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Transient receptor potential vanilloid1 (TRPV1) was primarily expressed in sensory
neurons, and could be activated by various physical and chemical factors, resulting in
the flow of extracellular Ca2+ into cells. Accumulating data suggest that the TRPV1 is
expressed in some immune cells and is a novel regulator of the immune system. In this
review, we highlight the structure and biological features of TRPV1 channel. We also
summarize recent findings on its role in modulating T cell activation and differentiation as
well as its protective effect in T cell-mediated inflammatory diseases and
potential mechanisms.
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INTRODUCTION

Transient receptor potential (TRP) is a large superfamily of nonselective cation channels comprising
of 28 members mainly located on the cell membrane. The TRP superfamily can be divided into
TRPC (Canonical/Classical), TRPV (Vanilloid) and TRPM (Melastatin) sub-families (1). TRPV
sub-families can be activated by vanillic acid compounds consisting of TRPV 1-6 (2). In 1997,
TRPV1 was identified as a receptor of capsaicin, the main pungent component in “hot” chilli pepper
(3). Over the past few decades, TRPV1 has been widely studied in the nervous system. In the
peripheral nervous system, TRPV1 channel was found to be highly expressed in the spinal dorsal
root ganglion neurons, the trigeminal ganglion and primary sensory neurons, which mainly mediate
pain perception, transmission and regulation process. In the central nervous system, the TRPV
channel was mainly involved in the regulation of body temperature, release of synaptic
neurotransmitters, synaptic transmission and apoptosis (4). In addition, recent studies have
revealed that TRPV1 was widely expressed in non-neuronal cell membranes of the kidney,
pancreas, testes, uterus, spleen, stomach, small intestine, lung and liver mucous gland (2).
Besides, the TRPV1 channel has been shown to play an important role in the immune system.

In this review, we discuss the structure and biological characteristics of the TRPV1 channel and
highlight ecent findings on the roles of the TRPV1 channel in controlling T cell activation and
differentiation. We also discuss the protective functions of the TRPV1 in T cell-mediated
inflammatory diseases and the underlying potential mechanisms.
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THE STRUCTURE AND BIOLOGICAL
CHARACTERISTICS OF THE
TRPV1 CHANNEL

TRPV1 channel is a coding protein with a molecular weight of 95
kDa, composed of 838 amino acids. Sequence analysis data has
shown that the TRPV1 channel is a homologous tetramer
composed of four subunits, each of which has six-transmembrane
domains with a pore-forming hydrophobic group between the fifth
and sixth transmembrane domains (5). Its N-terminal and C-
terminal regions are located in the inner side of the cell
membrane to regulate the receptor functions. The N-terminal
contains several phosphorylation sites and six ankyrin repeat
domains, which bind calmodulin and ATP and modulate the
sensitivity and functions of the TRPV1 (6, 7). On the other hand,
the C-terminal bears a TRP domain, multiple calmodulin binding
domains and endogenous substance binding sites, such as
phosphatidyl-inositol-4,5-bisphosphate (PIP2) (8, 9) (Figure 1).

The TRPV1 is a multimodal receptor, which is activated and/
or allosterically modulated by a range of thermal, mechanical
and chemical stimuli (11). Besides capsaicin, TRPV1 channel is
also activated by a variety of other plant-derived vanilloids,
including camphor and resiniferatoxin (RTX), and putative
endogenous vanilloids such as the endocannabinoid,
inflammatory mediators such as arachidonic acid (12, 13). The
thermal sensitivity of the TRPV1 was shown to be enhanced by
various pro-inflammatory factors, such as nerve growth factor
(NGF), bradykinin, lipid, prostaglandin and ATP (14). Although
many studies have evaluated the role of PIP2 in the activation of
TRPV1, the data still remains controversial. For instance, Yao
et al. demonstrated that PIP2 could fuel the activation of TRPV1
(15, 16), while other studies reported that PIP2 inhibited the
TRPV1 activation (17, 18). Since the membrane is a highly
asymmetric lipid bilayer, the contradictory effects of PIP2 on
Frontiers in Immunology | www.frontiersin.org 2
the TRPV1 may be depending on which leaflet of the cell
membrane it interacts with. Insertion of the PIP2 into the
inner leaflet of the plasma membrane enhanced the response
of capsaicin in activating the TRPV1, while insertion into both
leaflets suppressed the channel activation (19). Other activators
of the TRPV1 channel include heat (>43 °C), low pH (< 5.4),
static charge and voltage change (13). It has been demonstrated
that TRPV1 is intrinsically heat sensitive (18), and temperature
sensing is associated with voltage-dependent gating in the heat-
sensitive channel TRPV1 (20).

After the TRPV1 activation, extracellular Ca2+ flows into the
cells, and the intracellular the Ca2+ pool releases, resulting in
increased concentration of intracellular Ca2+ (21). This increased
intracellular Ca2+ mediates the basic activities of many cells, such
as muscle contraction, neuronal activity, transmitter release, cell
proliferation and apoptosis. In addition, activated TRPV1 can
regulate body temperature and pain (22, 23).
THE ROLE OF THE TRPV1 CHANNEL IN T
CELL RESPONSES

Functional Expression and TCR-Mediated
Activation of TRPV1 in CD4+ T Cells
Some previous studies analyzed the expression of TRPV1 mRNA
and protein in human peripheral blood mononuclear cells
(PBMC) (24), and found that they were expressed in mouse
and rat thymocytes (25, 26). Thereafter, other studies
demonstrated the expression of TRPV1 on human NK and
CD3+ T cells (27, 28), as well as in primary mouse and human
T cells and human T cell line (Jurkat cells) (24, 28–32). Thus, the
TRPV1 channel might play a pivotal role in T cells.

The activation and function of TRPV1 could be modulated by
TCR-induced signaling pathway. In resting and TCR-stimulated
FIGURE 1 | The structure of the TRPV1 channel. TRPV1 channel is a homologous tetramer composed of four subunits, with six-transmembrane domains and a
pore-forming hydrophobic group between the fifth and sixth transmembrane domains. The N-terminal contains several phosphorylation sites and six ankyrin repeat
domains. The C-terminal has a TRP domain, multiple calmodulin blinding domains and binding sites of endogenous substance. PKA, Protein kinase A (10).
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CD4+ T cells, TRPV1 binds TCR co-receptor CD4 and Src-
family tyrosine kinase Lck (33). The tyrosine of TRPV1 was
rapidly phosphorylated by Lck in response to TCR stimulation
leading to inactivation of TRPV1, which was not modified in
Lck-deficient T cells (33). In addition, PIP2 in the intracellular
leaflet of the plasma membrane was shown to activate TRPV1. In
contrast, PIP2 located in both leaflets suppressed the activation of
the TRPV1 (19). PIP2 was hydrolyzed into diacylglycerol (DAG)
and inositol 1,4,5-trisphosphate (IP3) by TCR-induced activated
phospholipase C gamma 1 (PLC-g1) (33). The hydrolysis of PIP2
relieved the PIP2-mediated inhibition of the TRPV1 (16).
Besides, IP3 binds to its receptor (IP3R) on endoplasmic
reticulum (ER), contributing to the release of Ca2+ from the
intracellular Ca2+ pool (33) (Figure 2).

The TCR Signals and TRPV1 Increase Ca2+

in CD4+ T Cells
The elevation of intracellular Ca2+ is required for T cell activation,
proliferation, differentiation and effector functions (34). The
engagement of TCR increases the intracellular Ca2+ concentration,
which results from a dual Ca2+ response; Ca2+ release from the ER
stores and Ca2+ influx from the extracellular milieu into the cytosol
across the plasmamembrane (34). This in turn leads to activation of
downstream Ca2+-dependent signaling pathways and nuclear
translocation of key transcription factors, which include nuclear
factors of activatedT-cells (NFAT) andnuclear factor kappabinding
(NF-kB) (35). These activities account for T cell responses such as
production of various cytokines, as well as proliferation and
differentiation into effector cells.

TRPV1 functions as Ca2+-permeable channels on the T cell
plasma membrane. For instance, a previous study showed that
Capsaicin, a special TRPV1 channel agonist, increased Ca2+
Frontiers in Immunology | www.frontiersin.org 3
influx and intracellular Ca2+ concentration in activated CD4+

T cells, but did not affect resting T cells (36, 37). TRPA1 inhibited
the TRPV1 channel activity while deletion of TRPA1 in CD4+ T
cells increased T-cell receptor-induced Ca2+ influx (38). Besides,
TRPV1 protein deficiency in CD4+ T cells reduced activation of
NFAT and NF-kB in response to TCR stimulation and decreased
secretion of IL-2 and IFN-g (31). Moreover, TRPV1 increased
Ca2+ influx upon stimulation of phytohemagglutinin (PHA)
(39). On the contrary, TRPV1-mediated Ca2+ influx was not
influenced by ionomycin (a Ca2+ ionophore) and thapsigargin
(a sarcoplasmic reticulum Ca2+-ATPase pump inhibitor), which
is known to mediate TCR-independent Ca2+ activation (31).
These studies demonstrated that TRPV1 is a non-store-operated
Ca2+ channel which modulates TCR-induced Ca2+ influx in T
cells (31) (Figure 2).

TRPV1 not only promotes T cell activation, but induces T cell
death. Previous studies demonstrated that apoptosis of human
peripheral T and Jurkat cells were induced in response to
exposure to prolonged and high capsaicin concentration (25,
37). Besides, capsaicin-induced apoptosis was associated with
intracellular free Ca2+ influx (37). In addition, treatment of
thymocytes with capsaicin induced autophagy through ROS-
regulated AMPK and Atg4C pathways (26). However, the ROS
generation was not associated with Ca2+ signaling (37).

Temperature Changes Determine the Fate
of CD4+ T Cells via TRPV1
Similar to free Ca2+, temperature changes have been shown to
activate the immune system (40). Fever is a physiological
response to infections, injuries and inflammation. Fever-range
temperatures (1°C∼4°C above basal body temperature) are
rapidly induced in response to an infection, which in turn
FIGURE 2 | The TCR signals and TRPV1-mediated increase in Ca2+ concentration and downstream Ca2+-dependent signaling in CD4+ T cells. TRPV1 is bound with
CD4 and Lck. TRPV1 mediates Ca2+ influx, and the tyrosine of TRPV1 is phosphorylated by Lck. PIP2 located in both leaflets suppresses the activation of TRPV1.
Hydrolysis of PIP2 into DAG and IP3 by PLC-g1 leads to relieving of PIP2-mediated inhibition of TRPV1. Besides, IP3 binds to IP3R on ER contributing to the release of
Ca2+ from intracellular Ca2+ store. The increased Ca2+ concentration promotes migration of NFAT into the nucleus, inducing the expression of IL-2. DAG promotes the
entry of NF-kB into the nucleus, resulting in IFN-g expression. PIP2, phosphatidylinositol-4,5-bisphosphate; PLC-g1, phospholipase C gamma 1; IP3, inositol 1,4,5-
trisphosphate; DAG, diacylglycerol; IP3R, IP3 receptor; ER, endoplasmic reticulum; NFAT, nuclear factor of activated T-cells; NF-kB, nuclear factor kappa binding (33).
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boosts protective immune responses, such as immune
surveillance. Two studies showed that fever-range temperatures
(38∼41°C) could promote lymphocytes homing to secondary
lymphoid tissues through enhancement of L-selectin and a4b7
integrin-dependent adhesive interactions between circulating
lymphocytes and specialized high endothelial venules, thus
increasing immune surveillance (41, 42). Another study
revealed that fever promoted trafficking of T cells and
enhanced immune surveillance during an infection through
heat shock protein 90 (HSP90)-induced a4-integrin activation
and increase of a4-intergrin-mediated T cell adhesion (43).
Besides, fever-like whole body hyperthermia (WBH) treatment
of mice led to increase in tissue T cells with uropods. Besides, the
WBH treatment induced reorganization of protein kinase C
(PKC) isozymes and increased PKC activity within T cells (44).
In addition, mildly elevated temperature range (≤40°C) was
shown to strengthen cytotoxic activities of T cells from both
adult and cord blood. However, this phenomenon was
attenuated on exposure of the T cells to 42°C for 1 hour (45).

On the other hand, temperature changes were shown to affect T
cell differentiation. Chen Dong et al. reported that febrile
temperature did not influence Th1, Th2 and induced Treg
(iTreg) cell differentiation, but selectively and robustly promoted
Th17 cell differentiation at 39.5°C. Febrile temperature also
elevated Th17 cell cytokine genes (IL-17a, IL-17f and IL-22) and
reduced the expression of anti-inflammatory cytokine IL-10 (46).
Besides, febrile temperature (38.5°C-39.5°C) fueled the
pathogenicity of Th17 cells with a highly pro-inflammatory
feature and aggravated experimental allergic encephalomyelitis
(EAE) model (46). Mechanistically, febrile-temperature-induced
Th17 cell differentiation depended onHSP-70- and HSP-90-related
heat shock response and enhanced SUMOylation of SMAD4
transcription factor at its K113 and K159 residues, which
facilitated its nuclear localization (46). In sync with the previous
findings, Gaublomme and colleagues demonstrated that treatment
with anti-fever drugs reduced Th17 cell response in vivo, while in
vitro induced Th17 cells were highly pro-inflammatory in a lung-
inflammation model (47) (Figure 3). In addition, naïve CD8+ T
cells exposed to 39.5°C in vitro promoted the rate of synapse
formation with APC, which led to differentiation of a greater
percentage of CD8+ T cells into effector cells (48). This
phenomenon was attributed to an increase in membrane fluidity
and clustering of GM1+CD-microdomains, as well as clustering of
TCRb and CD8 co-receptor (48). A recent study showed that fever
enhanced production of activated CD8+ T cell cytokines and
glycolytic metabolism with a limited effect on the expression of
CD69, the activation marker (49). Moreover, febrile temperature
promoted protective antitumor effects of CD8+ T cells via
mitochondrial translation (49). However, data on how the T cells
sense subtle temperature changes remain scant.

TRPV1 is a critical regulator of physiological body temperature
and fever, outside the central nervous system (50, 51). TRPV1
could be activated at a temperatures threshold near 43°C (52). A
previous study demonstrated that fever sensing by CD4+ T cells
involve TRPV1 channel during CD4+ T cell differentiation (53). In
addition, fever-range temperatures significantly enhanced Th2
Frontiers in Immunology | www.frontiersin.org 4
differentiation and reduced Th1 commitment at moderate fever
temperature (39°C) in vitro via a TRPV1 channel-mediated
Notch-dependent pathway. This was accompanied by
upregulation of Th2-relevant transcription factor GATA3, and
reduction of the Th1-relevant transcription factor, T-bet (53)
(Figure 3). However, both mouse and human naïve CD4+ T
cells treatment with temperatures between 37°C and 39°C showed
no alterations in the activation, proliferation, or cell survival (53).
Samivel R et al. revealed suppression of the production of Th2/
Th17 cytokines in CD4+ T cells and Jurkat T cells upon genetic
and pharmacological inhibition of TRPV1 (32).

Together, these data demonstrated that TRPV1 functions as a
temperature sensor in CD4+ T cells. The temperature changes
could regulate CD4+ T cell differentiation through TRPV1.
THE FUNCTIONS OF TRPV1 IN T
CELL-MEDIATED INFLAMMATORY
DISEASES

Inflammation is the main and common pathophysiological
feature of pain, visceral inflammation, hypertension and cancer
at different stages of occurrence and development (54).
Inflammation is characterized by redness, swelling, heat, pain,
tissue injury or organ dysfunction (54). Inflammation has been
shown to remove tissue injuries and promote restoration during
immune responses (54). Recent studies have shown that TRPV1
plays anti-inflammatory roles by attenuating acute and chronic
inflammatory processes as well as enhancing homeostasis, thus,
attenuating harmful effects of inflammatory responses. Here, we
analyzed how TRPV1 modulates T cell-mediated inflammatory
responses, which include multiple sclerosis (MS), pulmonary
inflammation, inflammatory skin diseases or inflammatory
bowel diseases (IBD) as well as osteoarthritis (OA) (Figure 4).

Multiple Sclerosis
Multiple sclerosis (MS) is a complex central nervous system
autoimmune disease character ized by autoimmune
demyelination and neurodegeneration, which are mediated by
Th1 and Th17 cells, macrophages, and immune inflammatory
mediators. Previously, TRPV1 mRNA was found to be expressed
throughout the central nervous system (CNS), but it was highly
expressed in sensory neurons of the dorsal root ganglion (10).
The TRPV1+ neurovascular complex, referred to as the blood-
CNS barrier, promoted invasion of pathogenic lymphocytes (55).
However, SA13353, a TRPV1 agonist, reduced the number of
cytokines, including TNF-a, IL-1b, IL-12p40, IL-17, and
interferon (IFN)-g in EAE. In addition, SA13353 attenuated
the increase in IL-17-producing cells, demonstrating that
SA13353 inhibited the growth of Th17 cells and development
of EAE (56). Therefore, TRPV1 channel confers protection by
regulating T cells in EAE.

Pulmonary Inflammation
Pulmonary inflammation is caused by infection, physical and
chemical factors, immune injury, allergy and drugs, and is
May 2022 | Volume 13 | Article 870952
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mediated by a variety of inflammatory mediators such as
immune cells, chemokines and cytokines. RT-PCR analysis
revealed that TRPV1 was expressed in immortalized human
bronchial epithelial cells, normal human bronchial/tracheal
epithelial cells, and normal human small airway epithelial cells
from distal airways (57). In LPS-induced lung injury, SA13353
attenuated neutrophil infiltration and enhanced the TNF-a and
CINC-1 levels. In ovalbumin-induced allergic airway
inflammation, SA13353 was shown to inhibit leukocyte
infiltration and attenuate increase of IL-4 and IL-12p40 (58).
Besides, TRPV1+ nociceptor sensory neurons suppressed
recruitment and surveillance of neutrophils and altered lung gd
T cells through the release of the neuropeptide calcitonin gene-
Frontiers in Immunology | www.frontiersin.org 5
related peptide (CGRP) (59). In contrast, treatment with TRPV1
antagonist capsazepine or TRPV1 siRNA reduced airway hyper-
responsiveness (AHR) and airway remodeling with suppressed
Th2 cytokines (IL-4, IL-5 and IL-13) and epithelial cell-derived
cytokines (TSLP, IL-33, and IL-25) in ovalbumin-induced
chronic asthma (60). Therefore, there is a need for further
studies to determine the role of TRPV1 in pneumonia.

Inflammatory Skin Diseases
Inflammatory skin diseases refer to skin diseases caused by
various internal and external infectious or non-infectious
factors, which include psoriasis, atopic dermatitis, allergic
contact dermatitis or irritant contact dermatitis. In the absence
FIGURE 4 | The role of TRPV1 in T cell-mediated inflammatory diseases. TRPV1 regulates the inflammatory responses, such as multiple sclerosis (MS), pulmonary
inflammation, inflammatory skin diseases and inflammatory bowel disease (IBD), and osteoarthritis (OA). CNS, central nervous system; AD, atopic dermatitis; CGRP,
calcitonin gene-related peptide.
FIGURE 3 | Fever determines the fate of CD4+ T cells. Febrile temperature changes enhance Th2 differentiation and reduce Th1 differentiation via a TRPV1-regulated
Notch-dependent pathway. In addition, febrile temperature promotes Th17 cell differentiation which depends on HSP-70- and HSP-90-related heat shock response and
enhances SUMOylation of SMAD4 transcription factor at its K113 and K159 residues. HSP90, heat shock proteins 90; HSP70, heat shock proteins 70.
May 2022 | Volume 13 | Article 870952
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of tissue damage or bacterial invasion, cutaneous light
stimulation triggered the release of CGRP from TRPV1+

neurons, which recruited IL-17a-producing gd T cells and
CD4+ T cells. These cells elicited a local type 17 response that
augmented host defense to C. albicans and S. aureus (61). At the
same time, the activated neurons could activate TRPV1+ neurons
at an adjacent, unstimulated skin through the nerve reflex arc,
which provokes the type 17 responses (61). On the other hand,
psoriasis is an immune cell-mediated inflammatory skin disease,
whose pathogenesis is mediated by IL-23 (62, 63). In imiquimod-
induced IL-23-dependent psoriasis-like skin inflammation,
TRPV1+ nociceptive sensory neurons were shown to interact
with dermal dendritic cells to produce IL-23, thus modulating
IL-17 and IL-22 production by IL23R+ dermal gd T cells, which
drive skin inflammation (64). Besides, atopic dermatitis (AD) is a
common allergic skin disease characterized by skin barrier
dysfunction, inflammation and an intense itch (65). IL-31 is an
important inflammatory mediator involved in AD, which is
closely associated with pruritus (66). Previous data showed that
TRPV1 and TRPA1 were involved in the interaction between IL-
31 and IL-31 receptor to regulate the pruritus process, which was
mediated by Th2 cells in AD and skin T cell lymphoma (67).
Based on the important roles played by TRPV1 in skin
inflammation and pruritus, the TRPV1 channel is another
potential target for skin diseases.

Inflammatory Bowel Disease (IBD)
The occurrence of IBD is driven by chronic inflammation, which
is mainly known as Crohn’s disease (CD) and ulcerative colitis
(UC). Previous data showed that capsaicin, a TRPV1 agonist,
attenuated severe combined immunodeficiency (SCID) T-cell
transfer colitis, suggesting that the TRPV1 signaling plays a role
in capsaicin-mediated attenuation of colitis (68). It was shown that
TRPV1 was highly expressed in colonic nerve fibers of IBD
patients (69). Luo et al. demonstrated high expression of TRPV1
in colonic epithelial cells and infiltrating inflammatory cells of 60
patients with active IBD (30 cases of UC and 30 cases of CD
respectively), which was not associated with severity of the disease
(70). Moreover, TRPV1 immunoreactive cells were robustly
higher in all intestinal layers from active UC patients (71),
which suggested that TRPV1 might be involved in immune
cells-mediated pathogenesis of IBD. In the T-cell-mediated
colitis model, TRPV1 was shown to promote T cell and
intestinal inflammatory responses. Inhibition of TRPV1 in T
cells by genetic factors or drugs led to reduction of the
symptoms of colitis (31, 38). In addition, TRPV1 played an
important role in activating mucosal macrophages and
maintaining Th17 immune cells in respond to inflammatory
stimuli. Overexpression of TRPV1 significantly increased the
susceptibility of DSS-induced colitis and promoted DC
activation and cytokine production by enhancing the activation
of calcineurin/nuclear factor in activated T cell (NFATc2)
signaling, and enhancing DC-mediated Th17 cell differentiation
upon inflammatory stimulation (72).

In summary, the data indicated that TRPV1 might be a
potential therapeutic target in the treatment of mucosal
immunity and IBD.
Frontiers in Immunology | www.frontiersin.org 6
Osteoarthritis (OA)
Osteoarthritis (OA) is a chronic, painful anddegenerativedisease that
affects all joint tissues and results in lossof articular cartilage. Immune
cells such as macrophages and T cells in the synovium participate in
stimulating andmodulating inflammatory responses inOA(73).The
TRPV1 mRNA and protein expression were previously detected in
PBMCs from OA patients (74). TRPV1 knockout mice showed
attenuated chronic phase (>6 weeks) of RA pain (75). In rat OA
model, intra-articular injection of capsaicin significantly attenuated
OA phenotypes, such as joint swelling, synovitis, cartilage damage,
and osteophyte formation (76). Furthermore, TRPV1 alleviated OA
by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2
signaling pathway (76). These findings demonstrated that TRPV1
regulates various cells in OA.
CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we analyze recent data on the expression and
functions of TRPV1 in T cells and T cell-mediated inflammatory
diseases. The data showed that TRPV1 is a Ca2+-permeable
channel and mediates TCR-induced Ca2+ influx, leading to T
cell activation and death as well as differentiation of T cell subsets.
However, most of the studies only provided phenotypic
observations. Therefore, data on the exact mechanisms
underlying the observed phenotypic characteristics is lacking.
Besides, whether TRPV1 interacts with other family members or
with other channels in T cells remains unclear. In future, scientists
should explore interactions between ion channels in T cells, and
determine the exact cell-intrinsic roles in T cell development and
in different effector T cell subsets.

Furthermore, many studies have demonstrated that TRPV1 can
regulate T cell-mediated inflammation and protect the body by
regulating productionofT cell-related cytokines, such asTNF-a, IL-
4 and IL-6. However, due to diverse expression on sensory nerves,
immune cells, epithelial cells as well as the consequent activation-
induced release of inflammatory mediators, the overall functions of
TRPV1 in inflammatory diseases need further evaluation. These
data would lay a foundation for future development of new anti-
inflammatory drugs targeting TRPV1 in inflammation.
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