase activity and block the apoptosis induced by SARS-CoV-2 ORF3a, and the use of RIPK1 inhibitors
(Nec-1s, GSK′481/GSK′772, etc.), as well as using peptides such as NP1-NP6 and MP3 to disrupt the M–N interaction, and abolish the activity of N on the M-triggered
apoptosis. In addition, a specific inhibitor of NLRP3 called MCC950 and an inhibitor of caspase-1 named Ac-YVAD-cmk can block NLRP3 inflammasome activation
induced by SARS-CoV-2 N protein. Interestingly, disulfiram was revealed as an inhibitor of GSDMD that can effectively block pyroptosis and NET formation. BE-30~33
and proanthocyanidins could inhibit 2-E channel activity as channel inhibitors. Autophagy could be regulated using various treatments, such as the ROS inhibitor
MHY1485, the AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug/SKP2 inhibitor, niclosamide. Ferroptosis inhibitors including ferrostatin-1 and
liproxstatin-1 might also be potential drug candidates for COVID-19. Further, z-LEHD-fmk, the caspase-9 selective inhibitor could suppress syncytium formation. SIS3,
Smad3 pharmacological inhibitor, can inhibit SARS-CoV-2 N-induced AKI. The compounds or drugs are marked in bold and red.
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