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INTRODUCTION

Interest in antibody-mediated injury to transplants was renewed with discovery that deposition of
the complement split product C4d on capillaries of renal transplants was a marker of poor outcomes
(1, 2). Subsequent adoption of C4d and circulating donor specific antibodies (DSA) as two criteria in
the Banff classification for antibody-mediated rejection (AMR) strengthened the concept that
complement was a major contributor to graft injury (3). Since then, several clinical tests have been
introduced to assess complement activation by DSA (4–6). Similarly, therapeutic interventions
targeting various components of the complement cascade have been evaluated for preventing
ischemia reperfusion injury or treating antibody-mediated rejection (7). These approaches are based
on voluminous evidence for the inflammatory effects of complement activation starting in 1895 with
Jules Bordet’s discovery that serum components we now know as complement could cause lysis of
bacteria (8). However, in the last 30 years evidence has accumulated that some complement
components can prevent escalation of complement activation to inflammation. A prime example is
C1q, a subcomponent of C1, the first component of the classical pathway of complement. Many
clinical reports link deficiencies in C1q with increased inflammatory responses, autoantibodies and
severe autoimmune disease resembling lupus (9, 10). Furthermore, experimental deletion of C1q in
mice resulted in autoimmune phenotypes with increased autoantibody titers (11). Rejection of
cardiac allografts was also accelerated in C1q deficient mice compared to normal controls (12). The
accelerated rejection was associated with increased antibody titers in the circulation, IgG deposition
in capillaries and neutrophil infiltrates in the cardiac allografts.
C1Q FUNCTIONS AS PART OF THE C1 COMPLEX AND
INDEPENDENTLY AS A PATTERN RECOGNITION RECEPTOR

C1 is a complex of 3 subcomponents: C1q, C1r and C1s. When Lepow and colleagues first isolated
these 3 subcomponents, they reported that all 3 were required for initiation of the classical cascade
(13). C1q was found to bind to antibody-antigen complexes, whereas C1r and C1s provided the
protease activity to cleave subsequent complement components. In this context, C1q binds to the Fc
portion of antibody. C1q has 6 globular heads to engage antibodies and optimal binding to IgG
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occurs when 6 IgG antibodies are arrayed in a hexamer
formation (14). C1r and C1s stabilize C1q binding to IgG in
addition to cleaving the downstream complement components
C4 and C2 (15).

However, C1q has critical functions independent of
antibodies or C1r and C1s. The independent functions of C1q
predate both antibodies or C1r and C1s in evolutionary time
(16). In lampreys, a primitive vertebrate that lacks
immunoglobulin, the orthologue of mammalian C1q binds N-
acetylglucosamine (17). In mammals, C1q retains pattern
recognition receptor (PRR) functions (18). Isolated C1q binds
directly to apoptotic cells when phosphatidylserine, calreticulin,
DNA and other molecules are exteriorized (19–21). This PRR
function of C1q facilitates ingestion of apoptotic bodies by
macrophages (22). Systemic C1q causes efficient clearance of
apoptotic bodies in the spleen by marginal zone macrophages
(23). Importantly, C1q opsonized apoptotic bodies polarize
macrophages towards non-inflammatory profiles (24). More
recent studies have demonstrated that C1q also inhibits
maturation of monocytes into dendritic cells and metabolically
regulates T cells (25).

The disparate evolutionary origins and functions of C1q and
the two C1 proteases are further underscored by the fact that
these molecules are encoded by genes on different chromosomes
(26, 27). The primary sources of C1q and the two C1 proteases
are also different (Table 1). The majority of C1r and C1s is
produced by hepatocytes (33), whereas C1q is primarily
produced by macrophages and dendritic cells (34). Although
macrophages can produce some C1r and C1s as well as C1q,
early immunohistological studies suggested that C1q, C1r and
C1s are frequently produced by different macrophages (35). This
early observation is provocative in the context of new data about
macrophage heterogeneity.

RESIDENT MACROPHAGES AS SOURCES
OF C1Q
Techniques for cell lineage tracking have distinguished
macrophages that infiltrate inflamed tissues from resident
macrophages (28), and single cell RNA sequencing has
provided transcriptional signatures for different macrophage
populations in quiescent and inflamed organs (28–30). Various
functions have been proposed for tissue resident macrophages,
Frontiers in Immunology | www.frontiersin.org 2
among which is clearance of tissue debris (30, 39). In this context
it is notable that C1q has been identified as a marker of resident
macrophages in kidney, heart and lung (28–30, 40, 41). Less data
has been reported for C1r and C1s expression, but Pinto, et al.
found in contrast to C1q transcripts, C1r and C1s transcripts
were expressed at low levels in resident macrophages of hearts
(30). In the quiescent kidney, C1r is primarily expressed by
epithelial cells of distal tubules rather than macrophages, and
activation of complement and recruitment of macrophages to
inflamed kidneys is decreased greatly in C1r knockout mice (36).
EFFECTS OF TRANSPLANTATION ON
RESIDENT MACROPHAGES AND C1Q

Although upregulation of C1 expression has been reported in
renal allo- and isografts in rats within hours after transplantation
(42) as well as in biopsies from human renal transplants after
perfusion is reestablished (43), the source of C1 and the kinetics
of different subcomponents has not been established completely.
In biopsies from a few renal transplants, Malone et al. (29)
leveraged single nucleotide variation to demonstrate resident
macrophages persisted up to 28 days after transplantation in
non-rejecting human kidneys and these macrophages expressed
high levels of C1q transcripts. In contrast, biopsies from grafts
undergoing rejection contained only infiltrating macrophages
that expressed low levels of C1q and high levels of CD68 and
Fcgreceptor 3a. Similar findings have been reported for
experimental heart allografts in mice (31). In this model,
numbers of donor macrophages decreased within 14 days in
allografts to mice without immunosuppression, but a
subpopulation of donor macrophages, which was identified as
CCR2-, persisted undiminished in recipients treated with
immunosuppression. In contrast CCR2+ macrophages
decreased regardless of immunosuppression. Donor CCR2-
macrophages expressed higher levels of C1q than CCR2+
macrophages and only CCR2- macrophages were found to be
essential for graft survival. Expression of C1r or C1s by these
subpopulations of resident macrophages was not reported.
Moreover, it has not been established whether C1q expression
is modulated in resident macrophages after transplantation,
although IFNg has been demonstrated to stimulate C1q
TABLE 1 | Comparison of sources and functions of C1 related components.

C1
component

Chromosome
(human)

Primary sources Other Sources Stimulation Function

C1q 1p34.-1p36.3
(27)

Tissue resident macrophages > Infiltrating
macrophages; Immature dendritic cells (27–31)

Epithelial cells,
Endothelial cells (32)

IFNg1 (27) Pattern Recognition (13, 14); Binds
antibodies (18–20)

C1r/C1s 12p13.31
(26, 33)

Liver (33) Epithelial cells,
Macrophages (34–36)

IFNg (36) Serine proteases that cleave C4 and C2;
Stabilize C1q binding to antibodies (15)

C1 inhibitor 11q11-q13.1
(37)

Liver (37) Monocytes,
Macrophages,

Endothelial Cells (34)

IFN types I
and II, IL-6, IL-
1, and TNFa

(34, 37)

Serine protease inhibitor (serpin) (38)
1Modulation of C1q expression has been tested in peritoneal macrophages and cultured human macrophages, but not in tissue resident macrophages.
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promoter activity in cultured macrophages derived from human
blood (27). Similarly, IFNg, IL-10 and dexamethasone increase
expression of C1q by human monocytes isolated from blood
(44), but the effects of these mediators on production of C1q and
C1r or C1s by resident macrophages in tissues is not known.

Production of C1r by tubular epithelial cells is notable
because expression of C1r and C1s transcipts have been
reported to increase in human renal transplants during
antibody or cell-mediated rejection (45, 46); particularly in
conjunction with tubulitis (46). In a mouse model, C1q
expression increases in proximal tubular epithelium during
rejection (32). These data suggest that C1q is produced by
subsets of resident macrophages while they persist in the graft,
whereas both C1q and the C1 proteases are produced by tubular
epithelial cells stimulated by IFNg.

C1 INHIBITOR ELIMINATES C1R AND C1S
BUT PRESERVES C1Q FUNCTION

Another component that determines the balance of C1q
functions is C1 inhibitor (C1inh). C1inh regulates complement
activation by covalently binding C1r and C1s and removing these
proteases from C1q. By removing C1r and C1s from the C1
complex, structural studies indicate that C1inh increases the
flexibility of C1q and enhances the PRR function of C1q (18, 38).
C1inh is primarily produced in the liver, but the production of
C1inh by other cells including macrophages and endothelial cells
can be increased by IFNg (37). Little is known about the
production of C1inh by resident or infiltrating macrophages
following transplantation. However, transcripts for C1inh have
been reported to increase during chronic antibody-mediated
rejection (47).

CONNECTING C1Q, DAMAGED CELLS,
AUTOANTIBODIES AND ALLOANTIBODIES
IN TRANSPLANTS

Most transplanted organs are retrieved from brain dead or non-
heart beating donors and subjected to various periods of warm
and cold ischemia. All these conditions increase injury to
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parenchymal cells and may alter resident macrophage
functions (48). Experimental models have linked ischemic
injury to increased inflammatory infiltrates and release of
extracellular vesicles (49, 50). Although the immunogenicity of
different subtypes of extracellular vesicles has not been fully
established, proteomic assays have demonstrated some
extracellular vesicles contain autoantigens and alloantigens (49,
51). At least some types of extracellular vesicles can deliver their
antigenic content to antigen presenting cells (52). C1q could be a
critical variable in determining the immune response to the
antigenic content of extracellular vesicles that express
phosphatidylserine and other potential ligands for C1q. In
particular, B cell responses may be modulated by C1q as
evidenced by increased auto- and alloantibody production in
C1q deficient mice and humans (9–12). Even though antibodies
to MHC antigens are more conclusively linked to graft injury and
poor outcomes, there is increasing evidence that autoantibodies
can contribute to graft damage (53). The range of autoantibodies
implicated in graft injury include angiotensin II type I receptor,
endothelin A, k-alpha tubulin, collagen V, vimentin and
perlecan. Recently, antibody-mediated rejection has been
associated with increases in antibodies associated with
autoimmune diseases such as lupus, including IgG anti-Ro/
Sjögren syndrome-antigen A (SS-A) and anti-major
centromere autoantigen (CENP)-B (54).

DISCUSSION

Based on current knowledge, it is plausible that C1q production
by resident macrophages promotes non-inflammatory clearance
of injured tissue from transplanted organs. In contrast, the
complete C1 complex initiates the classical cascade of
complement. This interpretation would support strategies to
preserve or enhance C1q production while inhibiting the
activity of C1r and C1s. Two such therapeutic interventions
have been tested in transplant recipients. One is C1inh (55, 56)
and the other is a monoclonal antibody to C1s (57, 58). Both
biologics have been tested in patients experiencing antibody
mediated rejection (Table 2). In general, this approach has
decreased complement activation temporarily, but has little or
no effect on long-term outcomes (58–60). Conversely, several
TABLE 2 | Clinical Trials of C1inh and anti-C1s treatment.

Treatment Protocol Cohort Primary Outcome Secondary Outcome Ref

Anti-C1s mAb: 4 weekly doses (60 mg/
kg)

Stable kidney transplant recipients with
late active ABMR (n=10)

5 of 8 recipients with C4d-
positive biopsies became C4d-
negative in 5-week follow-up

No change in microcirculation
inflammation, gene expression
patterns, DSA levels, or kidney function

(58)

C1inh: 20000 units divided in 7 doses
on alternate days added to conventional
IVIg and plasmapheresis

Biopsy-proved AMR with concurrent
DSAs (n= 9 placebo; 9 C1inh)

No difference in day 20 pathology
or graft survival

Six-month biopsies (n=14): Transplant
glomerulopathy in 0 of 7 C1 INH
treated; 3 of 7 controls

(59)

C1inh: 20 units/kg for 3 days, then twice
weekly added to high dose IVIg for 6
months

Kidney recipients with non-responsive
active ABMR (n=6)

Improved eGFR at 6 months after
inclusion

No change in histological features,
except a decrease in the C4d
deposition

(60)

C1inh: 50 units/kg intraoperatively and at
24 hours

Deceased donor kidney transplant
recipients at risk for delayed graft
function (n=35 placebo; n=35 C1inh)

Decreased the cumulative
incidence of graft failure over 3.5
years

Higher eGFR over 3.5 years
(55)
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experimental studies indicate that C1inh can be effective in
decreasing injury due to ischemia-reperfusion (61–64). One
extended clinical study included 70 recipients of deceased
donor kidney transplants at risk for delayed graft function.
C1inh (n=35) versus placebo (n=35) administered intraoperatively
and at 24 hours resulted in decreased cumulative incidence of
graft failure and higher eGFR over 3.5 years (55, 56). These
clinical studies have been designed to prevent initiation of the
complement cascade by C1, and the effects on the PRR function
of C1q were not examined. With increasing application of ex vivo
perfusion of organs before transplantation, enhancing or
preserving C1q PRR functions should be considered. This
could be accomplished by eliminating CCR2+ C1qlo resident
macrophages, while preserving CCR2-C1qhi resident
macrophages (31). Alternatively or additionally, biologically
modified C1q could be added to the perfusate (65). Various
mutant C1q molecules have been described that retain PRR
function but lack binding sites for C1r or C1s (66). C1q is 460
kDa and can diffuse across endothelial barriers into the
interstitial spaces. As a result, perfusates containing C1q would
supplement C1q in the interstitium of organs. We propose that
increasing C1q function locally would increase local and
systemic clearance of apoptotic and necrotic cells from
transplants and modulate sensitization (23, 30, 39). While
abundant evidence indicates that C1q modulates the immune
responses to autoantigens, little data is available regarding
alloimmune responses. The one study of cardiac allografts in
C1q deficient mice only investigated the effects of C1q deficiency
Frontiers in Immunology | www.frontiersin.org 4
in the recipient (12). Although absence of C1q in the recipient
resulted in increased donor specific alloantibody titers, the recent
data demonstrating resident macrophages are potent sources of
C1q suggests that testing the effects of C1q deficiency in the
donor would be informative especially in models where warm
and cold ischemic times are extended to reflect the ischemic
times incurred by clinical organ transplants retrieved from
deceased donors (50, 67, 68).

In summary, while the function of C1q as part of the C1
complex that initiates the classical complement cascade has been
extensively examined in the transplant field especially in the
context of antibody-mediated rejection, greater appreciation of
the anti-inflammatory functions of C1q could open novel
approaches to limiting graft injury.
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