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NK cell-mediated cytotoxicity is a critical element of our immune system required for
protection from microbial infections and cancer. NK cells bind to and eliminate infected or
cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells.
In this review, we summarize the current understanding of the molecular regulations of NK
cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK
cells synthesize apoptosis-inducing proteins and package them into specialized
organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge
with the microtubule organizing center through dynein-dependent movement along
microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently
fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells
utilize several strategies to protect themselves from their own cytotoxic molecules.
Additionally, molecular pathways that enable NK cells to perform serial killing are
beginning to be elucidated. These advances in the understanding of the molecular
pathways behind NK cell cytotoxicity will be important to not only improve current NK
cell-based anti-cancer therapies but also to support the discovery of additional
therapeutic opportunities.
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1 INTRODUCTION

Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system that provide
immune surveillance and first-line defense against microbial infections and tumors (1–4). Human
NK cells compose 5-15% of circulating peripheral blood lymphocytes, but also present wide tissue
distribution with varying numbers and sub-populations (5). Although NK cells modulate immune
responses by producing a variety of inflammatory cytokines and chemokines (2, 6), NK cell
cytotoxicity is the most critical function required for the ultimate clearance of tumorous, infected, or
stressed cells. Like other immune cells, the overall activation and maturation of circulating NK cells
is affected by inflammatory cytokines and chemokines (7, 8). However, the recognition and binding
of NK cells to tumorous or unhealthy “non-self” target cells is the major driver that induces NK cell
cytotoxicity (9). A wide range of activating and inhibitory receptors are expressed on the surface of
NK cells, and upon binding to its target cell, a balance of signals from engaged activating and
inhibitory receptors determines the NK cell response. In this way, NK cells can identify “non-self”
org April 2022 | Volume 13 | Article 8711061
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cells to kill, while maintaining self-tolerance. Since NK cells rely
on germ-line encoded NK receptors without any DNA
rearrangement, they are categorized as innate members of the
immune system. However, NK cells also present advanced
immune functions like T and B cells, in which they present
memory-like responses against specific antigens and certain
activating cytokines (2).

The initial tethering of an NK cell to a target cell is mediated
by adhesion molecules including selectins and integrins
expressed on the NK cell surface (1, 10). Upon activation, the
NK cell establishes a specialized interface with the target cell
known as the cytotoxic synapse (CS), which is mediated by
increased affinity interaction of integrins with their ligands
expressed on the target cells. The CS is further strengthened as
the actin cytoskeleton at the CS is reorganized and more
integrins are recruited to the CS. Ultimately, NK cells secrete
preformed secretory lysosomes called lytic granules (LGs)
directly toward bound target cells, a process known as cell-
mediated cytotoxicity (1–4). However, NK cells can also induce
death receptor-mediated apoptosis of target cells (4, 11, 12). NK
cells express death receptor ligands including FasL (CD95L) and
TNF-related apoptosis-inducing ligand (TRAIL) (13).
Engagement of these ligands with Fas (CD95) and TRAIL-R1/-
R2, respectively, on the target cells can induce target cell
apoptosis. Additionally, NK cells secrete biologically active
extracellular vesicles (EVs) that contain cytotoxic proteins like
perforin and granzymes and other immune modulatory
molecules (14–17). These secreted vesicles seem to have
immune regulatory functions and present anti-tumor effects.
For a discussion of the similarities and distinctions between
the LGs and NK-EVs regarding composition and molecular
processes, the reader is referred to a recent excellent review
(18). In line with this, both CD8+ cytotoxic T lymphocytes
(CTLs) and NK cells were also found to secrete cytotoxic
supramolecular attack particles (SMAP) composed of
thrombospondin-1 (TSP-1), perforin, and granzyme B (19, 20).
SMAP is distinct from extracellular vesicles because it exists in a
membrane-less protein complex in which perforin and granzyme
B are contained within a glycoprotein TSP-1 shell. Future studies
will be required to elucidate the detailed characteristics of these
extracellular vesicles and protein complexes including the
physiological functions and molecular pathways behind their
synthesis and secretion as well as their mechanism(s) of action.
Additionally, elucidating how NK cells protect themselves from
the cytotoxic effects of NK-EVs and SMAP will be an interesting
and important area for future research.

Many current approaches in cancer immunotherapy rely on
the cytotoxic activities of NK cells (4, 21–23). Several cytokine
and checkpoint inhibitor therapies are designed to enhance the
cytotoxicity of NK cells against tumors. In the field of adoptive
transfer and chimeric antigen receptor (CAR) therapies, NK cells
are thought to possess several advantages compared to CTLs: 1)
readiness for cytotoxicity without pre-activation and clonal
expansion, 2) relatively short lifespan, 3) lack of requirement
for antigen specificity targeting tumor cells, and 4) lack of
requirement to match major histocompatibility complex
Frontiers in Immunology | www.frontiersin.org 2
(MHC) molecules expressed on the target cells. In addition,
antibody-based therapies against tumor-specific antigens can
induce antibody-dependent cellular cytotoxicity (ADCC) by
NK cells, since low affinity Fc receptor CD16 (FcgRIIIA) is a
major activating receptor on NK cells. These examples of
utilizing NK cell-mediated cytotoxicity in cancer therapies
highlight the importance of better understanding the
mechanisms behind the cellular cytotoxicity of NK cells.

In this review, we will summarize the current understanding
of the mechanisms of NK cell-mediated cytotoxicity from LG
biogenesis to the degranulation process. For updates on
additional modes of NK cytotoxicity or other NK cell functions
and biology, the reader is referred to other excellent reviews (1–
4, 10).
2 BIOGENESIS OF LYTIC GRANULES

Cell-mediated cytotoxicity of NK cells and CTLs is achieved by
the directed release of cytolytic granules toward bound target
cells. Lytic granules (LGs) are a specialized subset of lysosomes
which contains both lysosomal and secretory proteins that are
usually compartmentalized in separate organelles in most other
cell types (1, 24, 25). Therefore, LGs are also referred to as
secretory lysosomes. In the case of CTLs, resting unstimulated
cells do not express LGs (26, 27). Only upon T cell receptor
engagement, CTLs initiate biosynthesis of electron-dense LGs.
On the contrary, NK cells constitutively express LGs, thereby
enabling NK cells to be primed for killing without any
prior sensitization.

Secretory lysosomes are like lysosomes in that both have
similar morphology and contain an acidic environment with a
pH ranging from 5.1-5.4 (28). Like lysosomes, secretory
lysosomes also contain proteins with hydrolytic and
degradative functions like acid hydrolases and contain
common lysosomal soluble (including cathepsins) and
transmembrane (including lysosome-associated membrane
protein [LAMP]) proteins. However, secretory lysosomes are
distinguished from lysosomes by the following characteristics.
First, secretory lysosomes contain additional specialized cell-
type-specific components. Most cell types containing secretory
lysosomes are hematopoietic lineage cells, but secretory
lysosomes are also found in melanocytes and endothelial cells.
In melanocytes, the secreted contents include melanin protein
which is responsible for the pigmentation of skin. On the other
hand, the LGs of NK cells and CTLs are mainly composed of
pore-forming and apoptosis-inducing molecules such as
perforin, granzymes, granulysin, and Fas ligand. Another
major distinction is that although both organelles are the
endpoint of endocytic pathways, secretory lysosomes undergo
additional secretion processes under certain stimulatory
conditions. The secretion process of secretory lysosomes seems
to be mediated by common molecular machineries regardless of
cell type. In the case of genetic immune disorders like Chediak-
Higashi syndrome (CHS) and Hermansky-Pudlak syndrome
(HPS) type 2, the patients not only have immunodeficiency
April 2022 | Volume 13 | Article 871106
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mainly caused by impaired secretion of LGs by NK cells and
CTLs, but also present hypopigmentation (due to impaired
melanin secretion) and excessive bleeding (due to absence of
dense granules in platelets) (29, 30). In the following sections, we
will describe the major components of LGs and their
biosynthesis as well as the regulators involved in LG biogenesis.

2.1 Major Lytic Granule Components
and Their Biosynthesis
2.1.1 Granzymes
Granzymes are a family of serine protease proteins expressed in
cytotoxic lymphocytes (4, 31, 32). There are 5 granzyme proteins
(A, B, H, K, and M), and each granzyme exhibits unique protease
characteristics with different substrate specificities. The wide
range of granzyme protease activities induce different apoptosis
pathways in caspase-dependent and -independent manners. It is
interesting to note that granzyme H and M are predominantly
expressed in NK cells (33, 34). However, most of the current
understanding of granzymes is based on granzymes A and B. For
a detailed description of the characteristics and apoptosis
pathway initiated by each granzyme, the reader is referred to
these excellent reviews (4, 31, 35).

Granzymes are synthesized as pro-enzymes (zymogen),
which contain a signal peptide that directs them to the
endoplasmic reticulum (ER) and an inhibitory dipeptide that
keeps the protein in an inactive form (Figure 1) (36). Once the
zymogen protein is translated into the ER lumen, it is transferred
to the cis-Golgi, where it is further modified to have a mannose-
6-phosphate (M6P) moiety. The modified zymogen protein is
then delivered to the endosome by the M6P receptor (MPR) and
finally to the LGs (37). Once in the LGs, granzymes are finally
converted to their mature and active form by removal of the
Frontiers in Immunology | www.frontiersin.org 3
inhibitory dipeptide by the cysteine proteases cathepsin C or H
(38–40). The importance of granzyme processing is revealed in
Papillon–Lefèvre syndrome (PLS), which is caused by autosomal
recessive mutation of CTSC gene that encodes cathepsin C
(Table 1) (41, 42). Cathepsin C is a lysosomal cysteine
protease that processes granzyme A and B (43). PLS patients
are unable to synthesize fully mature and active granzyme due to
loss of cathepsin C function and this results in impaired NK
cytotoxicity and increased susceptibility to viral infections (38).

2.1.2 Perforin
Perforin is a pore-forming protein that enables delivery of
apoptosis-inducing serine proteases like granzymes into target
cells (4, 44). The perforin-mediated pores also impose osmotic
stress on the target cells inducing apoptosis. This pore-forming
activity of perforin is calcium- and pH-dependent; perforin is
inactive in an acidic environment (44, 45). Perforin binds to the
target cell membrane in a calcium-dependent manner (mediated
by a calcium-binding C2 domain), oligomerizes into a pore
complex, and creates a pore mediated by the membrane attack
complex-perforin (MACPF) domain (46). The indispensable role
of perforin activity in NK cells and CTLs is exemplified in type 2
familial hemophagocytic lymphohistiocytosis (FHL2) (Table 1)
(47, 48). FHL2 is an autosomal-recessive disorder caused by
mutation in PFR1 gene, which encodes perforin. Various
mutations affecting the maturation, folding, membrane
binding, and oligomerization of perforin have been identified,
which causes a highly variable perforin protein expression in
patients. Although FHL2 patients presented with normal ranges
of other components of LGs as well as normal degranulation
processes, patient NK cells have defective cytotoxicity due to an
inability to form pores on the bound target cells.
FIGURE 1 | Biosynthesis and trafficking of granzymes and perforin to lytic granules. Both granzymes and perforin are translated into the ER and trafficked to the
Golgi. Addition of mannose-6-phosphate (M6P) to granzymes facilitates transport of granzymes to lytic granules (LGs) via M6P receptors. Transport of perforin to
LGs is mediated by LAMP1 and adaptor protein 1 (AP1) sorting complex via an unknown mechanism. Both perforin and granzymes are processed into active forms
by cathepsins and other proteases in the LGs but maintained in an inactive state via their association with serglycin.
April 2022 | Volume 13 | Article 871106
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Like granzymes, perforin is initially synthesized as an inactive
precursor in the ER and trafficked to the Golgi and finally to the
LGs (Figure 1) (44, 45). However, the detailed mechanism by
which perforin is sorted from the trans-Golgi network into the
LGs remains unclear. LAMP1 and adaptor protein 1 (AP1)
sorting complex, which are direct interacting partners, seem to
mediate perforin trafficking from the trans-Golgi to the LGs (49,
50). Both LAMP1 and AP1 complex were shown to be important
for NK cell-mediated cytotoxicity. Interestingly, depletion of
either LAMP1 or adaptin g, a subunit of AP1 complex, caused
retention of perforin in cation-independent (CI)-MPR-positive
trans-Golgi-derived transport vesicles (49). During the
trafficking process, perforin goes through proteolysis and
glycosylation. It was recently shown that N-linked
glycosylation at the C-terminal end of perforin prevents
perforin oligomerization during its transit to the LGs (51).
This glycosylation prevents perforin activity in the ER and the
Golgi, where calcium is more sufficient, and the pH is neutral.
Upon arrival in the LGs, perforin is processed to become an
active form, as the C-terminal end of perforin is cleaved by
Cathepsin L and other proteases (51, 52).

2.1.3 Granulysin
Granulysin is a member of the saposin-like protein family
expressed in NK cells and the pre-activated CTLs of most
Frontiers in Immunology | www.frontiersin.org 4
mammals excluding rodents (53–55). Granulysin is initially
synthesized as a 15-kDa precursor protein, which is further
proteolytically cleaved into a 9-kDa active form in the LGs
(56). The active form of granulysin exhibits pore-forming
activity like other members of the saposin-like protein family
and permeabilizes the membranes of tumor cells as well as
intracellular microbes including bacteria, fungus, and parasites
(53, 57). The disrupted membranes not only induce osmotic lysis
of target cells, but also become routes for granzymes to enter
target cells and intracellular microbes (58, 59).

2.1.4 FasL and TRAIL
Both FasL and TRAIL are type II transmembrane proteins
expressed on the surface of NK cells and CTLs and belong to
the TNF superfamily (60–63). As mentioned previously,
engagement of each ligand with its cognate receptor
(collectively known as death receptors) induces apoptosis of
the target cell. Interestingly, although these death receptor
ligands induce cytotoxicity in target cells via distinct molecular
processes from the LG components described above, both
proteins were also found to be localized at LGs (64–69).
Therefore, expression of these death receptor ligands at the
surface of NK cells is achieved by degranulation of LGs (66,
70). In the case of FasL, several studies suggested that FasL is
contained within distinct LG vesicles that do not contain
TABLE 1 | Human Primary Immunodeficiency Syndromes Associated with Impaired Lytic Granule (LG) Degranulation by NK Cells.

NK Cytotoxicity
Process

Primary Immunodeficiency Gene
Mutated

Protein
Affected

NK Cell Defects in Cytotoxicity

Lytic Granule
Biogenesis

Papillon–Lefèvre syndrome
(PLS)

CTSC Cathepsin C Impaired maturation of granzymes leading to impaired cytotoxicity

Familial hemophagocytic
lymphohistiocytosis type 2
(FHL2)

PFR1 Perforin Normal LG degranulation but impaired cytotoxicity due to absence of the pore-
forming molecule

Hermansky-Pudlak syndrome
type 2 (HPS2)

AP3B1 b3A-subunit of
adaptor protein
3

Impaired cytotoxicity with enlarged LGs

Chediak-Higashi syndrome
(CHS)

CHS1/
LYST

CHS1/LYST Enlarged LGs and impaired cytotoxicity due to defective degranulation (enlarged
LGs failed to pass through actin mesh at the CS? Impaired LG polarization?)

Cytoskeletal
regulation

Wiskott-Aldrich Syndrome
(WAS)

WASP WASP Impaired adhesion, reorganization of F-Actin, and LG polarization

WASP-interacting protein
(WIP) deficiency

WIPF1 WIP No detectable WASP with reduced expression of NK cell activating receptors

Dedicator of cytokinesis 8
(DOCK8) deficiency

DOCK8 DOCK8 Impaired adhesion, reorganization of F-Actin, and LG polarization

Dedicator of cytokinesis 2
(DOCK2) deficiency

DOCK2 DOCK2 Defective RAC1 activation, CS formation, F-Actin reorganization, and impaired
degranulation

Coronin 1A deficiency CORO1A CORONIN 1A Impaired reorganization of F-Actin at CS impairing degranulation
Lytic Granule
Traficking

MYH9-related disease
(MYH9-RD)

MYH9 Myosin9 Myosin
IIa heavy chain

Normal conjugate formation, LG convergence, and MTOC polarization but
impaired cytotoxicity due to defective lytic granule movement along F-actin at CS

Lytic Granule Fusion
with the Membrane

Griscelli Syndrome type 2 Rab27a Rab27a Impaired cytotoxicity and degranulation due to defective lytic granule docking at
the membrane

Familial hemophagocytic
lymphohistiocytosis type 3
(FHL3)

UNC13D Munc13-4 Impaired degranulation of docked lytic granules due to impaired LG tethering to
membrane

Familial hemophagocytic
lymphohistiocytosis type 4
(FHL4)

STX11 Syntaxin 11 Impaired degranulation due to defective LG priming and SNARE complex
assembly

Familial hemophagocytic
lymphohistiocytosis type 5
(FHL5)

STXBP2 Syntaxin binding
protein 2

Impaired degranulation due to defective LG priming and SNARE complex
assembly
April 2022 | Volume 13 | Article 871106
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cytotoxic proteins such as perforin and granzymes (18, 71–73).
In addition, it was also suggested that these LG subsets present
different signaling requirements for degranulation and rely on
distinct molecular processes for their secretion (18, 74). Future
studies are required to better elucidate the identity and molecular
regulation of FasL-containing vesicles, and it will be interesting
to see whether TRAIL is also stored within the same (or a similar)
subset of LG vesicles along with FasL.

Like perforin and granzymes, FasL is initially synthesized in
the ER, trafficked to the Golgi, and finally sorted to the LGs. A
proline-rich domain at the C-terminal end of FasL was found to
be essential in this process by mediating interaction of FasL with
various SH3 domain-containing proteins (18, 75). FasL becomes
phosphorylated by Src kinases recruited to this proline-rich
domain and FasL is also ubiquitinated at lysine residues close
to the proline-rich domain (76). Both posttranslational
modifications of FasL are necessary for appropriate sorting of
FasL to the LGs. The molecular processes mediating TRAIL
trafficking to the LGs are currently unknown and await
future studies.

2.2 Regulators of Lytic Granule Biogenesis
2.2.1 Adaptor Protein 3 Complex
Adaptor protein 3 (AP3) complex is a hetero-tetrameric protein
complex, which is involved in the sorting of many lysosomal
proteins including LAMP1, LAMP2, and LAMP3 (CD63) from
the endosome or trans-Golgi network to the lysosome (77, 78).
The essential roles of AP3 in LG biogenesis are exemplified by
type 2 Hermansky-Pudlak syndrome (HSP2), which is caused by
mutations in the AP3B1 gene (Table 1) (79, 80). Mutations in
b3A-subunit of AP3 (encoded by AP3B1) cause instability of the
protein, which leads to the loss of the entire AP3 complex (79,
80). As mentioned previously, HSP2 patients commonly present
immunodeficiency, oculocutaneous albinism, and excessive
bleeding, implicating impaired functions of cells with secretory
lysosomes (81). Because AP3 is ubiquitously expressed, AP3-
mediated protein sorting seems to be especially critical in the
biogenesis of secretory lysosomes and/or in the sorting of
secretory lysosome-specific proteins. Indeed, AP3 was found to
mediate the sorting of tyrosinase (the protein required for
melanin synthesis) into lysosomes in melanocytes (82). In the
case of antigen presenting cells (APCs), AP3 mediates the sorting
of CD1b molecules into MIIC compartments (83). AP3
deficiency in HSP2 patients was also found to cause impaired
cytotoxicity of both NK cells and CTLs (84–86). It is interesting
to note that CTLs from the HSP2 patients contain enlarged LGs
(86). However, it remains unclear which specific components are
sorted by AP3 into LG and whether AP3 contributes to the
biogenesis of the specialized organelle itself.

2.2.2 CHS1/LYST Protein
CHS1/LYST protein is a member of the BEACH (Beige and
Chediak) family, which commonly contains a BEACH motif at
the C-terminal end (87). Among all BEACH family proteins,
which are known to regulate vesicle trafficking, CHS1/LYST
protein is specifically involved in the homeostasis of lysosomes
Frontiers in Immunology | www.frontiersin.org 5
in cells with secretory lysosomes (88). This is exemplified in
Chediak-Higashi syndrome (CHS), which is caused by mutation
of the CHS1/LYST gene (Table 1). Like HSP2, the patients of
CHS present recurrent infections, partial albinism, and
prolonged bleeding, suggesting impaired activities of cells with
secretory lysosomes (87, 89). As expected, both NK cells and
CTLs from CHS patients present impaired cytotoxic activities
with failure to secrete LGs. However, degradative functions of
lysosomes in cells with secretory lysosomes as well as synthesis,
processing, and sorting of perforin and granzymes into LGs in
CTLs were found to be normal (87, 90, 91). Interestingly, NK
cells, CTLs, and melanocytes from CHS patients contain
abnormally enlarged lysosomes (87, 90–93). It was shown that
the LGs gradually fuse together to become enlarged lysosomes in
CTLs (90, 92). In the case of NK cells, CHS1/LYST-depleted or
CHS patient NK cells were recently found to have abnormal
endolysosomal compartments (91, 93). These observations
suggest that the CHS1/LYST protein might mediate lysosome
fusion/fission during the lysosomal maturation process.
Regarding cytotoxicity, although one study reported that the
smaller size of the cortical actin mesh at the CS relative to the
enlarged LGs prevented degranulation in CHS1/LYST-deficient
NK cells (93), important roles of CHS1/LYST in LG polarization
to the CS have also been suggested (91). In addition, Mauve, the
Drosophila homolog of CHS1/LYST, not only regulates vesicle
fusion of yolk granules (the secretory lysosomes of the
Drosophila embryo) but was also found to regulate
microtubule nucleation from the microtubule organizing center
(MTOC) (94). Therefore, future studies are required to better
elucidate the molecular details by which CHS1/LYST regulates
the lysosomal fusion/fission process and the impact on
cytotoxic activity.

2.3 How do NK Cells Protect Themselves
From Activities of Synthesized Lytic
Granule Contents?
As we have seen so far, each LG component has its own cytolytic
activity. This can potentially cause self-destruction of NK cells
during synthesis and maintenance of LGs. NK cells have several
protection layers to ensure safe storage and trafficking of
cytolytic contents until degranulation. First, the acidic
environment inside of LGs prevents the activity of the cytolytic
proteins. In this low pH environment, perforin and granzymes
also interact with chondroitin sulfate proteoglycan known as
serglycin (Figure 1). The association with serglycin keep both
cytolytic proteins in an inactive state until secretion (95–98). In
addition, several perforin-specific protection mechanisms have
been identified (99). As previously mentioned, perforin is N-
linked glycosylated at the C-terminus in the ER (Figure 1). This
prevents perforin oligomerization and pore-forming activity
during its transit to LGs, regardless of calcium concentration
and pH (51). Upon arrival at the LGs, the mature perforin
without the inhibitory C-terminus is still kept inactive due to
very limited availability of calcium (100). In addition, interaction
of calreticulin with perforin in the ER and LGs was also suggested
to contribute to the inhibition of perforin activity (101).
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2.4 Remaining Questions on Lytic
Granule Biogenesis
Our current understanding of the biogenesis of the LGs is mainly
focused on the biosynthesis and sorting of cytolytic proteins into
the LGs but not on the LG organelle itself. Are LGs derived from
pre-existing lysosomes or are they generated independently from
lysosomes? In addition, components of the lysosomes and LGs
are often mediated by the same trafficking and sorting
machineries. Therefore, it remains unclear how cells containing
LGs distinguish cargoes between the two organelles. In this
regard, it is interesting to note that proteins like AP3 and
CHS1/LYST involved in LG biogenesis and/or LG protein
sorting are ubiquitously expressed. Therefore, it would be
interesting to elucidate how the mutations in these proteins
only impact cells with secretory lysosomes. It was also recently
shown that LG size and contents are associated with the
efficiency of NK cell cytotoxicity (102). Future studies aimed at
elucidating the mechanisms by which NK cells regulate the
amount of cytolytic contents and the size of LGs will also be of
interest. Finally, we have very limited understanding of the
heterogeneity of the LGs. Thus, it will be interesting to
examine potential differences among the LGs inside a single
NK cell and define not only how these distinct LGs mature but
also the signaling mechanisms regulating their exocytosis.
3 NK CELL ACTIVATING SIGNALING
LEADING TO CYTOTOXICITY

To date, dozens of NK cell receptors have been identified which
can be classified as inhibitory or activating depending on the
signaling pathways engaged by the cytoplasmic tail of the
receptor or receptor-associated transmembrane signaling
adaptor molecules such as DAP10, DAP12, CD3z and FceRIg.
Although we will not be exhaustively discussing inhibitory and
activating receptor signaling in this review, it is important to
point out, at a high level, that NK activating receptors such as
NKG2D/DAP10, NKp46/CD3z, CD94/NKG2C/DAP12 and
FcgRIIIA/FceRIg/CD3z regulate an overlapping set of signaling
pathways that culminate in the cytokine production and cell-
mediated killing through the directed secretion of LGs.

At the pinnacle of signaling from NK activating receptors is
the Src family kinase Lck, which directly phosphorylates the
YINM motif in DAP10 and the immunoreceptor tyrosine-based
activation motifs (ITAMs) within DAP12, CD3z and FceRIg
(Figure 2A). In the case of NKG2D/DAP10, phosphorylation of
DAP10 by Lck leads to the recruitment of p85/PI3K and Grb2/
Vav1 complexes, which then mediate downstream signaling. In
contrast, tyrosine phosphorylation of ITAMs by Lck leads to the
recruitment of either ZAP70 or SYK tyrosine kinases which
subsequently tyrosine phosphorylates other signaling molecules
including adaptors and enzymes to promote signaling leading to
cytokine production and cytotoxicity (Figure 2A). The Src
fami ly member Fyn is a l so invo lved through i t s
phosphorylation of the immune tyrosine-based switch motif
(ITSM) found in the co-stimulatory molecule 2B4.
This phosphorylation event further enhances signaling
Frontiers in Immunology | www.frontiersin.org 6
pathways engaged by other activating receptors and includes
the phosphorylation of Vav1 and PLCg2 (Figure 2A). PLCg2 is
critically involved in NK cell cytotoxicity and cytokine
production as it is the key producer of two second messengers
through the cleavage of PI (4, 5)P2 located in the inner leaflet of
the plasma membrane to diacyl glycerol (DAG) and IP3. While
DAG participates in the activation of PKC – NFkB and Ras-
MAPK pathway activation, IP3 stimulates the endoplasmic
reticulum to release it luminal store of Ca2+ by binding to the
ER-localized IP3 receptor, which in turn leads to STIM
interaction with the calcium release activated calcium (CRAC)
channel leading to an influx of extracellular calcium into the cell
(Figure 2A). This rise in intracellular Ca2+ impacts various
cellular processes including the activation of various enzymes,
proteins involved in F-actin cytoskeletal dynamics and the
activation of the transcription factor NFAT which is involved
in interferon-g gene expression (103, 104). For a more detailed
description of the NK receptors and signaling pathways
regulated, the reader is referred to several excellent reviews on
this topic (104–107).

Reorganization of the F-actin cytoskeleton is a critical step in
the development of NK cell-mediated killing. The activation of
guanine nucleotide exchange factors such as Vav1 and DOCK2
or DOCK8 lead to the activation of Rho family small GTP-
binding proteins (Cdc42, Rac1 and RhoA) which regulate F-actin
dynamics through the regulation of WASP and WAVE2. F-actin
regulation in NK cells is critical to many steps in the
development of cell-mediated killing including organization of
the CS, activating receptor clustering within the central region of
the synapse, integrin-mediated adhesion, lytic granule
convergence and the transit of lytic granules to the site of NK
– target cell contact to name a few (Figures 2A–C) (108–114).
Significantly, mutations in genes whose protein products are
involved in the regulation of F-actin cytoskeletal dynamics
including DOCK2, DOCK8, WASP, WIP and CORONIN-1A
are associated with primary human immunodeficiency
syndromes resulting from defective F-actin reorganization, cell
adhesion and LG release (1, 113) (Table 1). Finally, signaling
from activating receptors leading to lytic granule convergence
and MTOC polarization to the CS are critical to the directed
delivery of the lethal LG contents to the contact between the NK
cell and its target. In the sections below, we will describe in
greater detail the proteins and signaling pathways that regulate
lytic granule trafficking and MTOC polarization during NK cell –
target cell engagement as well as the final steps involved in LG
fusion with the NK cell plasma membrane.
4 LYTIC GRANULE TRAFFICKING

4.1 Lytic Granule Convergence
The release of cytolytic granules is accomplished through a
heavily regulated stepwise process beginning with the
convergence of cytolytic granules to the MTOC (10). This
process occurs rapidly and is initiated through the engagement
of adhesion receptors, such as the leukocyte function associated
antigen-1 (LFA-1), in combination with other activating NK cell
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receptors. The function of convergence is both to prepare the
LGs for directed secretion to a target cell and to effectively
concentrate LGs for enhanced delivery (115, 116). This
minimizes off target effects of LG secretion and ensures
sufficient delivery of the cytolytic contents. Interestingly, LG
convergence occurs in both activating and inhibitory NK CS and
is independent of PI3K, MEK, and PLCg activation, although
these signals are required for maturation of the NK CS and
degranulation (117). LG convergence also occurs prior to
microtubule or F-actin reorganization as Taxol, cytochalasin D,
and latrunculin A inhibited MTOC polarization to the synapse
but not LG convergence (118, 119). This suggests that LG
convergence is an early event downstream of adhesion and
prior to large cytoskeletal reorganization events. Interestingly,
high dose IL-2 can induce LG convergence independent from
adhesion (117). This was found to be dependent on Src kinase
activity, which is induced by IL-2 through a non-canonical,
JAK3-independent, pathway and is also downstream of LFA-1
Frontiers in Immunology | www.frontiersin.org 7
activation (Figure 3) (117, 120). LG convergence, therefore,
rapidly occurs downstream of activation but prior to a
commitment to cytotoxicity.

The rapid accumulation of LGs at the MTOC is dependent on
dynein/dynactin mediated minus-end-directed movement along
the microtubule network (Figure 3) (118). Although the dynein/
dynactin complex is constitutively localized with LGs in NK cells,
dynein-mediated LG movement requires additional adaptor
proteins (118, 121). For example, HkRP3, which is localized at
LGs and interacts with the dynein/dynactin complex, was found
to regulate dynein complex-mediated LG convergence (122).
Interestingly, Grb2 interacts with Src and the P150Glued subunit
of dynactin which could link Src activation to dynactin signaling
(118). This alternative pathway of Src kinase-dependent LG
convergence may help explain how high-dose IL-2 can rescue
the phenotype of WASP deficiency through the activation of the
WASP family member WAVE2 (123–125). Another mechanism
that might regulate dynein function is its potential interaction
A

B C

FIGURE 2 | NK cell signaling and cytotoxic synapse maturation. (A) Signaling diagram depicting events downstream from human NKG2D-DAP10, 2B4, and NK cell
activating receptors coupled to the ITAM containing adaptor proteins CD3-z, FCϵR1g, or DAP12. Ligation of these receptors causes VAV1, SLP76, and PLCy2
phosphorylation which results in the activation of NFAT through calcium release, NFkB activation, and activation of the MAP Kinase cascade. This ultimately leads to
increased integrin-mediated adhesion, F-actin reorganization, cytokine production, and cytotoxicity. (B) Upon the binding of a target cell, signaling through NK cell
activating receptors results in the clustering of receptors while simultaneously enhancing adhesion through integrin affinity maturation and directing LG convergence
to the MTOC. (C) As the CS matures, activating receptors are clustered at the central region of the CS whereas F-actin and integrins accumulate in the peripheral
region of the CS to stabilize adhesion between the NK and target cell. Further signaling from NK activating receptors drive LG convergence and MTOC polarization.
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with, and recruitment by, Rab7a and Rab Interacting Lysosomal
Protein (RILP) (Figure 3) (122, 126). Rab7a was identified in the
lysosome fraction of the NK cell line YTS (127) and, with RILP,
recruits dynein/dynactin complexes to lysosomes (128, 129).
Furthermore, overexpression of RILP in CTLs causes clustering
of LGs and prevents plus-end-directed movement, suggesting an
important role in LG minus-end trafficking (130). However, the
precise mechanisms regulating dynein-directed NK cell
movement, and the role of Rab7a, have yet to be fully elucidated.

4.2 MTOC Polarization to the NK
Cytotoxic Synapse
LG convergence is a prerequisite for the polarization of LGs to
the NK CS (131–133). This is accomplished through the
polarization of the MTOC and converged LGs to the maturing
CS through mechanisms that include F-actin reorganization and
Frontiers in Immunology | www.frontiersin.org 8
continued signaling through clustered receptors (Figure 3) (118,
133). Although there are differences in the rate of LG
convergence and MTOC polarization between CTLs and NK
cells, the mechanisms that control these processes are thought to
be similar (134). Indeed, many studies investigating synapse
formation and microtubule dynamics performed in the CD4+

Jurkat T cell line may be extrapolated, with care, to CD8+ T cells
and NK cells, despite the lack of cytolytic ability in Jurkat cells. In
CTLs, two mechanisms for MTOC polarization have been
proposed. The first mechanism is a dynein-dependent cortical
sliding mechanism where dynein, anchored to the cell cortex,
pulls on microtubules to bring the MTOC toward the synapse
(115, 135, 136). This method is supported by the role of adhesion
and degranulation promoting adaptor protein (ADAP) in
microtubule anchoring and the previous observations of
synaptic microtubule anchoring in MTOC movement (135).
FIGURE 3 | Molecular process of NK cell degranulation (1) NK activating receptor and integrin signaling promotes LG convergence at the MTOC through the activity
of the dynein/dynactin complex. (2) Upon further cell stimulation, the MTOC polarizes to the synapse where lytic granules are offloaded onto the F-actin network. (3)
Trafficking along F-actin requires the activity of myosin IIA and UNC-45A. Defects in the myosin heavy chain, MYH9, prevents lytic granule penetration of the F-actin
network and causes MYH9-related disease (MYH9-RD). (4) Upon reaching the membrane, Rab27a and Munc13-4 dock and tether lytic granules to the CS. Griscelli
syndrome type 2 is caused by defects in Rab27a, which results in lytic granules accumulating at the membrane without docking. It is likely that at this step or at prior
steps, the NAADP-mediated release of Ca2+ from the LG via TPC1 or TPC2 occurs to provide a local accumulation of calcium. Munc13-4 primes lytic granules for
release through interaction with Syntaxin 11. (5) STXBP2 mediates formation of the SNARE complex, consisting of Syntaxin 11, SNAP23, and VAMP4 or VAMP7.
Defects in Munc13-4, Syntaxin 11, and STXBP2 cause familial hemophagocytic lymphohistiocytosis (FHL) types 3, 4, and 5 respectively. (6) Successful formation of
the SNARE complex creates a LG plasma membrane fusion pore through which degranulation occurs.
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The second proposed method of MTOC polarization is a
capture-shrinkage mechanism where anchored dynein pulls on
microtubules which depolymerize, effectively pulling the MTOC
to the synapse (135, 137). This mechanism is also plausible as
Taxol, which stabilizes microtubules thus preventing
depolymerization, and ciliobrevin, which inhibits dynein
activity, abrogated MTOC polarization in Jurkat T cells when
used together, whereas use of Taxol alone only slowed
polarization (135). Additionally, it was recently demonstrated
that the kinesin-4 family member KIF21B, regulates microtubule
organization and growth by inducing microtubule pausing and
depolymerization (138). Knockout of KIF21B in Jurkat T cells
resulted in decreased synaptic MTOC polarization attributed to
overgrown microtubules at the synapse. MTOC polarization and
microtubule organization was rescued by low dose vinblastine,
which induces microtubule depolymerization (138). Although,
Hooikaas et al. do not believe KIF21B directly participates in
dynein-driven capture-shrinkage, they do not exclude the
indirect impact excessively elongated microtubules may have
on this process. While capture-shrinkage may be the
predominant model when the MTOC and CS are diametrically
opposed, when modeled with cortical sliding, the two
mechanisms appear to work in synergy suggesting that a
mechanistic combination may be more appropriate and
applicable to a wider variety of interactions (139).

Furthermore, it was observed that MTOC polarization in
CTLs appeared to occur through a two-step mechanism where
LGs rapidly polarized to the synapse before slowing down to
complete their journey (135). This was proposed to occur
through the initial localization and function of dynein at the
central region of the CS (central SMAC) followed by dynein
activity at the pSMAC (140). The specific mechanisms regulating
NK cell MTOC polarization remain unclear and warrant further
investigation. In CTLs, it has been suggested that the strength of
TCR signaling may regulate the specific mechanisms of MTOC
polarization (131, 141). How this translates to NK cell signaling
is unknown, especially as it relates to strength of signaling
emanating from NK activating receptors.

Several cytoskeletal regulatory proteins are known to be critical
for NK cell MTOC polarization including the small GTPase
CDC42. CDC42 and WASP localize to the MTOC after LG
convergence and are required for polarization (10, 142). This is
mediated by CDC42 Interacting Protein (CIP4) which couples
both the actin and microtubule networks through binding tubulin,
CDC42, and WASP. In activated NK cells, CIP4 localizes with the
MTOC to the NK CS and could function to anchor the MTOC
through WASP or CDC42 activation (142). Furthermore, CIP4 is
not required for F-actin accumulation at the synapse suggesting its
primary role is on the LGs (142). ADAP, another cytoskeletal
regulatory protein could also help apply force to theMTOC, as it is
required for insertion of the microtubule plus-end into the ring-
like F-actin network at the peripheral region of the CS, known as
the peripheral supramolecular activation cluster (pSMAC)
(10, 136, 143). Although ADAP is required for CTL
degranulation, its role in NK cells is less clear with some
reporting that it may be dispensable for NK cell killing (144).
Frontiers in Immunology | www.frontiersin.org 9
4.3 Trafficking at the Cytotoxic Synapse
After MTOC polarization toward the CS, the clustered LGs need
to navigate the dense F-actin network at the cell cortex to dock and
fuse with the NK cell membrane (145, 146). Although LGs can
undergo kinesin-1 plus-ended microtubule movement (147), the
proximity of the polarized MTOC and LGs to the synapse is likely
sufficient to offload the LGs onto the F-actin network in CTLs
(132). Indeed, LG trafficking at the CS has been shown to be
independent of plus-ended microtubule movement, as
overexpression of RILP kept LGs clustered at the MTOC,
therefore preventing plus-ended trafficking, without any impact
on lysis (132). However, there are some reports of kinesin-1
regulating plus-ended movement in CTLs (148). Interestingly, it
was recently demonstrated that Arl8b regulates MTOC
polarization in NK cells through its interaction with the kinesin-
1 heavy chain KIF5B and SifA and kinesin-interacting protein
(SKIP) (149). Silencing of KIF5B, SKIP or Arl8b led to defective
MTOC polarization, suggesting that in NK cells, kinesin could
regulate LG trafficking at a much earlier cytolytic stage than in
CTLs (149). However, the role of kinesin in NK cell degranulation
and the specific mechanisms regulating lytic granule transfer to the
F-actin network are still unclear and require further investigation.
Lastly, in CTLs it was shown that HDAC6, which deacetylates a-
tubulin at Lys40 and interacts with kinesin-1 light chain, is
required for proper lytic granule migration to the CS (150).
Indeed, although CTLs taken from HDAC6-deficient mice
showed a decreased MTOC to target cell distance, lytic granules
appeared much more diffuse, suggesting a role for HDAC6 in LG
trafficking at the CS (150).

Clearances in the cortical F-actin at the cSMAC have been
identified in CTLs (132) and NK cells (151), suggesting a role for
an actin motor protein to mediate the final stretch of LG
trafficking to the membrane. Indeed, the movement of LGs on
F-actin has been shown to be dependent on the non-muscle actin
motor myosin IIA (Figure 3). Myosin IIA is a hexamer consisting
of two heavy chains, two regulatory light chains, and two essential
light chains (152, 153) and is constitutively associated with LGs as
single molecules rather than a filament (154). This association
with LGs could be mediated through direct recognition of
phosphatidylserine, binding of Rab27a, or through binding of
the WASP/WIP complex (153). Inhibition or depletion of the
myosin IIA heavy chain, MYH9, prevents degranulation but does
not impair conjugate formation, LG convergence, synaptic actin
reorganization, or MTOC polarization (153, 155, 156). The
importance of myosin IIA in NK cell function can be fully
appreciated in a group of diseases, now referred to MYH9-
related disease (MYH9-RD), caused by mutations in the heavy
chain MYH9 (Table 1) (157, 158). Patients with a truncation in
MYH9 had ablated cytotoxicity with intact conjugate formation,
MTOC convergence, and MTOC polarization (153). Interestingly,
the truncation affected both a region ofMYH9 important for cargo
binding and removed a constitutively phosphorylated serine
(MYH9 S1943) required for MYH9 recruitment to LGs (154).
Disruption of this key residue resulted in LGs that were present at
the synapse but unable to penetrate the F-actin network to reach
the membrane (154).
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The interaction of myosin IIA with LGs is also dependent on
the chaperone protein UNC-45A. UNC-45A colocalizes with
LGs in both resting and activated NK cells and polarizes with the
LGs to the NK CS upon target engagement (Figure 3) (159). Like
MYH9 deficiency, depletion of UNC-45A did not impair
conjugate formation, LG convergence, or MTOC polarization
but is critical for degranulation (159). Depletion of UNC-45A
reduces myosin IIa binding to F-actin without impacting myosin
IIA expression or stability (159). In addition to regulating
myosin IIA, UNC-45A could have an additional independent
role in regulating LG priming, docking and fusion, however, this
has not been fully elucidated in NK cells (160).
5 FUSION OF LYTIC GRANULES WITH
THE MEMBRANE AND DEGRANULATION

5.1 Lytic Granule Docking
After transport to the synapse, cytolytic granules dock at the
membrane and are prepared for release. This is mediated
through the small GTPase Rab27a which was first identified to
play a critical role in degranulation through the study of Griscelli
syndrome (GS) patients (Figure 3) (161). GS is a rare autosomal
recessive disease characterized by partial albinism due to
defective melanosome transport. Although originally described
as being caused by mutations in myosin Va (GS type 1), it was
discovered that mutations in Rab27a (GS type 2) is the
predominant disease etiology and is responsible for all GS
cases with hemophagocytic lymphohistiocytosis (Table 1) (161,
162). Interestingly, loss of Rab27a but not myosin Va resulted in
defective CTL and NK cell degranulation and cytotoxicity (161).
This degranulation defect was recapitulated in the mouse model
of GS type 2, the ashen mouse, where it was observed that LG
convergence and MTOC polarization was intact (163, 164),
however, LG membrane docking was not observed by electron
microscopy (165). Additionally, in the absence of stimulation,
Rab27a regulates microtubule and actin-dependent LG
movement at the cell cortex (166). Rab27a therefore regulates
LG movement in unstimulated NK cells and is required for the
final stages of NK cell-mediated cytotoxicity. Unsurprisingly,
Rab27a is also a key secretory protein required in the
degranulation of melanocytes, neutrophils, and pancreatic beta
cells, suggesting a similar method of action in the terminal stages
of LG export (167–169).

The crucial role of Rab27a in NK cell degranulation is
mediated through effector proteins which bind to active GTP-
bound Rab27 (170). So far eleven effector proteins have been
identified in humans and mice and can be categorized into three
distinct groups based on domain composition. The first group is
comprised of rabphilin and the synaptotagmin-like proteins
(Slp): Slp1, Slp2-a, Slp3-a, Slp4-a, and Slp5. The proteins
within this group contain an N-terminal Slp homology domain
(SHD), which mediates binding to the switch II region of GTP-
Rab27a, and two tandem C-terminal C2 domains (C2A and
C2B), which bind phospholipids (170). Slp1 and Slp2-a are
expressed in NK cells and CTLs and are thought to mediate
Frontiers in Immunology | www.frontiersin.org 10
LG docking and tethering via their C2 domains. However, their
role in cytotoxicity is still unclear as CTLs from Slp1- or Slp2-a-
deficient mice had intact degranulation (171). Furthermore,
expression of the SHD from Slp2-a, which has a dominant
negative effect, only resulted in a partial reduction in
cytotoxicity suggesting that there might be other important
proteins in complex with Rab27a.

The next group of GTP-Rab27a effectors is characterized by
the presence of the N-terminal SHD and the distinct absence of
C-terminal C2 domains (170). This group is comprised of Noc2
and the Slp homolog lacking C2 domain (Slac2) proteins: Slac2-
a, Slac2-b, and Slac2-c. However, no role for Slac2 proteins has
been identified in NK cells. The last group contains the protein
Munc13-4 which has an N-terminal C2 domain followed by a
Rab binding domain (RBD), a MUN domain, and a second C2
domain (170). Interestingly, Munc13-4 lacks a C1 domain, which
mediates DAG binding, found in other Munc13 family members
and the mechanism of Rab27 binding by the Munc13-4 RBD is
uncharacterized despite the importance of Munc13-4 in LG
exocytosis. In addition to the Rab27a interactors described
above, proteins involved in Rab27 prenylation, as well as
several proteins known to bind GDP-bound Rab27 including
CORONIN-3, RabGDI, and MAP kinase activating death
domain (MADD) have remained largely uncharacterized as it
pertains to their roles in NK cell-mediated killing (170, 172).

5.2 Lytic Granule Tethering
The tethering of cytolytic granules at the synapse refers to the
process by which LGs make initial interaction with the
membrane and are prepared for fusion. This is Rab27a-
dependent and is thought to be mediated by Slp1, Slp2, and
Munc13-4 (Figure 3) (165, 171). Munc13-4 mutations were first
identified as the cause of famil ia l hemophagocytic
lymphohistiocytosis type 3 (FHL3), where it was observed that
mutation of Munc13-4 resulted in impaired CTL degranulation
with intact conjugate formation and MTOC polarization
(Table 1) (165). Upon stimulation, Munc13-4 localizes to the
CS in CTLs and strongly colocalizes with LGs (162, 165).
Interaction with Rab27a is critical to Munc13-4 function as
wild type but not RBD-deficient or RBD mutant Munc13-4
was able to restore degranulation in FHL3 CTLs (173).
Interestingly, recruitment or retention of Rab27a and Munc13-
4 on LGs is co-dependent as Rab27a is not recruited or retained
on granules in FHL3 patients and Munc13-4 recruitment or
retention on LGs is impaired in GS type 2 patients (162, 173,
174). In contrast to Rab27a deficiency, however, Munc13-4 is not
required for LG docking at the membrane, suggesting its main
function is through the tethering of LGs (165). Indeed, both the
C2A and C2B domains are required for cytotoxicity as they
mediate binding to both lipids and soluble N-ethylmaleimide-
sensitive factor activating protein receptor (SNAREs) (175).
Munc13-4 may have a similar function to synaptotagmin in
neuronal degranulation, as C2 domain binding is calcium-
dependent, and thus Munc13-4 might be the calcium sensor
that triggers synchronous granule release (176, 177).
Interestingly, nicotine acid adenine dinucleotide phosphate
(NAADP), a Ca2+-mobilizing second messenger is involved in
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exocytosis through their regulation of the two-pore channel
(TPC) 1 and TPC2 which are present on lytic granules (178,
179). It was shown in CTLs that NAADP activates TPCs in a
manner that is independent of global Ca2+release stimulated by
IP3 suggesting that a local release of Ca

2+ facilitates lytic granule
vesicle fusion (178) (Figure 3). The molecular targets of this local
calcium release could be molecules involved in vesicle fusion
such as Munc13-4.

Interestingly, low levels of degranulation were observed in GS
type 2 deficiency, suggesting Munc13-4 might also partner with
other Rab proteins. Indeed Munc13-4 binds to Rab11 and Rab15
regulating recycling endosomes and Weibel-Palade body
exocytosis (170, 180, 181). In CTLs, it has been demonstrated
that Munc13-4 mediates the fusion of Rab11 positive recycling
endosomes with Rab27a positive late endosomes which are then
transported to the synapse for release (174, 181). However, this
does not seem to occur in NK cells. Despite low levels of perforin
in recycling endosomes, Rab11 and other recycling endosome
markers are not tightly associated with NK cell synapses. This is
further confirmed as Munc13-4 deficiency does not impact
release of IFNg and TNFb, which is mediated through a Rab11
positive recycling endosome pathway (182), and recycling
endosome inactivation does not greatly impact preformed LG
release (174).

5.3 Lytic Granule Priming
LG priming is mediated by the assembly and recruitment of
SNARE complex proteins that facilitate the fusion of the LG with
the NK plasma membrane at the CS. This is dependent on
Munc13-4, which promotes SNARE complex formation through
its interaction with the SNARE protein syntaxin 11 (Figure 3)
(183, 184). Munc13-4 carries out this function by opening the
conformation of syntaxin 11 through the removal of its
chaperone protein, syntaxin binding protein 2 (STXBP2),
which is required for syntaxin 11 stability and subcellular
localization (173, 185, 186). Interestingly, overexpression of
syntaxin 11 in NK cells and activated CTLs increased their
cytolytic potential (187, 188). Like Munc13-4 mutations,
mutations in syntaxin 11 cause FHL4 which presents as a
defect in NK cell degranulation with intact synapse formation
and LG polarization (Table 1; Figure 3) (189). This was also
recapitulated in the mouse model of FHL4 (184). STXBP2
mutations detrimental to its interaction with syntaxin 11 cause
FLH5, which has the same phenotype as FLH4 (Table 1) (190,
191). Interestingly defective degranulation in FLH4 and FLH5
can partly be rescued by IL-2 treatment. This is thought to occur
through alternate pairing as IL-2 induces expression of syntaxin-
3, which replaces syntaxin 11 in FHL4, and STXBP1, which
replaces STXBP2 in FLH5 (192). Additionally, syntaxin 7 was
shown to be required for CTL degranulation but has not been
investigated in NK cells (193). Although the function of
alternative pairing was investigated in FLH5 patients, the roles
of other syntaxins, such as syntaxin-1 and syntaxin-7, warrant
further investigation (194).

Lytic granule priming and SNARE complex assembly was
recently shown to be supported by septin filaments (195). Septins
are GTP-binding proteins which can be organized into 4 subgroups
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(represented by septin 1, septin 3, septin 6, and septin 7), and can
assemble into hetero-hexamers and hetero-octamers, which can
assemble to form complex structures (196). Septin 7 is the only
member of its subgroup and is indispensable for septin complex
formation. Interestingly, depletion of septin 7 decreases septin 1 and
septin 2 expression and impairs NK cell degranulation without
impacting conjugate formation or lytic granule accumulation at the
CS (195). Despite being concentrated to the cell cortex away from
the CS, septin 7 puncta were observed in apposition to lytic granules
and were found in the crude lysosomal fraction of NK cells (195).
Mass spectrometry analysis of septin 2 crude lysosomal fraction
immunoprecipitates revealed associations with lytic granule
regulatory proteins including syntaxin 11 and STXBP2, which were
confirmed by proximity ligation assay and immunoprecipitation
(195). Additionally, depletion of septin 7 or septin stabilization
with forchlorfenuron, decreased association of STXBP2 with
syntaxin 11. This suggests that septin filaments stabilize SNARE
complex assembly and are critical for facilitating syntaxin11 and
STXBP2 interaction and ultimately, LG membrane fusion.

5.4 Lytic Granule Fusion
The final stage of LG degranulation is the fusion of the LGs with
the plasma membrane, which is mediated by formation of trans-
SNARE complexes. Due to the number of SNARE protein
combinations required to make a complete fusion complex, they
have not been fully defined in NK cells (197). In human CTLs,
membrane fusion is promoted by STXBP2 which forms a trans-
SNARE complex with STX11, SNAP23, and VAMP8 (198). In
mice, however, this is mediated by VAMP2 and VAMP8 which
colocalize with LGs. Loss of VAMP2 and VAMP8 in mice resulted
in impaired degranulation and cytotoxicity (199–201), suggesting
other VAMPs cannot compensate for the loss of VAMP2 and
VAMP8. Indeed, in NK cells, VAMP4 and VAMP7 are required
for NK cell cytotoxicity, while VAMP1, VAMP3 and VAMP8
have limited colocalization with LGs and are therefore likely
dispensable for SNARE complex assembly (197, 202). In
addition to STX11, STX6 may also play a role in NK cell
SNARE complex formation as they interact with VAMP7 and
VAMP4, and other syntaxins, like STX4, have been shown to
regulate mast cell degranulation (Figure 3) (203–206). After
SNARE complex formation, a fusion pore between the plasma
membrane and NK cells are formed through which degranulation
occurs. Interestingly, the size and fusion status of the pore
determines the amount of granule content release, which in turn
may regulate LG membrane recycling (197). In neuronal cells this
has been called the “kiss and run” pathway, although the
mechanisms regulating this process in NK cells are unclear,
especially in the context of cell-to-cell interactions and warrant
further investigation.
6 SELF-PROTECTION OF NK CELLS
UPON DEGRANULATION

We have seen that the acidic environment and low calcium
concentration within the LGs provide protection of NK cells
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from the activities of cytolytic proteins. However, upon
degranulation of LGs into the extracellular environment
(where calcium is rich and neutral), the cytolytic contents
become fully functional. NK cells achieve selective and efficient
degranulation by forming a specialized interface with the
conjugated target cells upon formation of the CS. This
confined space between NK cells and the target cells, also
known as a synaptic cleft, enables NK cells to avoid killing
unwanted bystander cells and thus, preventing collateral damage.
However, the synaptic cleft exposes the NK cell itself to risk from
its own degranulated cytolytic molecules. Secreted perforin can
bind the plasma membrane (PM) of both NK and bound target
cells via hydrophobic interactions and create pores on both cell
types. However, autolysis of NK cells or CTLs was found to occur
in less than 5% of NK cells during the direct cytotoxicity process
(207–209). This suggests that NK cells have protective
mechanism(s) that prevent the activities of cytolytic molecules
on the source NK cells. One study suggested that cathepsin B
exposed to the PM upon cytolytic granule secretion provides
protection of NK cells from perforin activity (210). In another
study, surface exposed LAMP1 upon degranulation was found to
prevent perforin binding to the PM of NK cells (211). However,
both protection mechanisms by specific surface membrane
proteins do not seem to be exclusive and provide complete
protection, since both mechanisms were also found to be
dispensable for self-protection under certain circumstances
(212, 213). Recently, it was shown that the PM of NK cells and
CTLs is composed of high order and densely packed lipids,
which prevents perforin binding (209, 213). Furthermore, upon
degranulation, the fusion of the LG membrane (which has even
higher lipid orders than the PM) to the PM at the CS provides
additional protection by acting as a perforin-resistant lipid shield
(209). This enables unidirectional attack of perforin specific to
the target cell membrane (which generally contains lipid with
lower density than NK cells), protecting NK cells from
unwanted autolysis.
7 SERIAL KILLING OF NK CELLS

For effective immune surveillance, NK cells need to keep
surveying potential target cells and kill as many target cells as
needed. In physiological situations like acute viral infections or
solid tumor environment where viral loads or tumor cells
outnumber NK cells, NK cells need to perform multiple
rounds of killing to eradicate surrounding target cells. Indeed,
NK cells have been shown to kill multiple target cells in a
sequential manner (4, 214–216). For NK cells to achieve serial
killing, NK cells need to meet the following requirements: 1) NK
cells need to contain sufficient LG contents, and 2) NK cells need
to have a mechanism(s) to continuously synthesize and/or refill
cytolytic contents. It was recently reported that NK cells
degranulate approximately 10-20 LGs (which are about 5-10%
of total LGs) to mediate cytotoxicity and minimal release of only
2-4 LGs were sufficient to induce target cell death (102). These
observations suggest that a single LG is very effective in inducing
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cell death and a single NK cell has a capacity to perform multiple
rounds of killing. Upon repeated CD16 activation, NK cells
presented a gradual decrease in both the intracellular perforin
levels and the amount of secreted perforin (217). Interestingly,
this reduction in perforin secretion could be restored to its initial
level when the NK cells were activated by different activating
receptors like NKG2D or NKp30. However, similar restoration
was not made when NK cells were stimulated via CD16 followed
by repeated stimulations via NKG2D. These results suggest that
the order of NK receptors engaged by specific ligands on the
target cells plays an important role in the serial killing activity of
NK cells. Upon activation of NK cells by target cells, it was shown
that NK cells induce rapid de novo synthesis of LGs (218).
Interestingly, this rapid biogenesis of LGs was found to
originate from endosomal routes instead of budding and
maturing from the trans-Golgi network. In this regard, NK
cells activated by the target cells were found to go through
active endocytosis internalizing cytolytic granule components
including LAMP1, granzyme B, and MUNC13-4 (219–221). It is
important to note that inhibition of the endocytic process of NK
cells resulted in a reduction of cytotoxicity. This suggests that
endocytosis of cytolytic contents upon degranulation might also
be an important process that enables NK cells to perform serial
target killing.

Upon delivery of the LGs to the target cell, NK cells need to
disassemble the established CS and detach from the target cell.
However, compared to the well-established understanding of the
initial target recognition and cytotoxicity process, how NK cells
determine the termination of the killing and mechanisms behind
this detachment process remain elusive. Recently, it was shown
that successful cytotoxicity that leads to the death of the target
cells is a determinant factor for NK cell detachment (207, 222).
Target cells going through apoptosis were found to downregulate
NK cell-activating ligands such as MICA, MICB, and B7-H6 as
well as adhesion molecules including CD54 and CD102 (222).
Along with these events, NK cells also reduce expression of
activating receptors upon activation, which might decrease
further activation required for cytotoxicity as well as signals
necessary for sustained integrin-mediated adhesion (217,
222–224).

Despite the above interesting observations, many important
questions on serial killing of NK cells remain. First, a more
detailed understanding the of the mechanisms contributing to
LG re-generation after each cytotoxic event is needed. Treatment
of NK cells with IL-2 or IL-15 was reported to restore perforin
and granzyme B levels during serial killing (214). Elucidating the
molecular pathways behind the restoration processes will be
important. Additionally, defining the replenishment process,
which merges both recycled and newly synthesized cytolytic
contents to form a complete LG will be an interesting topic. In
the detachment process of NK cells, it remains unclear how fast
the downregulated NK activating receptors become re-expressed
at the normal level. For example, the proteolytic cleavage of
CD16 upon activation can be a critical problem in antibody-
based anti-cancer therapy, since CD16 expression is required for
serial ADCC against tumor cells (217). In this case, it will be
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important to elucidate the signaling pathway inducing CD16 re-
expression and to explore the therapeutic options of using NK
cells expressing non-cleavable CD16. Interestingly, it was
recently shown that NK cells utilize LG-mediated cytotoxicity
for their initial killing events and then switch to death receptor-
mediated cytotoxicity (4). The physiological purpose of this
phenomenon remains unclear. It is also possible that death
receptor-mediated killing (which is slower than cell-mediated
cytotoxicity) is revealed in the end as LG is exhausted in NK cells.
Regardless, it will be interesting to better define the crosstalk
between these cytotoxicity pathways during serial killing. In
addition, persistent activation of NK cells can also promote
NK cell exhaustion (225–227). Therefore, NK exhaustion
during serial killing is also a very important topic in NK cell-
mediated therapy.
8 CONCLUDING REMARKS

The spontaneous cytotoxic activity of NK cells is not only the
first line of defense against microbial infections or tumors but is
also an ultimate requirement for clearance of these diseases. NK
cells eliminate unhealthy/stressed cells by directly secreting
apoptosis-inducing molecules toward the target cells. To lyse
target cells without any damage on NK cells themselves or
healthy bystander cells, NK cell-mediated cytotoxicity is
achieved via a series of tightly regulated molecular processes.
Advances in human genetic research, genome editing, and
microscopic technologies combined with diverse fluorescent
Frontiers in Immunology | www.frontiersin.org 13
sensors have enabled us to better elucidate this molecular
regulation with improved temporal and spatial resolution.
Future advances in uncovering the mechanistic insights of NK
cell cytotoxicity will be invaluable to reveal novel therapeutic
opportunities to treat primary immunodeficiency syndrome
patients with impaired NK cell functions and to improve the
efficacy of current approaches in NK cell-based anti-
cancer therapy.
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