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Screening for early-stage lung cancer with low-dose computed tomography is
recommended for high-risk populations; consequently, the incidence of pure ground-
glass opacity (pGGO) is increasing. Ground-glass opacity (GGO) is considered the
appearance of early lung cancer, and there remains an unmet clinical need to
understand the pathology of small GGO (<1 cm in diameter). The objective of this study
was to use the transcriptome profiling of pGGO specimens <1 cm in diameter to construct
a pGGO-related gene risk signature to predict the prognosis of early-stage lung
adenocarcinoma (LUAD) and explore the immune microenvironment of GGO. pGGO-
related differentially expressed genes (DEGs) were screened to identify prognostic marker
genes with two machine learning algorithms. A 15-gene risk signature was constructed
from the DEGs that were shared between the algorithms. Risk scores were calculated
using the regression coefficients for the pGGO-related DEGs. Patients with Stage I/II
LUAD or Stage IA LUAD and high-risk scores had a worse prognosis than patients with
low-risk scores. The prognosis of high-risk patients with Stage IA LUAD was almost
identical to that of patients with Stage II LUAD, suggesting that treatment strategies for
patients with Stage II LUAD may be beneficial in high-risk patients with Stage IA LUAD.
pGGO-related DEGs were mainly enriched in immune-related pathways. Patients with
high-risk scores and high tumor mutation burden had a worse prognosis and may benefit
from immunotherapy. A nomogram was constructed to facilitate the clinical application of
org May 2022 | Volume 13 | Article 8723871
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the 15-gene risk signature. Receiver operating characteristic curves and decision curve
analysis validated the predictive ability of the nomogram in patients with Stage I LUAD in
the TCGA-LUAD cohort and GEO datasets.
Keywords: GGO (ground-glass opacity), LUAD, TCGA, GEO, prognosis
INTRODUCTION

Screening for early-stage lung cancer with low-dose computed
tomography (LDCT) is recommended for high-risk populations;
consequently, the incidence of pulmonary ground-glass opacity
(GGO) is increasing (1). On CT, GGO appears as hazy opacities
that do not obscure underlying pulmonary vessels or bronchial
structures (2). GGO can manifest as benign or malignant lesions,
including inflammation,preinvasive lesions, or adenocarcinomas (1).
Typically, early lung adenocarcinomas (LUADs) in situ appear as
pure ground-glass opacities (pGGOs), while advanced
adenocarcinoma may appear as mixed ground-glass opacities
(mGGOs) (3). pGGO and mGGO have significantly different
prognoses, and solid LUADs are associated with shorter overall
survival (OS) and recurrence-free survival compared to lesions
with a GGO component (4, 5).

Guidelines on the management of GGO have been published
(6–8); however, differentiating malignant and benign GGOs and
clinical decision-making on the need for and timing of surgical
resection are controversial (6, 9, 10). Persistent GGOs may
represent premalignant conditions. Surgery involving wedge
resection or segmentectomy, with or without regional lymph node
dissection, is the most effective therapy for these patients (5, 11, 12).
MostpatientswithGGOhave satisfactory5-yearOSafter appropriate
therapy (4, 5); however, GGOmay grow or demonstrate malignancy
in approximately 20% of patients with pGGO and 40% of patients
withmGGO(10, 13).Abetter understanding of the natural history of
GGO, improved technology for diagnosis and follow-up, and
establishing a precise size threshold for intervention may advance
the management of patients with GGO (6, 13–17).

There is an unmet clinical need to understand the pathology of
small GGO (<10 mm in diameter) (18–20), the factors associated
with GGO growth and progression (21), and how evolving
technology, including next-generation sequencing (NGS)
combined with clinicopathological information, can facilitate a
more accurate diagnosis of early-stage lung cancer (22). The
objective of this study was to use the transcriptome profiling of
pGGO specimens <1 cm in diameter to 1) construct a 15-gene risk
signature to predict the prognosis of early-stage LUAD and 2)
explore the immune microenvironment of GGO. Findings may
inform a new classification strategy for early-stage lung cancer and
improve diagnosis, follow-up, and treatment strategies.
METHODS

Specimen Collection
All specimens were collected from patients undergoing surgery
in the Second Xiangya Hospital of Central South University from
org 2
May 2020 to May 2021. Specimens were stored at -80°C until
analysis. Inclusion criteria were 1) pGGO < 1 cm in diameter
detected with high-resolution CT (HRCT), 2) the patient
underwent surgical resection and pathological analysis for
clinical decision-making, and tumors were staged according to
the American Joint Commission on Cancer (AJCC) 8th edition
TNM staging system, and 3) postoperative pathological diagnosis
confirmed LUAD. Finally, 30 paired samples of pGGO and
adjacent normal tissue were sent to BGI Tech SOLUTIONS
(Hongkong) for high-throughput transcriptome sequencing. The
clinical characteristics of the patients with pGGO are
summarized in Table 1.

Data Standardization and Differential
Gene Expression Between pggo and
Adjacent Normal Tissue
The high-throughput transcriptome sequencing dataset was
normalized using the “edgeR” package in R (23). Differentially
expressed genes (DEGs) between pGGO and adjacent normal
tissue samples were obtained using the ‘‘Limma’’ package in
R (|log FC|> 1, FDR P < 0.05) (24). pGGO-related DEGs were
TABLE 1 | Clinical characteristics of patients.

Clinical characteristics of patients

Patients (n = 30)
NSCLC patients 30 (50.0%)
Non-cancer controls 30 (50.0%)

Genders (n = 30)
Male 8 (26.7%)
Female 22 (73.3%)

Age (n = 30)
≤ 60 25 (83.3%)
> 60 5 (16.7%)

Sampling methods (n = 30)
Bronchoscopy 24 (80.0%)
Lobectomy 6 (20.0%)

Smoking status (n = 30)
Smoker 10 (33.3%)
Non-smoker 20 (66.7%)

TNM stage (n = 30)
I–II 30 (100%)
III–IV 0 (0%)

pathological type
Adenocarcinoma in situ 6 (20.0%)
Minimally invasive adenocarcinoma 7 (23.3%)
Poorly-differentiated adenocarcinoma 4 (13.3%)
Moderately-differentiated adenocarcinoma 5 (16.7%)
Well-differentiated adenocarcinoma 8 (26.7%)

GGO type
Single pure GGO 20 (66.7%)
Multiple pure GGO 10 (33.3%)
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exhibited in a heatmap and volcano plot, which were generated
by the “pheatmap, ggrepel, dplyr’’ package in R (25). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were
conducted to identify the function of the DEGs.

Non-Negative Matrix Factorization to
Identify Molecular Subtypes
Next, we extracted the expression data of the pGGO-related
DEGs in TCGA-LUAD stage I-II datasets. We also performed
the non-negative matrix factorization (NMF) method to cluster
the LUAD stage I–II patients. NMF is an unsupervised learning
technique for dimension reduction that decomposes a large
measurement matrix into two low-rank non-negative matrices
(26). The cophenetic correlation coefficient, based on the
consensus matrix and proposed by Brunet et al. (2004), is used
to measure the stability of clusters (27). NMF can classify
samples better than consensus clustering. mRNA expression
profiles and the clinical data for 497 patients with LUAD
(Stages I–II, n=347; Stages III–IV, n=121) were downloaded
from The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/); follow-up information was available for each
patient. The ID of the pGGO-related DEGs was used to extract
expression data from the TCGA-LUAD cohort. The expression
of the pGGO-related DEGs was verified in the TCGA-LUAD
cohort. NMF was used to cluster patients with Stage I–II LUAD
in the TCGA cohort. The clustering effect was evaluated with
progression-free survival (PFS) and overall survival (OS).

Identification of pGGO-Related
DEGs and Differences in the
Tumor Microenvironment
Between the NMF Subgroups
Differences in pGGO-related DEGs between NMF subgroups
were obtained using the “Limma” package in R. DEGs that were
differently expressed between pGGOs and normal adjacent
tissues, as well as differentially expressed between NMF
subgroups, were identified. GO and KEGG pathway
enrichment analyses were conducted to identify the function of
the DEGs (28). The immune cell content of each NMF subgroup
was analyzed using the “MCPcounter” package in R (29). HLA
expression was compared between NMF subgroups. Based on a
previous study, six immune subtypes were defined according to
immune infiltrates. The relationship between the six immune
subtypes and NMF subgroups was explored (30).

Identification of pGGO-Related DEGs With
Prognostic Value Using LASSO Cox
Regression and Support Vector
Machine—Recursive Feature Elimination
pGGO-related DEGs were screened with LASSO cox regression
and support vector machine—recursive feature elimination
(SVM-RFE) to identify prognostic marker genes (31). Feature
selection for multiclass classification problems is challenging in
machine learning. Existing multi-class gene selection algorithms
are often not Pareto optimal. In this study, two machine learning
Frontiers in Immunology | www.frontiersin.org 3
algorithms, LASSO cox regression, and SVM-RFE, were used to
achieve Pareto optimality (32, 33). LASSO cox regression is used
for data dimensionality reduction and feature selection. The
regression coefficient is penalized by L1, some coefficients are
shrunk to zero, features with non-zero regression coefficients are
selected, and 10-fold cross-validation is used to evaluate the
prediction model (34). SVM-RFE is often used for gene selection.
SVM-RFE ranks features from most important to least, and least
important features are iteratively eliminated (35, 36).. Venn
analysis was used to identify 15 pGGO-related DEGs that were
shared between the LASSO cox regression and SVM-RFE
machine learning algorithms.

Validation of the pGGO-Related DEGs by
the Quantitative Real-Time Reverse
Transcription-Polymerase Chain Reaction
Quantitative real-time reverse transcription–polymerase chain
reaction (qRT-PCR) was used to validate the expression of the
pGGO-related DEGs with a prognostic value. RNA was extracted
from 24 pGGO samples, and qRT-PCR was performed for 7
pGGO-related DEGs. Primer sequences were designed from
Primer3web (https://primer3.ut.ee) (Table 2). qRT-PCR was
performed with a SYBR Green super-mix reagent, and b-actin
was the internal reference gene. The relative change in gene
expression was calculated using the 2DDCt method. Results are
presented as the mean of 3 replicates.

Establishment and Validation of the
pGGO-Related DEG Signature
Multivariate Cox regression was used to calculate regression
coefficients for the pGGO-related DEGs with prognostic values.
A prognostic signature was constructed using the following
formula: risk score = coefficient(gene1) * exp(gene1) +…+
coefficient (gene n) * exp (gene n). A deviation plot was
constructed to show the expression profile of the 15 pGGO-
related DEGs with prognostic values. Patients in the TCGA-
LUAD cohort were stratified into a high-risk or low-risk group
using the median risk score as a cut-off. The 15-gene risk
signature was verified in the GSE50081 and GSE72094
datasets, which were downloaded from the Gene Expression
TABLE 2 | The primer sequence of the DEGs in risk signature.

Primer Primer sequence (5'to 3')

PCP2-F GAGAAGACGGAGGAAGGCTC
PCP2-R CTCTGGCTCTTGGTGGTCTG
DKK1-F CCATTGACAACTACCAGCCG
DKK1-R TTTTGCAGTAATTCCCGGGG
KCNV1-F CGGGAATTCTTGTCTTGGCC
KCNV1-R CTCCATGATACTCCGGGCAT
FAIM2-F AGCTTCCAGACCAAGTTCGA
FAIM2-R TGTAAATACACCCGCTCCCA
FGF5-F AGTGGTATGTGGCCCTGAAT
FGF5-R TGGCTTGATAGGGCTAGGTG
NPAS1-F CTTGTGAGAGCAGAGTCAGC
NPAS1-R CTGCAGCCAACGGTAGTAAC
LINC00563-F ATCTGGGATCATCTGGGTGG
LINC00563-R CTTCCTGCATTCCTTCGCTC
May 202
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Omnibus–NCBI (https://www.ncbi.nlm.nih.gov/geo/).
Kaplan–Meier survival curves, decision curve analysis (DCA),
risk plots, and time-dependent receiver operating characteristic
(ROC) curves were used to investigate the predictive power of
the prognostic signature in the TCGA-LUAD cohort and GEO
datasets (37, 38). The relationship between clinicopathologic
factors, immune scores, clusters, and risk scores was examined
using Pearson’s chi-squared test (39).

Clinical Application of the
pGGO-Related DEG Signature
Univariate and multivariable Cox proportional hazard models
were used to analyze independent associations between clinical
outcomes. A nomogram based on clinicopathologic factors and
risk scores was constructed. A calibration curve displayed the
nomogram’s predictive power. Gene set enrichment analyses
(GSEAs) in low-risk and high-risk groups were performed using
the “clusterProfiler, enrichplot, DOSE, org.Hs.eg.db “package in
R (40). Enrichment scores (ESs) that represent the degree to
which a gene set is overrepresented at the top or bottom of a
ranked list were calculated (https://www.gsea-msigdb.org/gsea/
index.jsp). Tumor mutation burden (TMB) data were retrieved
for the TCGA-LUAD cohort. The relationship between TMB
and the 15-gene risk signature was evaluated using the
“reshape2” package in R. The immunophenoscore (IPS) in
patients with LUAD was downloaded from the Cancer
Immunome Database (TCIA) (https://tcia.at/home) (41). The
relationship between IPS and the 15-gene risk signature was
evaluated with Pearson correlation analysis.

Statistical Validation
All statistical analyses were conducted with R software
(Version 4.0.1).

NMF algorithms were performed using the “NMF, survival”
package (42). Kaplan–Meier survival curves were plotted using the
“survminer” package. SVM-RFE was performed using the “e1071,
kernlab, caret” package (43). The nomogram was constructed
using the “rms” package. The predictive ability of the pGGO-
related DEGs signature was evaluated using the “SurvivalROC”
package. The deviation plot was constructed using the “ggpubr”
package. Correlation analysis was performed using the Pearson
method. Differences between subgroups were evaluated using the
Wilcoxon rank-sum test. mRNA profiles from the GEO datasets
were normalized using the “sva, Limma” package. All figures were
plotted using the “ggplot” package. For the GO and KEGG
analyses, a P-value <0.05 and FDR q-value <0.25 were
considered statistically significant.
RESULTS

Identification of DEGs Between
pGGO and Adjacent Normal
Tissue and NMF Clustering
A total of 1,734 DEGs (|log FC| > 2, P < 0.05) between pGGO and
adjacent normal tissue samples were identified; of these, 648 DEGs
Frontiers in Immunology | www.frontiersin.org 4
were upregulated, and 1,086 DEGs were downregulated
(Figures 1A, B and Table S1). GO and KEGG pathway
enrichment analyses suggested that the DEGs were mainly
involved in immune-related pathways, such as immune response-
regulating signaling pathways and lymphocyte-meditated immunity
pathways (Figure 1C). Next, we extract the mRNA expression data
of the pGGO-related DEGs in TCGA-LUAD stage IA datasets and
perform the NMF consensus cluster analysis. The best cluster
number was chosen as the coexistence correlation coefficient K
value = 2 (Figure 1D); therefore, patients with Stage I–II LUAD in
the TCGA cohort (n = 347) were divided into two clusters
(Figure 1E and Table S2). Patients in Cluster 1 had better PFS
and OS compared to patients in Cluster 2 (Figures 1F, G).

Identification of pGGO-Related
DEGs and Differences in the
Tumor Microenvironment
Between the NMF Subgroups
A total of 208 pGGO-related DEGs between Cluster 1 and
Cluster 2 were identified; of these, 33 pGGO-related DEGs
were upregulated, and 175 pGGO-related DEGs were
downregulated (Figure 2A and Table S3). KEGG pathway
enrichment analysis suggested that the pGGO-related DEGs
were mainly enriched in immune-related pathways, including
the cytokine−cytokine receptor interaction pathway and IL-17
signaling pathway (Figure 2B). GO function analysis suggested
that the pGGO-related DEGs were mainly enriched in immune-
related processes, including the humoral immune response
process and immunoglobulin receptor-binding process
(Figure 2C). HLA gene expression data showed that HLA-L,
HLA-DQA2, HLA-DQB2, and HLA−DRB6 were highly
expressed in Cluster 1 (Figure 2D). A Sankey diagram showed
a relationship between the cluster subtype and six immune
subtypes defined in a previous study (Figure 2E and Table
S4). Violin plots suggested that Cluster 2 was characterized by
a high expression of B-cell lineages, endothelial cells, cytotoxic
lymphocytes, CD8 T cells, monocyte-lineage cells, fibroblasts,
and NK cells; meanwhile, Cluster 1 was characterized by a high
expression of neutrophils (Figures 2F–M).

Verification of pGGO-Specific DEGs Using Machine
Learning Algorithms.

Lasso cox regression and SVM-RFE identified the 23
(Figures 2N, O and Table S5) and 19 (Figure 2P and Table
S5) most representative prognostic pGGO-related DEGs,
respectively, from among the 208 pGGO-related DEGs
between Cluster 1 and Cluster 2. Venn analysis was used to
identify 15 DEGs that were shared between the machine learning
algorithms (Figure 3A). These included DKK1, NPAS1,
AL357143.1, KCNV1, AC068228.1, AC239859.6, and FGF5
which were highly expressed in pGGO samples, and
AC087763.1, PCP2, FAIM2, AL357143.1, AC022148.1,
AC021678.2, LSP1P2, and LINC00563 that were highly
expressed in adjacent normal tissue samples (Figure 3B). This
expression profile was validated by qRT-PCR (Figure S1).
Regression coefficients were used to identify a 15-gene risk
signature. A forest plot showed that FGF5, AC239859.6,
May 2022 | Volume 13 | Article 872387
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FIGURE 1 | Identification of DEGs between pGGO and adjacent normal tissue and NMF clustering. (A) Heatmap of the DEGs (|log FC|> 1, FDR P < 0.05); (B) Volcano
map of the DEGs (|log FC|> 1, FDR P < 0.05); (C) KEGG pathway enrichment analysis of the DEGs; (D, E) NMF clustering of patients with Stage I–II LUAD in
the TCGA-LUAD cohort (D shows the NMF rank survey and E shows a heatmap of the consensus matrix; the best cluster number was chosen as the coexistence
correlation coefficient K value = 2); (F, G) Kaplan–Meier survival curves for the NMF subgroups (F shows OS and G shows PFS). DEGs, differentially expressed genes;
GGO, ground-glass opacity; KEGG: Kyoto Encyclopedia of Genes and Genomes; NMF, non-negative matrix factorization; LUAD, lung adenocarcinoma; PFS,
progression-free survival; OS, overall survival.
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FIGURE 2 | Identification of pGGO-related DEGs between Cluster 1 and Cluster 2 (A) Heatmap of the pGGO-related DEGs (|log FC|> 1, FDR P < 0.05); (B, C) KEGG
(B) and GO (C) enrichment pathways analysis of the pGGO-related DEGs; (D) HLA gene expression data for Cluster 1 and Cluster 2; (E) Sankey diagram showing the
relationship between the cluster subtype and six immune subtypes defined in a previous study; (F–M) Violin plots showing the expression of the immune cells in Cluster 1
and Cluster 2; (N–P) Selection of prognostic pGGO-DEGs in Cluster 1 and Cluster 2 using Lasso cox regression (N, O) and SVM-RFE (threshold value = 19) (P). DEGs,
differentially expressed genes; GGO, ground-glass opacity; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; NMF, non-negative matrix
factorization; SVM-RFE: support vector machine—recursive feature elimination. ns represent non significant, * represent P≤ 0.05.
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NPAS1, KCNV1, AC068228.1, and AL353746.1 were risk factors
in LUAD; while DKK1, LINC00563, AC021678.2, AL357143.1,
AC022148.1, LSP1P2, AC087763.1, PCP2, and FAIM2 were
protective factors in LUAD (Figure 3C).

The TCGA-LUAD cohort was stratified into a high-risk
group and low-risk group (n=234) based on their median risk
score (Table S6). Kaplan–Meier survival analysis showed that
patients in the high-risk group had worse OS than patients in the
low-risk group (P<0.001) (Figure 3D). The 15-gene risk
signature was predictive of patients with Stage IA LUAD in the
TCGA-LUAD cohort. This was expected as pGGO is recognized
as a component of TNM Stage IA LUAD according to the AJCC
8th edition TNM staging system. Patients with Stage IA LUAD
and high-risk scores in the TCGA-LUAD cohort had worse OS
than patients with Stage IA LUAD and low-risk scores (P<0.001)
(Figure 3E). There was no significant difference in OS between
patients with Stage IA LUAD and high-risk scores and patients
with Stage II LUAD (Figure 3F). To confirm the feasibility of the
15-gene risk signature, information for patients with LUAD from
the GSE50081 and GSE72094 datasets was downloaded,
combined, and stratified into a high-risk group (n=263) and
low-risk group (n=262) based on the median risk score from the
TCGA-LUAD cohort (Table S7). All patients, and patients with
Stage IA LUAD, in the high-risk group had worse OS than
patients in the low-risk group (Figures 3G, H); there was no
significant difference in OS between patients with Stage IA
LUAD and high-risk scores and patients with Stage II LUAD
(Figure 3I). Time-dependent ROC curve analysis at 1, 3, and 5
years showed that the 15-gene risk signature had better
predictive performance than other clinical traits in the TCGA-
LUAD cohort (1 year: AUC=0.811; 3 years: AUC=0.779; 5 years:
AUC=0.780; Figures 3J–L). DCA showed that the 15-gene risk
signature had more clinical benefits than other clinical traits
(Figures 3M–O).

Clinical Application of the
15-Gene Risk Signature
A heatmap showed that the TNM stage, immune scores, NMF
subgroup, gender, T stage, and N stage were significantly
associated with risk scores in TCGA datasets (Figure 4A,
P<0.05). Most patients with high-risk scores were men
(Figure 4A, P<0.001) and had higher-grade tumors (Figure 4B).
Among the 15 pGGO-related DEGs in the gene risk signature,
DKK1, NPAS1, AL357143.1, KCNV1, AC068228.1, AC239859.6,
and FGF5 were highly expressed in the high-risk group, and
AC087763.1, PCP2, FAIM2, AL357143.1, AC022148.1,
AC021678.2, LSP1P2, and LINC00563 were highly expressed in
the low-risk group (Figure 4C). Risk curves based on a per-sample
risk score also validated the predictive power of the 15-gene risk
signature (Figures 4D, E). Univariate and multivariate COX
regression analyses showed that the 15-gene risk signature is an
independent prognostic factor in patients with Stage I–II LUAD
(Figures 4F, G: univariate Cox regression analyses: P<0.001,
HR = 1.041; 95% CI: 1.029–1.054; multivariate Cox regression
analyses: P<0.001, HR = 1.038; 95% CI: 1.024–1.052).
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A nomogram incorporating clinical factors and the 15-gene
risk signature was constructed for visualization and convenient
clinical application (Figure 5A). Calibration curves validated the
ability of the 15-gene risk signature to predict OS in the TCGA-
LUAD cohort and LUAD dataset obtained from the GEO
(Figures 5B, C). The ROC curve and DCA analysis validated
that the nomogram had better predictive performance than the
15-gene risk signature alone at 1, 3, and 5 years in patients with
Stage I LUAD from the TCGA-LUAD cohort (Figures 5D–I)
and GEO (Figures 5J–O).

The Relationship Between the 15-Gene
Risk Signature, TMB, and the IPS
In the TCGA cohort, the GSEA suggested that the cell cycle, DNA
replication, Parkinson’s disease, pyrimidine metabolism, and
ribosome pathways were activated in patients with high-risk
scores; meanwhile, allograft rejection, asthma, the intestinal
immune network for IgA production, primary immunodeficiency,
and systemic lupus erythematosus pathways were activated in
patients with low-risk scores (Figures 6A, B). High-risk patients
had higher TMB than low-risk patients (Figure 6C and Table S8).
Patients were stratified into a high-TMB group and a low-TMB
group based on the median TMB value. There was no significant
difference in OS between patients in the high-TMB group and low-
TMB group; however, patients with a high-risk score and a high
TMB had the worse OS (Figure 6D). Patients with a low-risk score
and high TMB had the best OS (Figure 6E). Patients with high-risk
scores always had low levels of immune infiltration (Figure 6F).
Patients with a low-risk score and tumors that were CTLA4 positive
and PD1 negative had a high IPS, suggesting that these patients may
benefit from immunotherapy (Figure 6G, Table S9).
DISCUSSION

The understanding of the pathogenesis of early-stage LUAD has
increased with the advent of high-throughput transcriptome
sequencing technology; however, the knowledge of the etiology
and natural progression of pGGO is limited, especially for pGGO
<1 cm in diameter (44). In this study, we identified DEGs
between pGGO <1 cm in diameter and the adjacent normal
tissue. Functional analysis of the DEGs suggested that the
immune microenvironment plays an important role in LUAD
tumorigenesis. NMF identified the 2 subgroups (Cluster 1 and
Cluster 2) of patients with Stage I–II LUAD in the TCGA-LUAD
cohort. The pGGO-specific DEGs between Cluster 1 and Cluster
2 mainly participated in immune-related pathways. Immune
infiltrates in Cluster 2 were characterized by a high expression
of B-cell lineages, endothelial cells, cytotoxic lymphocytes, CD8
T cells, monocyte-lineage cells, fibroblasts, and NK cells, while
Cluster 1 was characterized by a high expression of neutrophils.
Survival analysis showed that patients in Cluster 1 had a better
prognosis than patients in Cluster 2. Taken together, these data
suggest that a higher level of immune infiltrates may indicate a
poor prognosis in patients with Stage I–II LUAD.
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FIGURE 3 | The construction and verification of the risk signature. (A) Venn analysis was used to identify 15 DEGs that were shared between the machine learning
algorithms (Lasso cox regression and SVM-RFE); (B) Expression data of the 15 prognostic pGGO-related DEGs; (C) Forest plot of the 15 prognostic pGGO-related
DEGs (red: risk factors; blue: protective factors); (D–I) Kaplan–Meier survival curves. The TCGA-LUAD cohort was stratified into a high-risk group and low-risk group.
Patients in the high-risk group had a worse prognosis than the patients in the low-risk group in the overall TCGA-LUAD cohort (D) and patients with Stage IA LUAD
(E). There was no significant difference in OS between patients with Stage IA LUAD and high-risk scores and patients with Stage II LUAD (F). Patients with LUAD
from the GSE50081 and GSE72094 datasets were stratified into a high-risk group and low-risk group. Patients in the high-risk group had a worse prognosis than
the patients in the low-risk group in the overall GEO-LUAD dataset (G) and patients with Stage IA LUAD (H). There was no significant difference in OS between
patients with Stage IA LUAD and high-risk scores and patients with Stage II LUAD (I). (J–L) R Time-dependent ROC curve analysis at 1 (J), 3 (K), and 5 years (L)
verified the predictive performance of the 15-gene risk signature in the TCGA-LUAD cohort. (M–O) DCA at 1 (M), 3 (N), and 5 years (O) verified the predictive
performance of the 15-gene risk signature in the TCGA-LUAD cohort. DEGs, differentially expressed genes; GGO, ground-glass opacity; ROC, receiver operating
characteristic; LUAD, lung adenocarcinoma; SVM-RFE, support vector machine—recursive feature elimination; DCA, decision curve analysis.
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FIGURE 4 | Clinical application of the 15-gene risk signature. (A) Heatmap showing that the TNM stage, immune scores, NMF subgroup, gender, T stage, and N st
expression levels of the 15 DEGs were different between the high- and low-risk groups. (B) Violin plots showing the relationship between the risk score and TNM stag
signature (C) and risk curves in the TCGA-LUAD cohort (D, E). (F, G), Univariate (F) and multivariate (G) Cox regression analyses suggested that the 15-gene risk sig
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FIGURE 5 | Construction and verification of the nomogram. (A) The nomogram was constructed using the TNM stage, risk signature, T stage, N stage, and gender.
(B, C) Calibration curves verifying the performance of the nomogram at 1, 3, and 5 years in the TCGA-LUAD cohort (B) and GEO datasets (C). (D–F) ROC curve
analysis verifying the performance of the nomogram at 1 (D), 3 (E), and 5 years (F) in patients with Stage I LUAD in the TCGA cohort. (D–F) DCA verifying the
performance of the nomogram at 1 (G), 3 (H), and 5 years (I) in patients with Stage I LUAD in the TCGA cohort; (J–L) ROC curve analysis verifying the performance
of the nomogram at 1 (J), 3 (K), and 5years (L) in patients with Stage I LUAD in the GEO datasets. (M–O) DCA verifying the performance of the nomogram at 1
(M), 3 (N), and 5 years (O) in patients with Stage I LUAD in the GEO datasets. ROC, receiver operating characteristic curve; LUAD, lung adenocarcinoma; DCA,
decision curve analysis. * represent P≤ 0.05, ** represent P≤ 0.01, *** represent P≤ 0.001, and **** represent P≤ 0.0001.
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FIGURE 6 | Relationship between the 15-gene risk signature, TMB, and the IPS (A, B) GSEA for patients in the high- and low-risk groups; (C) TMB in patients in the high-
and low-risk groups; (D) Kaplan–Meier survival curves showed no significant difference in OS between patients in the high-TMB group and low-TMB group; (E) Kaplan–Meier
survival curves combining the risk score and TMB; (F) Relationship between the 15-gene risk signature, TMB, and immune cells; (G), Relationship between the 15-gene risk
signature and the IPS. ROC, receiver operating characteristic; LUAD, lung adenocarcinoma; IPS, immunophenoscore; TMB, tumor mutation burden; OS, overall survival.
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pGGO-related DEGs were screened to identify prognostic
marker genes with two machine learning algorithms. A 15-gene
risk signature was constructed from the DEGs that were shared
between the algorithms. Risk scores were calculated using the
regression coefficients for those pGGO-related DEGs. As pGGO
is recognized as a component of TNM Stage IA LUAD according
to the AJCC 8th edition TNM staging system, we evaluated the
predictive ability of the 15-gene risk signature in patients with
Stage IA LUAD. Patients with Stage IA LUAD and high-risk
scores had worse OS than patients with Stage IA LUAD and low-
risk scores, but the prognosis of high-risk patients with Stage IA
LUAD was almost identical to that of patients with Stage II
LUAD. These data suggest that treatment strategies for patients
with Stage II LUAD may be beneficial in high-risk patients with
Stage IA LUAD. The clinical application of the 15-gene risk
signature was verified in two GEO datasets (GSE50081 and
GSE72094). Findings showed no significant difference in OS
between patients with Stage IA LUAD and high-risk scores and
patients with Stage II LUAD. ROC curve analysis and DCA
confirmed the risk signature’s ability to predict Stage I LUAD in
the TCGA cohort. An enhanced nomogram was constructed to
facilitate the clinical application of the risk signature. The
predictive ability of the nomogram was verified in patients
with Stage I LUAD in the TCGA cohort and GEO datasets.
ROC curve analysis and DCA indicated that the nomogram
combining clinicopathologic characteristics and the 15-gene risk
signature had better predictive performance than the 15-gene
risk signature alone.

GSEA was used to further explore the 15-gene risk signature.
Cell cycle, DNA replication, Parkinson’s disease, pyrimidine
metabolism, and ribosome pathways were activated in patients
with high-risk scores, while allograft rejection, asthma, the
intestinal immune network for IgA production, primary
immunodeficiency, and systemic lupus erythematosus
pathways were activated in patients with low-risk scores. High-
risk patients had higher TMB than low-risk patients, and patients
with high-risk scores and high TMB values had a poor prognosis.
These data imply that the tumor immune microenvironment
may be a prognostic factor in patients with LUAD and that
patients with low-risk scores and CTLA4-positive and PD1-
negative tumors may benefit from immunotherapy.

Some of the DEGs in the gene risk signature have been
characterized. DKK1 is a specific inhibitor of the canonical
Wnt pathway (45). DKK1 may reduce tumor cell migration
and invasion by inhibiting the expression of b-catenin (46).
The downregulation of DKK1 may allow tumor cells to escape
NK-cell-mediated cytotoxicity. FAIM2 has been identified as an
antiapoptotic protein that may protect cells from Fas-induced
apoptosis. FAIM2 may promote bone metastasis through the
Wnt signaling pathway in patients with non-small-cell lung
cancer (47, 48). FGF5 is involved in many biological processes,
including embryonic development, mitosis, and cell growth by
regulating the cell cycle and VEGF pathway (49, 50). PCP2 is a
member of the R2B subfamily and is considered a tumor
suppressor that influences the development of many cancers
(51). PCP2 can regulate the proliferation and differentiation of
Frontiers in Immunology | www.frontiersin.org 12
megakaryocyte cells (51). The data characterizing the other
DEGs in the 15-gene risk signature are limited.

To the authors’ knowledge, the present study is the first to
focus on the prognostic significance of pGGO-related DEGs in
early-stage LUAD. As GGO is considered the appearance of early
lung cancer and an important prognostic parameter in early-
stage LUAD, our pGGO-related gene signature may contribute
to patient classification, and have a clinical value in the diagnosis
of patients with early-stage LUAD, and inform individualized
treatment decisions. Patients with early-stage LUAD have a
relatively good prognosis; however, the current staging system
is imprecise for prognostic prediction. There is a need for novel
prognostic signatures that identify high-risk patients with early-
stage LUAD and guide clinical practice. Several reports have
described robust gene risk signatures in LUAD, but only a few
have focused on early-stage LUAD. Krzystanek et al. analyzed
the gene expression from seven published LUAD cohorts and
developed a 7-gene prognostic signature to enable better
stratification and treatment of patients with Stage I LUAD. Wu
et al. used public LUAD cohorts to establish a 21-immune-
related gene prognostic signature for estimating OS in early-stage
LUAD, recognizing the importance of the immune system in
cancer initiation and progression. Peng et al. identified DE
lncRNAs in individual cancer patients by comparing the
disrupted ordering of expression levels of lncRNAs to stable
normal ordering. They developed two lncRNAs’ (C1orf132 and
TMPO-AS1) prognostic signatures for patients with Stage I–II
LUAD who had not received adjuvant therapy.

In conclusion, we constructed a 15-pGGO-related DEG risk
signature to predict the prognosis of early-stage LUAD. Risk
scores were calculated using the regression coefficients for these
pGGO-related DEGs. Patients with Stage IA LUAD and high-
risk scores had poor prognoses with mortality approaching
patients with Stage II LUAD. Therefore, treatment strategies
for patients with Stage II LUAD may be beneficial in high-risk
patients with Stage IA LUAD. A prospective randomized clinical
trial is needed to confirm these findings.
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