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Anti-aGal IgE antibodies mediate a spreading allergic condition known as aGal-syndrome
(AGS). People exposed to hard tick bites are sensitized to aGal, producing elevated levels
of anti-aGal IgE, which are responsible for AGS. This work presents an immunotherapy
based on polymeric aGal-glycoconjugates for potentially treating allergic disorders by
selectively inhibiting anti-aGal IgE antibodies. We synthesized a set of aGal-
glycoconjugates, based on poly-L-lysine of different degrees of polymerization
(DP1000, DP600, and DP100), to specifically inhibit in vitro the anti-aGal IgE antibodies
in the serum of aGal-sensitized patients (n=13). Moreover, an animal model for aGal
sensitization in GalT-KO mice was developed by intradermal administration of hard tick’
salivary gland extract, mimicking the sensitization mechanism postulated in humans. The
in vitro exposure to all polymeric glycoconjugates (5-10-20-50-100 µg/mL) mainly
inhibited anti-aGal IgE and IgM isotypes, with a lower inhibition effect on the IgA and
IgG, respectively. We demonstrated a differential anti-aGal isotype inhibition as a function
of the length of the poly-L-lysine and the number of aGal residues exposed in the
glycoconjugates. These results defined a minimum of 27 aGal residues to inhibit most of
the induced anti-aGal IgE in vitro. Furthermore, the aGal-glycoconjugate DP1000-
RA0118 (10 mg/kg sc.) showed a high capacity to remove the anti-aGal IgE antibodies
(≥75% on average) induced in GalT-KO mice, together with similar inhibition for circulating
anti-aGal IgG and IgM. Our study suggests the potential clinical use of poly-L-lysine-
based aGal-glycoconjugates for treating allergic disorders mediated by anti-aGal
IgE antibodies.

Keywords: aGal-syndrome, poly-L-lysine-based aGal-glycoconjugates, anti-aGal IgE inhibition, GalT-KO
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INTRODUCTION
Type-I allergic conditions are disorders mediated by IgE, eliciting
hypersensitivity to various allergens (1). IgE antibodies
orchestrate an abnormal adaptive response against non-
infectious, harmless, exogenous, and environmental substances,
including glycoproteins from grass, pollen, dust mites, insect
venom, and food (1). The number of people affected by such
disorders is continuously growing globally (2, 3). Plasma
exchange, immunosuppressive drugs, and monoclonal
antibodies are potential immunotherapies focused on reducing
IgE levels (4). Omalizumab (Xolair®), an unspecific treatment
directed to total IgE, is the only anti-IgE therapy approved to
treat moderate to severe asthma and chronic idiopathic urticaria
(5). However, natural IgE has been described to participate in the
physiological host resistance against certain parasites such as
arthropods and helminths (6, 7). Thus, the total removal of IgE is
a concern.

Increasing evidence describes the functional involvement of
anti-aGal antibodies in different human disorders (8), including
aGal-syndrome (AGS) (9, 10). These antibodies bind to
Gala1,3Gal and Gala1,3Galb1,4GlcNAc oligosaccharides
(aGal) (11), although with higher affinity to the free
trisaccharide (12). Primates, including apes, and Old-World
monkeys, do not express the aGal epitopes due to an evolutive
inactivation of the gene coding for the a1,3-galactosyltransferase
enzyme (13, 14); consequently, they naturally produce these
antibodies. Some evidence links their origin to the gut
microbiota (15, 16). aGal residue is expressed in glycolipids
and glycoproteins of the cell membrane of different
microorganisms, including viruses, bacteria, and protozoans
(8). Hence, it has been associated with a possible protective
role of anti-aGal antibodies (17). However, the existing
epidemiological evidence is controversial. High serological
levels of anti-aGal IgM at the start of dialysis therapy have
been described as a predictor of later risk for mortality and
enteric peritonitis in peritoneal dialysis patients (18).
Furthermore, anti-aGal IgM was associated with protection
against malaria in infants (19) and children >4 years old (20).
On the contrary, anti-aGal IgG has been associated with a higher
risk of malaria infection in children (19, 20). Additionally, anti-
aGal IgM and IgG, but not IgE antibodies, were significantly
higher in uninfected than Plasmodium falciparum- and
Mycobacterium tuberculosis-infected individuals (21). Similarly,
experimental models have also demonstrated protection against
lethal Trypanosoma cruzi challenge (22) and malaria by
prophylactic vaccination with an aGal-based compound and
oral administration of Escherichia coli O86:B7 (20), respectively.
Interestingly, oral administration of the same bacterium protects
turkeys from developing acute aspergillosis. Nevertheless, this
effect was not associated with augmented anti-aGal IgY levels
but with an apparent reduction of anti-aGal IgA in the lungs of
infected animals (23).

AGS symptoms occur after red meat intake (24) or exposition
to other products containing aGal like Cetuximab (25). Hard
ticks are associated with the anti-aGal IgE sensitization and AGS
spreading (26, 27) (Figure 1). The prevalence of this pathological
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condition is higher in countries where individuals are in contact
with ticks (27). The natural habitat of this type of tick is being
significantly impacted by climate change, occupying ever larger
regions worldwide (28). Therefore, a notable increase in patients
with AGS is expected in the coming years. Currently, the
seventeen countries where there are registries of hard ticks as
the causative agent of the aGal syndrome include Australia
[Ixodes holocyclus (29)] and the United States [Amblyomma
Americanum (30)]. In Europe, the endemic tick is Ixodes ricinus,
found in Germany (31), France (32), Spain (33), Belgium (34),
Switzerland (35), Sweden (36), United Kingdom (37), Italy (38)
and Norway (39). The list of affected countries also includes Korea
[Ixodes nipponensis (40)], Japan [Haemaphysalis longicornis (41)],
Panama [Ixodes cajennense (42)], Brazil [Amblyomma sculptum
(43)], Ivory Coast [Amblyomma variegatum (44)] and South
Africa (45). Hard ticks’ saliva, salivary glands, and midgut
contain proteins decorated with aGal residues (42, 45).
Sensitization is postulated to start with the allergen uptake by
APCs in the epidermis (46). Then, the sensitization mechanism
promotes the class switch recombination in B cells and the
subsequent secretion of IgE antibodies in the skin-draining
lymph nodes (46, 47). Anti-aGal IgE-switched B cell precursor
seems to be a naive non-switched B cell (48). Re-exposure to the
allergen leads to the activation and degranulation of mast cells and
basophils. Moreover, the allergic reaction is triggered 3-6 h after
mammalian meat ingestion due to the binding of anti-aGal IgE
antibodies to aGal epitopes expressed in the meat (24, 49).
Regarding Cetuximab allergy, anti-aGal IgE binding to aGal
residues in the monoclonal antibody induces an immediate
systemic allergic reaction that can be severe enough to trigger a
life-threatening anaphylactic shock (50, 51).

Patients with AGS exhibit various clinical symptoms,
including urticaria, pruritus, angioedema, and systematic
anaphylaxis. In addition, some patients have reported specific
symptoms, such as nausea, indigestion, diarrhea, and abdominal
discomfort (51, 52).
FIGURE 1 | Hard ticks as the cause for aGal syndrome. Worldwide map
reflecting (in green) the 17 countries in which hard ticks from different species
have been detected to be causative of aGal syndrome (AGS). The list of
countries includes Australia, United States, Germany, France, Spain, Belgium,
Switzerland, Sweden, United Kingdom, Italy, Norway, Korea, Japan, Panama,
Brazil, Ivory Coast, and South Africa.
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Anti-aGal antibodies (IgM, IgG) have previously been
removed in rodents and primates using a poly-L-lysine-based
aGal-glycoconjugate (GAS914), without side effects, minimal
complement activation, and no sensitization (53). GAS914 was
developed to overcome the hyperacute and acute vascular
xenograft rejection in pig-to-primate transplantation primarily
caused by anti-aGal antibodies (53). However, GAS914 never
reached the clinic due to the participation of anti-non-aGal
antibodies in the mentioned rejection mechanism (54).
Additionally, the development of a1,3-galactosyltransferase
gene-knockout transgenic pigs made unnecessary the clinical
development of GAS914 for this indication (55, 56).

The lack of sensitization, together with the high capacity of
GAS914 to inhibit anti-aGal antibodies (IgM and IgG), prompted
us to study the in vitro and in vivo removal of anti-aGal IgE
antibodies with a set of poly-L-lysine-based aGal-glycoconjugates as
a potential treatment for diseases mediated by such antibodies.
MATERIALS AND METHODS

Polymeric aGal-Glycoconjugates
GAS914 (Novartis Pharma AG, Basel, Switzerland) is a poly-L-
lysine backbone with an average degree of polymerization (DP)
of 1,000 L-lysines (DP1000) and with 23-28% of lysines
derivatized with the oligosaccharide Gala1,3Galb1,4GlcNAc-
(aGal) (53). GAS914 was used as anti-aGal inhibitor control.
Analysis of 1H-NMR allowed determining the load of aGal in
GAS914 (Figure S1).

The RA01-compounds were specifically synthesized for this
work from a linear poly-L-lysine (57) of a final DP of 100, 600,
1000 (DP100, DP600, and DP1000, respectively) and increasing
loads of Gala1,3Galb1,4GlcNAc- in the final structure. DP1000
glycoconjugates were produced following the synthetic route
described by Duthaler et al., 2010 (58). For DP100 and DP600
glycoconjugates, poly-L-lysine hydrobromide was acylated with a
calculated amount of Gala1,3Galb1,4GlcNAc (aGal)-sp-Ad-ONSu
active ester in DMSO in the presence of Et3N. The residual amino
groups were acylated (in the same reaction mixture) with an excess
of glycolic acid acetate succinimide ester AcOCH2(CO)ONSu in the
presence of Et3N. To remove acetyl protecting groups by hydrolysis,
the reaction mixture was diluted with a twofold volume of water,
and Et3N was added (2% of the volume of the solution).
Glycopolymers were isolated by gel-permeating chromatography
on Sephadex LH-20 in MeCN-water 30:70 by volume. Fractions
contained pure conjugate were evaporated to ~2 mL volume and
freeze-dried. The purity and composition of the synthesized
glycoconjugates (the percentage of modification of poly-L-lysine
with Gala1,3Galb1,4GlcNAc) were determined by the 1H NMR
spectroscopy (Figure S2). The complete list of resulting polymeric
glycoconjugates is shown in Table S1. Figure 2 provides the
general structure for this set of glycopolymers.

Human Serum Samples
Normal Human Sera (NHS) from donors of the Blood Bank of
the Hospital Universitari de Bellvitge were used as healthy
Frontiers in Immunology | www.frontiersin.org 3
controls (CN, n=8). Serum samples from aGal-sensitized
subjects (PT, n=13) were selected from previous epidemiological
studies (59), where anti-aGal IgE prevalence in individuals with
acute urticaria or anaphylaxis from different geographical areas
of Spain was studied.

In Vitro Inhibition of Anti-aGal With
Polymeric aGal-Glycoconjugates
To test the inhibition of anti-aGal antibodies, human serum
samples (PT, n=13) were incubated for 15-17 h under mild
orbital shaking (225 rpm at 4°C) with each glycopolymer at
growing concentrations (5-10-20-50-100 µg/mL). The final
volume of the reaction was set at 100 µL. Vehicle (PBS)-treated
serum was incubated under the same conditions as a control
(baseline). After incubation, the serum samples containing the
different glycopolymers or PBS (control for each serum) were
conveniently diluted to determine the unbound fraction of the
different anti-aGal isotypes, by ELISA, following the general
protocol previously described (15). Briefly, Nunc MaxiSorpTM

96-well flat-bottom plates (Thermo Fisher Scientific, Waltham,
MA, USA) were coated with 2.5 mg/mL of Gala1,3Galb1,4GlcNAc
glycan conjugated to human serum albumin (HSA). After
washing and blocking steps, serum samples diluted in PBS
(1:100 for IgM and IgG, 1:25 for IgA, and 1:10 for IgE) were
added to the wells and incubated for 1 h at 25°C. After washing,
the incubated for 1 h at 25°C with the corresponding horseradish
peroxidase (HRP)-labeled anti-human or anti-mouse secondary
antibodies diluted in PBS. o-Phenylenediamine dihydrochloride
(OPD) was used as HRP substrate, and incubated at 25°C in the
dark. The reaction was stopped with 3N hydrochloric acid (HCl).
FIGURE 2 | General structure of polymeric aGal-glycoconjugates. Poly-L-
lysine backbone (degree of polymerization, DP: 100, 600, and 1000) were
derivatized with the trisaccharide Gala1-3Galb1-4GlcNAcb-sp, (sp = -O(CH2)

3NH2). Percent of modification with aGal = a (9, 12, 18, 27 and 34%).
Residual amino groups of poly-L-lysine were acylated with glycolic acid.
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The resulting absorbance was registered at 492 nm using a
PowerWave™ XS Microplate Reader (Biotek, Winooski, VT,
USA). The resulting data were graphed as optical density units.
Moreover, the in vitro data was the result of three independent
experiments. The inhibition rate for each glycopolymer
(expressed as a percentage of anti-aGal inhibition) was
calculated according to the levels of anti-aGal antibodies
determined in baseline (PBS) and treated (glycopolymer)
conditions for each serum.

a1,3-Galactosyltransferase Knocked Out
(GalT-KO) Mice
This study was performed in 48 mice of 24-32 weeks-old (sex
par i ty) , in which the gene cod ing for the a1 ,3 -
galactosyltransferase enzyme had been knocked out (GalT-KO
mice) and was derived from a highly inbred colony with a hybrid
genetic background (B6xCBAx129sv) (60). Animals were
handled and housed as previously described (15). Procedures
concerning all animals were supervised and approved by the
ethics committee for animal experimentation of Bellvitge
Biomedical Research Institute (IDIBELL) and the Catalonia
Government (Record FUE-2018-00931758). The care, as well
as the handling of the animals, were following the Guide for the
Care and Use of Laboratory Animals that the US National
Institutes of Health published (NIH Publication n° 85–23
revised 1996) as well as the European Agreement of Vertebrate
Animal Protection for Experimental Use (86/609). The
procedure for euthanasia was established following the
European Directive on protecting animals used for scientific
purposes (2010/63/EU). Death was never considered a
human endpoint.

Amblyomma sculptum Salivary
Gland Extract
As previously described (61), salivary gland extract (SGE) was
produced from 200 females of unfed A. sculptum. To obtain the
SGE, females were washed with sterile water, and their salivary
glands were individually dissected in saline (0.9% NaCl). Each
pair of glands were transferred to 1.5 mL tubes containing saline
solution, placed in an ultrasonic bath for 40 seconds, centrifuged
at 14,000g for 5 min. Next, the supernatant was transferred to a
new tube, dried under vacuum at 56°C to yield an amount of
3.11 mg, and kept at -20°C until use. The amount of protein in
the sample was measured by Bradford et al., 1976 (62) using
bovine serum albumin as standard. Sterile PBS was conveniently
used as a vehicle to prepare the final aqueous solution injected as
an allergen to the GalT-KO mice.

GalT-KO Mice Sensitization
GalT-KO mice were randomly separated into three different
groups (sex parity). Group 1 (n=16) was a double negative
control (PBS id. or sc. for sensitization and treatment,
respectively). Group 2 (n=16) and 3 (n=16) were sensitized
with two doses of 20 mg id. of the salivary gland extract (days
0 and 7, Figure 3). Animals were then challenged with three
consecutive doses of 5 mg id. of the extract on days 14, 15, and 16
to induce the production of anti-aGal IgE antibodies (63, 64).
Frontiers in Immunology | www.frontiersin.org 4
Group 2 was a negative control for the treatment (vehicle: PBS
sc.). In Group 3, animals were treated with three consecutive
DP1000-RA0118 doses (10 mg/kg, sc.) on days 16 (4 h after last
challenge), 17, and 18. The challenge was repeated in two
animals of Group 3 one week after the last treatment with
DP1000-RA0118 (day 26). Although each experimental group
was composed of sixteen animals, not all the parameters were
determined in the totality of mice due to welfare reasons. In the
case of multiple blood extractions, volume never exceeded 7.5%
of the total blood volume (124-158 µL of fresh blood in ~30 g
mice) weekly (65). Animal blood was collected by controlled
submandibular bleeding on days -3 (baseline), 16 (3 h after
challenge), 18 (3 h after treatment), and 28 (after rechallenging,
two animals of Group 3) as previously described (66).

Total Circulating Mouse IgM, IgG1, IgG2a,
IgG2b, IgG3, and IgE by ELISA
Total mouse serum immunoglobulins (n=6) were determined on
days -3, 16, and 18 using the commercial RayBio® mouse ELISA
kit following manufacturer instructions (RayBiotech, GA, USA).

White Blood Cells by Flow Cytometry
Flow cytometry analysis was performed on a Gallios analyzer
(Beckman Coulter, IN, USA) equipped with violet (405 nm), blue
(488 nm), and red (633 nm) solid-state lasers as an excitation
source. Purified rat anti-mouse CD16/CD32 was added to the
fresh blood samples to block non-antigen-specific binding
(Beckton Dickinson, CA, USA). After 5 min incubation at 25°C,
fluorochrome-conjugated antibodies (Table S2, Beckton
Dickinson, CA, USA) were added to the samples. BD FACS™

lysing solution was then added to lyse red blood cells. Samples
were homogenized with vortex and incubated for 5 min at 25°C
in the dark. After centrifugation (5 min, 3,220g, 25°C), the
supernatant was discarded, and the pellet was resuspended in
400 µL of PBS for immunophenotyping of different White Blood
FIGURE 3 | Scheme of GalT-KO mice sensitization for anti-aGal IgE
production. Group 1: double negative control (PBS) (n=16). Group 2 (n=16)
and Group 3 (n=16) (aGal-sensitized mice) were treated with PBS (control)
and DP1000-RA0118, respectively. Black arrows: bleeding (for immunological
determinations), blue arrows: PBS id. (control of sensitization) or sc. (control
of treatment), yellow arrows: salivary gland extract (20 or 5 µg id.), dark-red
arrows: DP1000-RA0118 10 mg/kg sc.
March 2022 | Volume 13 | Article 873019
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Cells (WBC) for every experimental group (n=6) on days -3, 16,
and 18. Events collected from fresh blood mouse samples were
displayed in a CD45 vs. side scatter intensity (SS INT) plot to
discard debris and define a total WBC population. Every single
FACS determination recorded about 150,000 total events, of
which 50,000 were CD45 positive. Fluorescence was collected
through the corresponding bandpass filters for each indicated
surface cell marker. Data were analyzed using KALUZA software
(Beckman Coulter, CA, USA).

Statistics
GraphPad Prism statics software was used for analysis and data
graphing. The Gaussian distribution of data was checked by the
D’Agostino-Pearson omnibus normality test (alpha = 0.05), and
homogeneity of variances was determined by the F test (alpha =
0.05). Most of the statistical analyses were performed using
paired or unpaired parametric t-tests. The Wilcoxon matched-
pairs signed-rank and Mann-Whitney tests (unpaired data
analysis) were used as non-parametric tests when data did not
follow a Gaussian distribution. Tukey and Sidak were used as
multiple comparison tests. Differences were considered
statistically significant when p<0.05 (*: p<0.05; **: p<0.01;
***: p<0.001; ****: p<0.0001), ns: non-significant.
RESULTS

Prevalence of Anti-aGal IgE in aGal-
Sensitized Subjects
The prevalence of anti-aGal IgE in aGal-sensitized subjects has
been extensively reviewed (67–69). We confirmed by ELISA the
significantly elevated circulating levels of anti-aGal IgE
antibodies in patients compared to controls. PT also showed
higher serological levels for the rest of the anti-aGal isotypes
(IgM, IgG, and IgA) than CN (Figure 4).

Influence of the Multivalent aGal Exposure
on the Inhibition of Anti-aGal IgE Antibodies
Anti-aGal antibodies inhibition with monovalent compounds
has been demonstrated as inefficient due to their low affinity for
single oligosaccharides (53). Previously, GAS914 has shown a
maximal increase in avidity (relative to the monomer) by anti-
aGal IgM and IgG antibodies (53, 70). Nevertheless, there is no
data on whether the anti-aGal IgE inhibition could be affected
using multivalent aGal compounds. For that, we synthesized two
glycopolymers composed of a backbone of 1,000 L-lysines
(DP1000), with 9 and 18% of lysine residues derivatized with
Gala1,3Galb1,4GlcNAc- (DP1000-RA0109 and DP1000-
RA0118, respectively). GAS914 (DP1000) with 27% aGal load
(Figure 5) was used as a positive control for anti-aGal inhibition.

It was previously demonstrated that the chromatographic
affinity purification process could favor the preferential binding
and elution of IgM over the rest of anti-aGal isotypes masking
the real inhibitory capacity of polyacrylamide-based aGal-
conjugates (71). Therefore, we used in the in vitro inhibitory
Frontiers in Immunology | www.frontiersin.org 5
studies human serum from aGal-sensitized patients instead of
affinity-purified fractions of anti-aGal antibodies.

Overall, the exposure to all polymeric glycoconjugates mainly
inhibited anti-aGal IgE and IgM isotypes, with a lower inhibition
effect on the IgA and IgG isotypes, respectively (Figure 5). We
found very similar inhibition rates for all the anti-aGal isotypes
when comparing DP1000-RA0118 vs. GAS914 (positive
control). Indeed, for IgE, DP1000-RA0118 showed slightly
higher inhibition rates than GAS914. Additionally, reducing
the aGal load in the same poly-L-lysine backbone to 9%
(DP1000-RA0109) significantly reduced the inhibitory capacity
of the glycopolymer (Figure 5). Hence, DP1000-RA0118 was
selected for the in vivo proof of concept.

In Vivo Inhibition of Anti-aGal IgE in
Sensitized Mice
The preliminary data obtained in vitro prompted us to
investigate, as proof of concept, the anti-aGal IgE inhibitory
capacity of DP1000-RA0118 in a small animal model of aGal
sensitization. Therefore, the main objective of this study was to
induce anti-aGal IgE in a relevant animal model and to study its
intracorporeal removal with DP1000-RA0118.
FIGURE 4 | Serological levels of anti-aGal antibodies by ELISA. aGal-
sensitized patients (PT, n=13, blue dots) showed significantly higher
serological anti-aGal antibodies levels (expressed as optical density units, 492
nm) compared to healthy subjects (CN, n=8, grey dots). To detect each
immunoglobulin isotype, serum samples were accordingly diluted: 1:100 for
IgM and IgG, 1:25 for IgA, and 1:10 for IgE. Unpaired t-test analysis was
performed (**: p < 0.01; ****: p < 0.0001).
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GalT-KO mice are considered an adequate model for aGal
sensitization and production of anti-aGal IgE antibodies (15, 61,
72, 73). The sensitization (Figure 3) was conducted in
immunologically mature GalT-KO mice (15). Significant
induction of anti-aGal IgE antibodies was achieved in all the
animals of Groups 2 and 3 on day 16 (Figure 6). This induction
was also accompanied by significantly augmented anti-aGal IgG
and IgM. Elevated levels of anti-aGal IgE antibodies were again
induced on day 28 in two mice of Group 3 rechallenged with the
SGE on day 26 (Figure 6). The treatment with DP1000-RA018
(day 18) produced a significant decrease in the levels of anti-
aGal IgE in Group 3 (≥75% on average, Figure 6) as well as in
anti-aGal IgG and IgM compared to the induced condition
(Group 3, day 16). This decrease in the levels of anti-aGal can
only be attributed to the in vivo inhibitory capacity of DP1000-
RA0118 because in Group 2 (treated with PBS) the levels of these
antibodies remained constant from day 16 (end of challenge) to
day 18 (end of PBS treatment).

Impact of Sensitization and Treatment
With DP1000-RA0118 on Humoral and
Cellular Immune Mediators
Anti-aGal antibodies (IgM, IgG) have previously been removed
in rodents and primates using GAS914 (53). Since these studies
were conducted in healthy animals (no sensitized), we
investigated whether some of the humoral and cellular
mediators of the immune system were affected by the
sensitization protocol and the treatment with DP1000-RA0118.

Regarding immunoglobulins, despite the increase obtained
for anti-aGal antibodies after sensitization for Groups 2 and 3,
the total IgM, IgG1, IgG2a, IgG3 remained constant during the
evaluated days for all the experimental groups (Figure 7).
However, total IgM slightly decreased from day 16 to 18 only
FIGURE 5 | Influence of aGal load on anti-aGal antibodies inhibition. Serum samples from aGal-sensitized patients (n=13) were incubated with DP1000-RA0109,
DP1000-RA0118 or GAS914 (positive control of inhibition) at growing concentrations (5-10-20-50-100 µg/mL). PBS-treated serum was similarly incubated as a
baseline condition. After incubation, samples were conveniently diluted to determine by ELISA the unbound fraction of the different anti-aGal isotypes (1:100 for IgM
and IgG, 1:25 for IgA, and 1:10 for IgE). The inhibition rate for each glycopolymer (expressed as a percentage of anti-aGal inhibition) was calculated according to the
quantity of anti-aGal antibodies determined in baseline (PBS) and treated (glycopolymer) conditions for each serum. IgE green line, IgG orange line, IgM pink line, and
IgA purple line.
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FIGURE 6 | A. sculptum salivary gland extract significantly induced anti-aGal
antibodies in GalT-KO mice. Animals from Group 1 (in blue, n=6) are a double
negative control (PBS for sensitization and treatment, respectively). Animals of
Group 2 (in green, n=6) and 3 (in dark-red n=6) were sensitized to aGal
according to Figure 2. In Group 3, after sensitization, animals were treated
with three consecutive DP1000-RA0118 doses (10 mg/kg, sc.) on days 16,
17, and 18. The challenge was repeated in two animals of Group 3 on day
26, one week after the last treatment with DP1000-RA0118. Red columns
represent the anti-aGal inhibition on day 18 (% referred to sensitization on
day 16) in Group 3 (treated with DP1000-RA0118). Wilcoxon matched-pairs
signed-rank was used as a non-parametric test (*: p < 0.05).
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in Group 3. The treatment with DP1000-RA0118 (day 18)
removed preexisting and induced anti-aGal IgM, which
impacted the total IgM levels measured. Interestingly, a slight
increase in total IgE and IgG2b subtype was observed for Groups
2 and 3 after mice sensitization (day 16, Figure 7). These trends
in both experimental groups seem to be partially associated with
the induction on day 16 of augmented levels of anti-aGal
antibodies for the IgE and IgG isotype, respectively.

During aGal sensitization, the major change in the WBC
population was registered for basophils (Figure S3). The rest of
the evaluated WBC remained unchanged between days and
experimental groups. Basophils were gated using rat anti-
mouse Ly6G and IgE (Figure S3A). The later monoclonal
antibody allowed quantifying the IgE bound to Fcϵ receptors
Frontiers in Immunology | www.frontiersin.org 7
on basophils. On day 16, Groups 2 and 3 showed a significant
increase in fluorescence compared to day -3 (baseline) (Figures
S3B, C). Since the gated basophil population between
experimental groups was similar, the augmented fluorescence
obtained for Groups 2 and 3 seems to be associated with the
increased serological levels of anti-aGal IgE antibodies after the
sensitization procedure. On day 18, the basophil fluorescence
returned to baseline levels (Figure S3C).

Influence of Degree of Polymerization on the
Differential Inhibition of Anti-aGal Isotypes
Along with specific inhibition of anti-aGal IgE, DP1000-RA0118
showed a high inhibitory capacity to the rest of circulating anti-
aGal isotypes. Although removing most of the circulating anti-
FIGURE 7 | The pattern of total immunoglobulin levels (IgE, IgG1, IgG2a, IgG2b, IgG3, and IgM) and their association with the different isotypes assessed for anti-
aGal antibodies (IgE, IgG, and IgM). Relative serological levels of total immunoglobulins (expressed as OD units, 450 nm) and anti-aGal antibodies (expressed as OD
units, 492 nm) were determined by ELISA on days -3 (baseline), 16 (after sensitization), and 18 (after treatment). GalT-KO mice from Group 1 are a double negative
control (PBS for sensitization and treatment, respectively) (n=6). Animals of Groups 2 and 3 were sensitized to aGal, according to Figure 2. In Group 3, after
sensitization, animals were treated with three consecutive DP1000-RA0118 doses (10 mg/kg, sc.) on days 16, 17, and 18.
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aGal isotypes might not represent an obstacle to the potential
clinical development of DP1000-RA0118 (74), we investigated
whether the DP can impact the differential inhibition of anti-
aGal isotypes. For that, we synthesized a complementary set of
aGal-glycoconjugates using polymeric backbones containing
600 (DP600) and 100 (DP100) L-lysine residues. In addition,
DP1000 aGal-g lycoconjugates wi th 12% and 27%
Gala1,3Galb1,4GlcNAc load were also synthesized. All
glycopolymers were assessed in the same experimental setting
to avoid biases. Like the pilot study, the exposure to all polymeric
glycoconjugates mainly inhibited anti-aGal IgE and IgM
isotypes, with a lower inhibition effect on the IgA and IgG
isotypes, respectively (Figure 8).

DP1000-Glycopolymers
From DP1000-RA0112 to DP1000-RA0127, glycoconjugates
showed a similar inhibitory capacity for all isotypes at the
assessed concentrations. Starting at 10 µg/mL, the inhibition
was >85% for IgE and IgM, ~60% for IgG, and 50-80% for IgA. In
contrast, the inhibition for DP1000-RA0109 was significantly
lower than the other glycopolymers for all Ig-isotypes (Figure 8).
Frontiers in Immunology | www.frontiersin.org 8
DP600-Glycopolymers
From DP600-RA0112 to DP600-RA0134, glycoconjugates
showed a similar inhibitory capacity for all isotypes. From 10
µg/mL, the inhibition was >70% for IgE and IgM, 33-60% for
IgG, and 40-72% for IgA. Surprisingly, IgM inhibition rates
slightly decreased from 50 µg/mL in the case of RA0118,
RA0127, and RA0134. DP600-RA0109 showed a similar trend
but with lower inhibition rates. Regardless of the glycan load, all
the glycopolymers inhibited >85% of circulating anti-aGal IgE at
100 µg/mL (Figure 8).

DP100-Glycopolymers
FromDP100-RA0112, all DP100 glycoconjugates showed similar
inhibitory capacity regardless of the Gala1,3Galb1,4GlcNAc
percentage. Starting at 5 µg/mL, the inhibition was 25-75% for
IgE, 40-56% for IgM, 12-25% for IgG, and 20-45% for IgA.
Similar to DP600, IgM inhibition rates decrease from 20 µg/mL
in the case of RA0118, RA0127, and RA0134. To note, DP100-
RA0127 and DP100-RA0134 (100 µg/mL) showed a high IgE-
inhibition rate (>75%), with minimal IgG inhibition
(<25%, Figure 8).
FIGURE 8 | Differential antibody inhibitory capacity of aGal glycoconjugates with different DP and aGal loads in serum from aGal-sensitized patients. Serum
samples (n=13) were incubated with the glycopolymers at growing concentrations (5-10-20-50-100 µg/mL). PBS-treated serum was similarly incubated as a
baseline condition. After incubation, samples were conveniently diluted to determine by ELISA the unbound fraction of the different anti-aGal isotypes (1:100 for IgM
and IgG, 1:25 for IgA, and 1:10 for IgE). The inhibition rate for each glycopolymer (expressed as a percentage of anti-aGal inhibition) was calculated according to the
quantity of anti-aGal antibodies determined in baseline (PBS) and treated (glycopolymer) conditions for each serum. IgE green line, IgG orange line, IgM pink line, and
IgA purple line.
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Interestingly, RA0112, RA0118, and RA0127 (DP600)
showed similar IgE and IgA inhibitory capacities compared to
DP1000 glycopolymers with the same aGal load, except for
RA0112 at 10 µg/mL for IgE. Additionally, RA0118 and RA0127
(DP600) showed similar IgM and IgG inhibitory capacity
compared to DP1000-homologues.
DISCUSSION

This work shows that immunotherapy based on the
intracorporeal inhibition of anti-aGal IgE antibodies with
poly-L-lysine-based aGal-glycoconjugates may be a potential
solution to treat AGS. The rationale for using poly-L-lysine-
based aGal-glycoconjugates on removing anti-aGal antibodies
lies in: i) anti-aGal antibodies have naturally high avidity for
multivalent antigens, ii) absence of immune response against
either the carbohydrate or the poly-L-lysine in different murine
and primate species that spontaneously produce the anti-aGal
antibodies (53), and iii) anti-AB0 group antibodies (similar in
origin and structure to anti-aGal antibodies) have been safely
maintained at low concentrations (plasmapheresis plus
immunosuppression) for a prolonged time in blood type-
incompatible kidney transplantation without side effects (74).

Firstly, elevated levels of anti-aGal IgE antibodies were
detected in patients compared to healthy volunteers (67–69).
The same trend was observed for the rest of the anti-aGal
isotypes. In the initial pilot study, we demonstrated the
feasibility of improving the inhibitory capacity of aGal-
glycopolymers by reducing the aGal load. This finding was
unexpected according to the differences in aGal density in
DP1000-RA0118 (180 residues) and GAS914 (270 residues),
respectively. An unfavorable spatial conformation due to a
higher aGal density in GAS914 compared to DP1000-RA0118
could explain these results (sterical hindrances) (71, 75).
Conversely, DP1000-RA0109 (90 residues) showed a drastically
reduced capacity to inhibit anti-aGal antibodies. The limited
exposure of the antigenic determinant (antigen/antibody ratio)
could explain this finding.

Additionally, anti-aGal IgE was the most inhibited isotype in
vitro with similar behavior for IgM and a lower inhibition for IgA
and IgG, respectively. The later isotypes typically have higher
affinities for protein antigens (single binding site) than IgM.
However, IgM is a pentamer with ten Fab capable of a
multivalent binding (76). In addition, 20% of serological IgA
exists as oligomers with multi-binding sites. On the other hand,
IgG only exists as a monomer with two binding sites (71). These
properties of antibodies were confirmed in our in vitro study,
where the IgM avidity was increased, exceeding the affinity of
IgA and IgG. Similar results have been reported for
polyacrylamide-based aGal-glycoconjugates (71). However, the
behavior of anti-aGal IgE, similar to IgM, was unexpected since
it is a monomer like IgG (77). Despite some structural differences
(78), IgE and IgG share the highest homology compared to other
isotypes (78, 79). However, the inhibition of anti-aGal IgG in
patients was lower compared to IgE. This finding could be
Frontiers in Immunology | www.frontiersin.org 9
explained by the fact that anti-aGal IgE are strictly induced
antibodies, whereas the circulating anti-aGal IgG are mainly
composed of natural antibodies. Thus, despite the relatively
lower levels of anti-aGal IgE, their affinity seems to be higher
than anti-aGal IgG. Consequently, we hypothesize that anti-
aGal IgE might come from IgG-switched B cells, unlike the
classic atopic sensitization to pollen and mite allergens that come
from naive B cells (48). In contrast, previous studies described
that anti-aGal IgE might be predominantly formed by class
switch from non-switched (IgM) B cells (80).

We also developed a model of aGal-sensitization that
reproduced the findings obtained for patients. We achieved a
clear induction of anti-aGal IgE, together with IgM and IgG after
intradermal administration of hard ticks’ SGE. Unlike natural
anti-aGal antibodies (15), anti-aGal IgE are induced after
processing the aGal residues in tick saliva by APCs (Langerhans
and dermal Dendritic Cells). APCs migrate then to skin draining
lymph-node where aGal-specific B cells undergo clonal selection
(46). The increased levels of anti-aGal antibodies in sensitized
animals confirmed the implication of components from A.
sculptum SGE in the induction of anti-aGal antibodies (43, 81).

Furthermore, DP1000-RA0118 showed high efficacy for the
intracorporeal removal of anti-aGal in GalT-KO mice. At the
cellular level, the WBC population remained unaltered except for
basophils that showed a higher fluorescence after the sensitization
process in Groups 2 and 3 because of an augmented IgE binding to
Fcϵ receptors. In humans, basophil activation can determine the
severity of the clinical picture in patients with delayed anaphylaxis
due to the consumption of red meat (82, 83).

The immune stimulation with the SGE was not restricted to
IgE. Elevated titers of anti-aGal IgG antibodies have been
previously described in IgE-positive subjects (67, 80).
Specifically, the authors found more anti-aGal IgG1 antibodies
in IgE-positive subjects, contrasting the expected more IgG2
production specific for natural anti-aGal antibodies (67). These
results suggest that IgE directed to a carbohydrate antigen results
from the stimulation of a glycoprotein or glycolipid, even a
bacterial immune stimulation with essentially the same antigen
already exists (80). In our study, the increase of anti-aGal IgG
and IgE directly impacted the rise of total IgG2b and IgE
immunoglobulins, respectively.

Additionally, high levels of anti-aGal IgE antibodies in aGal-
sensitized patients have been directly correlated to a total IgE
antibody increase (9). However, the significant contribution of
anti-aGal IgG to the total IgG2b was surprising, indicating a
preferential induction of this IgG subclass. GalT-KO mice
naturally produce anti-aGal antibodies (15, 70), with IgG3 as
the predominant IgG subclass (manuscript submitted to
publication). In mice, the IgG3 subclass is functionally
equivalent to human IgG2, which predominantly recognizes
carbohydrate epitopes (84, 85). Accordingly, two immune
responses could be distinguished against the aGal epitope in
the animal model: (I) the typical T-independent response
promoted by the continuous antigenic stimulation of the
intestinal microbiota (15), with IgG3 as the predominant
subclass and (II) an “atypical” Th2-response (hypersensitivity
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type-I) which leads to the production of IgG2b and IgE in GalT-
KO mice. This immunological response is similar to that
described in humans sensitized after tick bites (9, 80) and in
GalT-KO models (46, 86) confirming the robustness of our
animal model for aGal sensitization.

DP1000-RA0118 inhibited anti-aGal IgE and IgG, with a
discrete impact on the total level of mouse IgE and IgG2b,
respectively. However, since the sensitization process was
conducted with SGE, we hypothesize that, together with the
anti-aGal, other IgE and IgG2b specificities may be induced
too. That is why the induction process impacted the total levels
of IgE and IgG2b antibodies. Conversely, the treatment with
DP1000-RA0118 was specific and only removed the anti-aGal
antibodies. Interestingly, total circulating IgM was reduced
after DP1000-RA0118 treatment, likely due to the significant
contribution of anti-aGal to the circulating IgM repertoire of
GalT-KO mice (15).

Finally, glycopolymers with DP<1000 have shown a high
capacity to inhibit anti-aGal IgM and IgG in vitro but have
been entirely ineffective in vivo (53). However, there is no data
regarding the impact of DP on anti-aGal IgE inhibition. In our
research, we found that DP100-RA0127 and DP100-RA0134
(100 µg/mL) showed high IgE-inhibition activity (>75%), with
reduced IgG inhibition (<25%). This IgE isotype-dependent
inhibition might be helpful for IgE-mediated diseases. Despite
the in vivo administration of DP1000 aGal-conjugates has
shown to be safe in primates and rodents (53), the impact of
a lower DP on safety has not been evaluated so far. The
polysaccharide chain length affects the immunogenicity of
g lycan-conjugated vacc ines (87) . In addi t ion , the
polysaccharide hapten size is critical in the immune response
to carbohydrate vaccines (88). Indeed, reducing polysaccharide
chain lengths improved vaccine immunogenicity (89, 90). Our
experience developing monoclonal antibodies using Poly-L-
lysine-OVA conjugate as the immunogen shows the poor
immunogenicity of DP1000-Poly-L-lysine. Currently, we are
improving the immunogenicity of Poly-L-lysine–OVA
conjugates by reducing the length of the poly-L-lysine
backbone (data not shown). With all these findings, we might
expect higher toxicities associated with DP100-glycopolymers
than DP1000. Therefore, before studying the efficacy of DP100-
aGal-glycopolymers in the selective in vivo removal of IgE over
the other anti-aGal isotypes, we consider conducting
immunogenicity studies with DP100 crucial to rule out
possible safety concerns.

Although the results presented here are promising, they have
some limitations. First, the primary objective of this work was to
develop a model of aGal-sensitization in mice; however, a more
robust model of clinical AGS needs to be addressed to study the
clinical impact of DP1000-RA0118 administration. Second, the
most promising compounds (including DP100-RA0127 and
DP100-RA0134) will need to be tested for their ability to elicit B
cell hyporesponsiveness in GalT-KO mice sensitized to aGal.
Finally, according to some epidemiological studies, anti-aGal,
mainly IgM, may play a protective role against protozoan
infections (19–21). Therefore, the potential benefit of having
these induced antibodies in regions endemic for protozoan
Frontiers in Immunology | www.frontiersin.org 10
infections must be considered in case our therapy is
implemented to treat any disease mediated by anti-aGal IgE.
Nevertheless, it is essential to clarify that our therapy produced an
immediate but transient inhibition of anti-aGal antibodies. More
importantly, our data suggest that it is possible to get a differential
anti-aGal isotype inhibition as a function of the length of the poly-
L-lysine backbone and total residues of aGal exposure in
the polymers.

The present work confirmed that hard ticks’ SGE elements
are responsible for the induction of anti-aGal IgE antibodies.
We postulate that the aGal sensitization mechanism may go
through an “atypical” Th2-response (hypersensitivity type-I),
which primarily led to IgG2b and IgE production in GalT-KO
mice. Due to the high affinity showed by anti-aGal IgE
antibodies for the assessed polymeric aGal-glycoconjugates,
we hypothesize that the anti-aGal IgE in sensitized patients
might come from IgG-switched B cells, unlike the classic atopic
sensitization to pollen and mite allergens where IgE come from
naive B cells. We demonstrated the potentiality of poly-L-
lysine-based aGal-glycoconjugates for treating allergic
disorders mediated by anti-aGal IgE antibodies. As AGS is
spreading due to the expansion and changes of hard ticks’
habitats, the immunotherapy concept presented here, based on
the selective removal of induced anti-aGal IgE antibodies with
poly-L-lysine aGal-glycoconjugates, may provide a clinical
solution to this disorder.
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Responses to a -Gal in African Children Vary With Age and Site and
are Associated With Malaria Protection. Sci Rep (2018) 8(June):1–15.
doi: 10.1038/s41598-018-28325-w

20. Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, et al. Gut
Microbiota Elicits a Protective Immune Response Against Malaria
Transmission. Cell (2014) 159(6):1277–89. doi: 10.1016/j.cell.2014.10.053

21. Cabezas-Cruz A, Mateos-Hernández L, Alberdi P, Villar M, Riveau G,
Hermann E, et al. Effect of Blood Type on Anti-a-Gal Immunity and the
Incidence of Infectious Diseases. Exp Mol Med (2017) 49(3):e301. doi:
10.1038/emm.2016.164

22. Portillo S, Zepeda BG, Iniguez E, Olivas JJ, Karimi NH, Moreira OC, et al. A
Prophylactic a-Gal-Based Glycovaccine Effectively Protects Against Murine
Acute Chagas Disease. NPJ Vaccines (2019) 4(1):13. doi: 10.1038/s41541-019-
0107-7

23. Mateos-Hernández L, Risco-Castillo V, Torres-Maravilla E, Bermúdez-
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