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Esophageal adenocarcinoma (EAC) develops from a chronic inflammatory environment
across four stages: intestinal metaplasia, known as Barrett’s esophagus, low- and high-
grade dysplasia, and adenocarcinoma. Although the genomic characteristics of this
progression have been well defined via large-scale DNA sequencing, the dynamics of
various immune cell subsets and their spatial interactions in their tumor microenvironment
remain unclear. Here, we applied a sequential multiplex immunohistochemistry (mIHC)
platform with computational image analysis pipelines that allow for the detection of 10
biomarkers in one formalin-fixed paraffin-embedded (FFPE) tissue section. Using this
platform and quantitative image analytics, we studied changes in the immune landscape
during disease progression based on 40 normal and diseased areas from endoscopic
mucosal resection specimens of chemotherapy treatment- naïve patients, including
normal esophagus, metaplasia, low- and high-grade dysplasia, and adenocarcinoma.
The results revealed a steady increase of FOXP3+ T regulatory cells and a CD163+

myelomonocytic cell subset. In parallel to the manual gating strategy applied for cell
phenotyping, we also adopted a sparse subspace clustering (SSC) algorithm allowing the
automated cell phenotyping of mIHC-based single-cell data. The algorithm successfully
identified comparable cell types, along with significantly enriched FOXP3 T regulatory cells
and CD163+ myelomonocytic cells as found in manual gating. In addition, SCC identified a
new CSF1R+CD1C+ myeloid lineage, which not only was previously unknown in this
disease but also increases with advancing disease stages. This study revealed immune
dynamics in EAC progression and highlighted the potential application of a new multiplex
org May 2022 | Volume 13 | Article 8742551

https://www.frontiersin.org/articles/10.3389/fimmu.2022.874255/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.874255/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.874255/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.874255/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.874255/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.874255/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:chanyo@ohsu.edu
mailto:lz377@cam.ac.uk
https://doi.org/10.3389/fimmu.2022.874255
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.874255
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.874255&domain=pdf&date_stamp=2022-05-19


Sundaram et al. Immune Complexity in EAC and BE

Frontiers in Immunology | www.frontiersin.
imaging platform, combined with computational image analysis on routine clinical FFPE
sections, to investigate complex immune populations in tumor ecosystems.
Keywords: multiplex imaging, sparse subspace clustering, immune complexity, esophageal adenocarcinoma,
Barrett’s esophagus
INTRODUCTION

Esophageal cancer is the sixth most common cause of cancer
death worldwide; it has two subtypes: esophageal squamous cell
carcinoma and esophageal adenocarcinoma (EAC) (1). The
incidence of EAC has increased almost 6-fold in western
countries in the past decades where patients are typically
diagnosed at an advanced stage; thus, the overall five-year
survival rate is 15% (2).

EAC progression follows well-defined histopathological
stages, metaplasia, low- and high-grade dysplasia (Dys), and
eventually adenocarcinoma. The first precancerous metaplastic
stage is termed Barrett’s esophagus (BE), where the squamous
epithelium in the esophagus lining is replaced by an intestinal-
like columnar epithelium. BE is not uncommon and is thought to
affect one out of 100 people; it increases the risk of EAC by 30- to
60-fold and already bears a mutational load that is higher than
some cancer types (3). Although the annual progression rate of
BE to EAC is relatively low, BE could acquire more mutations
and progress to Dys, which has a hallmark of p53 mutation and
further increases the risk of EAC (4). It is noteworthy that
approximately 80% of EAC patients are diagnosed de novo,
with little chance to intervene (5, 6), highlighting the
importance of the early detection strategy to tackle EAC.
However, the challenge remains to accurately identify the
biomarkers or signals that are present in early cancer or
critical steps of cancer progression (7). The strongest known
risk factor for BE development is gastroesophageal reflux disease
(GERD), which leads to long-term inflammation in the
gastroesophageal mucosa (8).

In general, chronic inflammation is associated with malignant
progression in gastrointestinal tissues (9, 10). However, the precise
molecular and cellular mechanisms at the gastroesophageal junction
and the relationship to the development of BE and progression to
EAC might be far more complicated. For example, esophagitis and
BE, both benign conditions at the esophagus, have distinct
inflammatory profiles in patients with reflux symptoms, where BE
is dominated by a Th2-type response with high levels of IL-4 and IL-
10, with elevated T-cell infiltration as compared with esophagitis
and normal esophagus (11, 12). Lind and colleagues also reported
that FOXP3 and RALDH1 are highly expressed in BE and suggested
that BE, not esophagitis, is associated with dendritic cell populations
and the retinoic acid pathway (13). In addition, PD-L1 and PD-L2
ligands that mediate T-cell effector responses are also observed in
approximately 50% of BE and EAC cases based on immunostaining
(14). In animal models, the overexpression of IL-1B, IL-6, and IL-8
promotes the development of BE-like phenotypes and malignant
progression; the homozygous loss of IL-6 abolishes the metaplasia-
and Dys-like phenotypes in IL-1B-overexpressing mouse models
(15, 16). Interestingly, an increasing density of myeloid cells was also
org 2
observed in the BE-like tissue of IL-1B/IL-8- overexpressing mice
fed with a high-fat diet, correlated with accelerated malignant
progression as compared with syngeneic mice on a control diet
(16). Dendritic cells expressing CD1A or CD1C have also been
reported in association with BE development toward malignancy,
although their roles remain unclear (13, 17, 18).

It is noteworthy that a majority of published studies
describing immune cells in BE and EAC utilized single-lineage
biomarkers for previously identified populations, largely based
on routine immunohistochemistry (IHC) methodologies and
limited by specimen availability. Animal models of disease
progression in general offer a wider availability of tissue and
allow for the application of more complex technologies.
However, a recent study with multi-omics single cell
sequencing indicated that clinical BE in humans might not be
accurately represented by mouse BE-like phenotypes (19). Based
on these limitations and differences, we sought to directly
examine clinical samples with a new methodology, allowing for
a quantitative single-cell resolution to identify immune cell
populations in patient samples.

In this study, we combined multiplex tissue imaging and a
computational image analysis pipeline to study immune
complexity in EAC and its precancerous lesions. We assembled
a cohort of endoscopic mucosal resection (EMR) specimens from
6 patients and analyzed 40 regions of interest (ROIs) reflecting
normal esophagus, BE, Dys, and EAC using sequential mIHC
that allows for detection of 10 biomarkers on a single FFPE slide
(20). We implemented an automated staining protocol and
implemented an image analysis pipeline including image co-
registration, nuclear segmentation, and marker quantification to
extract single cell-based data (21). Resultant data were then
analyzed by two methods, including the manual hierarchical
gating of image cytometry profiles and automated cell
phenotyping based on sparse subspace clustering-based
approaches (22), to characterize changes in the immune
landscape and the spatial distribution of cells during the
progression of BE to Dys and EAC and to explore biomarkers
that could facilitate early detection of EAC and/or stratify the
risks of disease progression.
METHODS AND MATERIALS

Sample Collection and Annotation
EMR samples were collected during clinically indicated
endoscopic procedures in patients referred to Cambridge
University Hospitals NHS Trust (Addenbrooke’s Hospital,
Cambridge, United Kingdom) for the treatment of BE-related
neoplasia. The study was approved by the Institutional Ethics
May 2022 | Volume 13 | Article 874255
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Committees, and all subjects gave individual informed consent
for the use of their tissue samples for research purposes (REC 01/
149). Briefly, after the endoscopic procedure, EMR specimens
were pinned down on cardboard using 20 mmAgani needles and
fixed overnight in formalin and processed for histology as per
clinical standard. Approximately 5 mm thick FFPE sections were
cut, and adjacent sections were stained for hematoxylin and
eosin (H&E) for histopathological evaluation.

The H&E slides were scanned and printed out. Two
experienced specialist gastrointestinal pathologists, MT and
AM, independently assessed the H&E slides using the
definitions and histological criteria for normal esophagus,
Barrett’s metaplasia, the grades of Dys, and esophageal
adenocarcinoma recommended by The Royal College of
Pathologists (23) and guidelines by the British Society
of Gastroenterology on the diagnosis and management of
Barrett’s esophagus (24). There were no discrepancies between
the two pathologists when reviewing the samples presented in
this study. Indefinite Dys was excluded; high and low grades of
Dyswere grouped together as Dys. All local pathological grades
were marked on the corresponding H&E printout. ROIs were
then determined based on the marked H&E printout. Unstained
FFPE slides that were adjacent to the assessed H&E slides were
selected to proceed for mIHC.

Automated mIHC Staining
The staining was carried out on Bond RX platform (Leica
System), following modified standard ‘IHC protocol F’ and
Heat Induced Epitope Retrieval 1 (HIER1) for 20 min using the
BOND Polymer Refine Detection kit. The ‘IHC protocol F’ was
modified by 1) inserting three extra 5 min washing steps after
HIER; 2) replacing the step ‘Mixed DAB Refine’ with ‘Bond Open
Container’, which was supplied with freshly made 3-Amino-9-
Ethylcarbazole (AEC); and 3) removing the step of ‘Hematoxylin’.
One cycle of mIHC was carried out as one staining protocol,
following the standard operation of the manufacturer’s protocol,
except a) in the first cycle, the ‘Dewax’ step was selected, and b) in
the last cycle, the ‘Hematoxylin’ step was added back as a sole
staining step.

After each cycle of staining, slides were unloaded from the
Bond machine and temporarily mounted in Tris-Buffered Saline
with 0.1% Triton X-100 (TBST) and imaged using Zeiss
AxioScan Z1 at 20x brightfield. After imaging, AEC was
removed by ethanol by 2 brief washes in distilled water, 1 wash
in 70% ethanol, and 1 wash in 100% ethanol for 3.5 min. The
slides were then rehydrated through 2 min incubation in 70%
ethanol, 1 min incubation in 30% ethanol, and then 4 washes in
distilled water. The slides were then left to rest in TBST for the
next cycle.

Raw Image Process and Manual Gating
The raw images were generated in Carl Zeiss Image (CZI)
format with resolution of 0.22 µm per pixel by Zeiss AxioScan Z1
at 20x brightfield. The raw CZI images were processed using the
Zeiss software, Zen Lite, to generate ROI images in TIFF format
according to the pathologist’s grading (Figure 1B). Each ROI has
Frontiers in Immunology | www.frontiersin.org 3
11 raw Tag Image File Format (TIFF) images including nuclear
staining and 10 biomarkers.

For each ROI, image coregistration was performed using a
MATLAB-based script: ‘register_crop_batch4tif_CRUK_
OHSU_mIHC.m’, which generated coregistered images shown
in Figure S2B. The deconvolution of the 10 marker images (AEC
stained) and the nuclear segmentation of the nuclear image were
performed via the ImageJ macro: ‘AEC_CMYK_Seg_
Overlay_Batch_CRUK_OHSU_mIHC.ijm’. This pipeline
generated a simulated IHC image of each marker (Figure S3A)
and monochrome images for simulated immunofluorescence
(Figure S3B). It also generated the nuclear mask, a TIFF image
with each single cell segmented, and a raw CellProfiler Output
(CPOUT) file for FCS Express™ Image Cytometry (De Novo
Software, Los Angeles, CA, USA) for manual gating, which were
described in (15) and in Figure S4. The cell numbers of all gates
were exported as comma-separated values (CSV) files (Figure 2B)
for the analysis of cell density and proportion and then used in the
sparse subspace clustering (SSC) approach and spatial analyses.

Automated Cell Phenotyping Using Sparse
Subspace Clustering Algorithm
In this approach, to identify the groups of cells with similar
features, we facilitated the characterization of biologically
significant cellular characteristics where representative data
points are selected as landmarks, representing the original data
points as linear combinations; X=[ x1, ⋯, xN ] is an m × N
data matrix where xi represents a feature vector corresponding to
the i-th cell, m represents the dimensionality of a feature vector
xi, and N is the number of segmented cells.

The main idea of SSC takes advantage of the self-
expressiveness property of the data; for instance, each data
point in a union of subspaces can be efficiently reconstructed by
a combination of other points in the dataset. More precisely, each
data point (or the expression of proteins for a segmented cell) xi
can be written as xi = X ci where ci≜[ ci1ci2⋯cN ]T and the
constraint cii = 0 eliminates the trivial solution of writing a point
as a linear combination of itself. In other words, the matrix of data
points (i.e., the expression of proteins of all segmented cells) X is a
self-expressive dictionary in which the expression of the proteins
of an individual cell can be written as a linear combination of the
expression of proteins of other cells. In general, as the
representation of xi in the dictionary X is not unique, among all
solutions, we seek a sparse solution, ci, whose nonzero entries
correspond to the data points from the same subspace as xi. By
doing this, we identify a subspace-sparse representation where a
sparse representation of a data point finds points from the same
subspace where the number of the nonzero elements corresponds
to the dimension of the underlying subspace. One can restrict
the set of solutions by minimizing an objective function such as
the l1-norm of the solution as follows:

min∥ ci ∥q subject to xi = X ci, cii = 0

After solving the proposed optimization program, we obtain a
sparse representation for each data point whose nonzero
elements ideally correspond to points from the same subspace.
May 2022 | Volume 13 | Article 874255
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The next step of the algorithm is to infer the clustered group of
the data into different subspaces using the sparse coefficients.
The clustering of data into subspaces then follows by applying
spectral clustering to the similarity graph in which the nodes that
correspond to points from the same subspace are connected to
each other and there are no edges between the nodes that
correspond to points in different subspaces (k). SSC manages
complexity by selecting a few representative points as landmarks
so that the spectral embedding of the data can be efficiently
computed with the landmark-based representation.

Spatial Pattern and Neighborhood
Enrichment Analyses
We used the Single-Cell Image Analysis Package (SCIMAP) open-
source python library (https://github.com/labsyspharm/scimap) to
quantify the average shortest distance between reference and target
cells (scimap.tl.spatial_distance) and implemented neighborhood
Frontiers in Immunology | www.frontiersin.org 4
enrichment analysis to compute how likely cell types are found
next to each other compared to a random background
(scimap.tl.spatial_interaction). This uses a permutation test to
compare the number of interactions between all cell types in a
given image to that of amatched control containing randomized cell
phenotypes. Thus, it enables the unbiased and systematic study of
cell–cell interactions present in all the tissues of a sample cohort. By
doing this, it determines the significance of cell–cell interactions,
reveals enrichments (red) or depletions in cell–cell interactions
(blue) that are indicative of cellular organization, and statistically
non-significant results (gray). For parameters, we used the k-nearest
neighbor algorithm (knn = 10) to identify the neighbors for every
cell and the number of permutations with 1,000 as default. P-values
are calculated by subtracting the permuted mean from the observed
mean divided by the number of permutations as described in (25).
For analyzing multiple images together, a cluster map shows the
average cell–cell interaction across all images.
A

B

FIGURE 1 | (A) Schematic of staining cycles of mIHC; (B) H&E image of EMR tissue cohort and ROIs of different disease grades. NSQ, normal squamous esophagus;
NDBE, non-dysplastic Barrett’s esophagus; Dys, dysplasia; EAC, esophageal adenocarcinoma.
May 2022 | Volume 13 | Article 874255
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Statistics
For Figures 4, 5, 7, we used the Mann–Whitney–Wilcoxon test
two-sided with Bonferroni correction. In a given cell population,
we treated its density in the four different stages: normal
esophagus with squamous epithelium (NSQ), non-dysplastic
BE (NDBE), Dys, and EAC, as four independent groups. One
sample point represented one ROI, and the p-value was
calculated individually between two selected stages, e.g., NSQ
vs. NDBE or Dys vs. EAC, whereby each stage contained a
number of non-overlapping ROIs. For Figures S6–S8, those cell
subsets have high variations, whereby we did not particularly aim
to investigate the change between each disease stage. We
therefore chose the nonparametric Kruskal–Wallis one-way
ANOVA test in R to determine if a given cell subset is
statistically significantly different by at least one disease stage.
For Figures 8–F, we applied the Mann–Whitney-Wilcoxon
test two-sided with Bonferroni correction for multiple
Frontiers in Immunology | www.frontiersin.org 5
comparison with the 5% significance level [open-source python
library (26)].
RESULTS

Establishment of Automated
Immunohistochemistry Staining and
Computational Image Analysis Pipelines
The principles underlying mIHC have been previously described
(22, 27). Briefly, each signal marker is detected by chromogenic-
based (3-amino-9-ethylcarbazole, AEC) IHC in a sequential and
multi-cycle manner, followed by digital imaging. After imaging,
AEC is removed by ethanol and antibodies are stripped by heated
citrate buffer before entering the next cycle (Figure 1A). Here, we
modified the process to enable automated staining using the
Leica BOND Automated IHC Stainer platform where each cycle
A

B

FIGURE 2 | (A) Raw AEC staining for each marker and hematoxylin staining for nuclei. (B) Schematics of raw image processing and raw data format, each row is a
cell with its ID and ROI; x,y coordinates; and quantitative expression values for each mIHC marker.
May 2022 | Volume 13 | Article 874255
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could be performed as one standard staining program, and up to
30 slides could be stained in the same batch. We also confirmed
complete removal of markers from previous cycles using the
BOND standard heat-induced epitope retrieval step (Figure S1,
Table 1 and Method).

We generated a series of digitized images for each marker
representing all the EMR tissues, which were assessed
independently by two pathologists for local disease grades. This
allowed us to identify and acquire 40 ROIs spanning from an NSQ,
NDBE, Dys, and EAC (Figure 1B; Table 2). Each ROI measured
approximately from 0.5 × 1 mm to 1 × 2 mm, contained 11 single
channel images that corresponded to the nuclear staining, and 10
biomarkers including CD45, CD3, CD8, FOXP3, CD20, CD68,
CSF1R, CD163, CD1C, and KI67, respectively (Figure 2A).
Previously, images were co-registered manually by identifying a
“fiducial” point through all images. Here, we established an
automated image registration algorithm based on the distinct
tissue pixel gradients of the ROI and feature matching to
coregister the images of different markers of the same ROI (21,
28). In the computational process, first, we extracted feature
descriptors, matched features by using their descriptors, and
retrieved the locations of corresponding points for each image.
Then, we estimated transformation corresponding to the matching
point pairs and recovered the scale and angle by using the geometric
transformation. This algorithm enabled a fully automated
coregistration and batch processing (Figure S2). To assess the 10
biomarkers and their expression on every single cell, coregistered
image stacks were processed using a watershed-based segmentation
Frontiers in Immunology | www.frontiersin.org 6
in FIJI (Fiji is Just ImageJ), which segmented single cells based on
the hematoxylin nuclear staining, and then quantified the
chromogenic intensities of AEC staining for each biomarker.
Image analysis pipelines also generated multi-channel-merged
IHC images that were reassessed by pathologists (Figure S3A),
with monochrome images used to generate multi-channel images to
visualize selected biomarkers (Figure S3B). Using the automated
IHC staining and automated computational image analysis
pipelines, we acquired raw data for 712,252 cells from the 40
ROIs with quantitative expression values from 10 biomarkers on
a single-cell basis, including the cells’ shape–size measurement and
spatial coordinates within the tissue (Figure 2B).
Immuno-Phenotyping of mIHC Data
Revealed Changes of T Regulatory Cells,
CD163+ Myelomonocytic Cells, and CD8+

T Cells in the Progression of BE to EAC
To identify key immune cell populations from the ROIs, we
loaded raw data into FCS Express™ Image Cytometry (see
Materials and Methods). Similar to flow cytometry, each data
point corresponds to a cell projected in a biaxial plot that allows
for quantitative assessment and selection (gating) based on the
markers of choice. In addition, spatial gates could be directly
annotated on the tissue images to select cells within a specific
region. We therefore specifically focused on the BE/EAC
infiltrating immune cells via gating cells within the BE or EAC
epithelium and adjacent 200 µm wide stromal margin in all ROIs
TABLE 1 | Antibodies used in mIHC.

Target Supplier Product Reference Host species Isotype Dilution factor

CD45 Cell Signalling 13917 Rabbit IgG 200
CD20 Abcam ab9475 Mouse IgG2a 100
CSF1R Abcam ab183316 Rabbit IgG 400
CD68 Abcam ab783 Mouse IgG3 50
KI67 Abcam ab16667 Rabbit IgG 200
CD3 Abcam ab16669 Rabbit IgG 150
CD8 Dako M7103 Mouse IgG1 150
CD163 Thermofisher MA5-11458 Mouse IgG1 100
FOXP3 Abcam ab20034 Mouse IgG1 100
CD1C Abcam ab156708 Mouse IgG1 150
May 2022 | Volume 13
TABLE 2 | EMR sample cohort and ROI annotation.

Patients Pathological grades present in tissues Number of ROIs

CAMP067 NDBE, Dys, EAC n = 9
(NDBE: 3; Dys: 4; EAC: 2)

CAMP488 NDBE, Dys, EAC n = 10
(NDBE: 3; Dys: 1; EAC: 6)

CAMP541 NSQ, Dys, EAC n = 5
(NSQ: 1; Dys: 1; EAC: 3)

CAMP064 NDBE, Dys n = 5
(NDBE: 1; Dys: 4)

CAMP376 NSQ, NDBE n = 6
(NSQ: 4; NDBE: 2)

CAMP634 NSQ, Dys, EAC n = 5
(NSQ: 1; Dys: 2; EAC: 2)
All EAC samples here are at the stage of T1a.
| Article 874255
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(Figure S4). We then gated and assessed 17 key cell populations
of lymphoid and myeloid lineages by adapting the previously
reported gating strategies (20, 27) (Figure S4; Table 3), including
but not limited to CD45+ total immune cells, CD45+CD3+ T
cells, CD45+CD3+CD8-FOXP3+ T regulatory (Treg) cells,
CD45+CD3-CD20+ B cells , CD45+CD3-CD20-CD1C-

CD68+CSF1R+ myelomonocytic subsets, and the reported
myeloid dendritic cell populations (13, 17, 18), marked by
CD45+CD3-CD20-CD1C+ (hereinafter referred to as the
CD1C+ subset). Gated cells were then visually overlaid onto
original IHC images to confirm gating accuracy (Figure S5).

In image cytometry gating profiles, we observed that the total
cells were shifting toward higher CD45+ density with disease
progression; there was also an obviously increased presence of
CD45+CD3+CD8-FOXP3+ Treg cells and the CD45+CD3-CD20-

CD1C-CD68+CSF1R+CD163+ myelomonocytic subset
Frontiers in Immunology | www.frontiersin.org 7
(hereinafter referred to as CD163+ myelomonocytic cells)
(Figure 3). We then plotted the cell densities (cell number per
square millimeter) of all populations according to the disease
grade of each ROI (Figures 4 and Figure S6). Among all, the total
CD45+ immune cells exhibited a clear increasing trend as the
disease advanced (Figure 4A), which was in line with the overall
pro-inflammatory microenvironment of BE/EAC development
(29). Treg cell density showed a steady increase from NSQ to
EAC (Figure 4B), where two significant increases were observed
in NSQ (approx. 30 cells/mm2) versus NDBE (approx. 115 cells/
mm2) and from Dys (approx. 76 cells/mm2) versus EAC (approx.
160 cells/mm2). A similar increasing trend was also observed in
CD163+ myelomonocytic cell subsets, which reached the highest
level in Dys (580 cells/mm2) and appeared to remain constant in
EAC (Figure 4C). The overall trend in the CD CD163–

myelomonocytic cell subset was less clear, whereby it had
TABLE 3 | Marker combination used in manual gating in image cytometry.

CD45+ Pan immune cells

CD45+CD3+ T cells
CD45+CD3+CD8+ CD8+ T cells
CD45+CD3+CD8+KI67+ Proliferating CD8 T cells
CD45+CD3+CD8- CD8- T cells
CD45+CD3+CD8-FOXP3+ T regulatory cells
CD45+CD3+CD8-FOXP3+KI67+ Proliferating T reg cells
CD45+CD3+CD8-FOXP3- Other Th cells
CD45+CD3-CD20+ B cells
CD45+CD3-CD20- Presumptive myeloid lineages
CD45+CD3-CD20-CD1C+ CD1C+ myeloid dendritic cells
CD45+CD3-CD20-CD1C-CD68+CSF1R+ Myelomonocytic cells
CD45+CD3-CD20-CD1C-CD68+CSF1R- Monocytes, macrophages, fibrocytes
CD45+CD3-CD20-CD1C-CD68+CSF1R+CD163+ CD163+ myelomonocytic cells
CD45+CD3-CD20-CD1C-CD68+CSF1R+CD163- CD163- myelomonocytic cells
Ma
FIGURE 3 | Representation of manual gating in the image cytometry of NDBE, Dys, and EAC: green gate: CD45 cells for total cells for selected area; red gate:
CD3+ cells from total CD45+ immune cells; red highlighted areas: CD3+CD8+ cells; yellow gate: FOXP3+ Treg cells from CD45+CD3+CD8- T cells; and purple gate:
CD163+ myelomonocytic cells from total myelomonocytic cells (CD45+CD3-CD20-CD1C-CD68+CSF1R+). Note the change of gated cells in different disease stages,
see Figure S4 for gating strategy.
y 2022 | Volume 13 | Article 874255
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significantly higher density in all disease grades compared with
NSQ but appeared to reach the highest level in NDBE
(Figure 4D). Interestingly, the abundance of both total T cells
(CD45+CD3+, Figure 4E) and CD8+ T cells (CD45+CD3+CD8+,
Figure 4F) did not show a clear trend, with similar observations
made in the CD1C+ subset, too (Figure 4G).

In addition to cell density, the immune complexity is also
reflected by cell composition; we therefore assessed for each cell
group (Figures 5, S7). Notably, the proportion of CD8+ T cells
decreased dramatically as the disease advanced (Figure 5A). In
addition, the proportion of CD163+ myelomonocytic cell subset
Frontiers in Immunology | www.frontiersin.org 8
in total myelomonocytic cells significantly increased, from
approx. 15% in normal NSQ and NDBE to approx. 50% in Dys
and EAC (Figure 5B). The proportion of total CD45+ immune
cells (Figure 5C) and Treg cells (Figure S7) were in line with the
cell densities that had a significantly increasing trend, but no clear
trend was observed in the CD1C+ subset (Figure 5D).

Automated Cell Phenotyping Using Sparse
Subspace Clustering Approach
The hierarchical gating strategy in image cytometry was useful in
identifying immune cell populations from our multiplex image
A B

D E F

G

C

FIGURE 4 | Cell density per mm2 of various gated cell subsets based on Image Cytometry at different disease stage. (A) CD45+ pan immune cells, (B) FoxP3+ Treg
cells, (C) CD163+ myelomonocytic cells, (D) CD163– myelomonocytic cells, (E) CD3+ T cells, (F) CD8+ T cells and (G) CD1C+ subset. Statistics: Mann-Whitney-
Wilcoxon test two-sided with Bonferroni correction: ns (not significant): p > 0.05; *p ≤ 0.05; **p ≤ 0.01.
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dataset. However, it relied on a priori information, such as
canonical or known marker combinations and expertise in
gating and confirming the cell classifications for each ROI
(Figures S4, S5). In addition, because the gating was
performed manually on biaxial plots, the data were only
assessed sequentially for up to two markers at a time;
therefore, in high-dimensional data, such as this dataset, other
important markers that describe cell phenotypes may be missed.
In the case of using multiple biomarkers to evaluate more than 10
parameters, manual analysis via this gating strategy becomes a
significant expenditure of time. For example, the interrogation of
10C 2 = 45 biaxial plots is required for the evaluation of 10
biomarkers. In addition, while robust, the inherent subjectivity of
manual gating diminished its practical application for the clinical
evaluation of specimens. Therefore, efficient and objective
interpretation of mIHC-stained image entails several challenges
limiting broad methodologic and clinical dissemination.

To overcome the limitation of the manual gating strategy and
handle both biological heterogeneity (e.g., various cell types)
and high redundancy in feature representation, we adopted the
SSC approach by extending a similar concept of sparse coding
used in our previous work (22) (see Materials and Methods).
Frontiers in Immunology | www.frontiersin.org 9
The proposed SSC approach enables objective and automated cell
clustering via a simultaneous assessment of all 10 markers from all
ROIs. In addition, the SSC approach has a better overall
performance than other approaches such as principal
component analysis (PCA) when clustering data from
incomplete observations, which is usually an issue in multiplex
imaging data that not all features are available for every data point
(30). Since we chose to focus on immune complexities here, we
analyzed only immune cells by using a cut-off value for CD45
(>0.07 of mean marker intensity, based on manual gating image
cytometry), the pan-immune cell maker. We extracted 78,769
CD45+ cells from the 40 ROIs and clustered into 20 groups based
on the single-cell mean intensity of 10 markers (Figure 6). For our
analysis, we simply explored a different number of groups, i.e., the
number of subspace k (see Materials and Methods) to identify a
smaller but distinct source of variation in the data with biological
interpretation based on the elbow method. In general, the
clustering results were comparable to the manual gating results
and identified the key cell subsets including CD8+ T cells, FOXP3+

Treg cells, other T cell subsets, B cells, monocytes, and CD163+

myelomonocytic cells. This confirmed that our unsupervised
analysis approach via SSC corroborated and complemented the
A B

DC

FIGURE 5 | Cell proportion of various gated cell subsets based on Image Cytometry at different disease stage. (A) CD8+ T cells in total CD3+ T cells, (B) CD163+

myelomonocytic cells in total myelomonocytic cells, (C) CD45+ immune cells in total cells, (D) CD1C+ subset in myeloid lineages. Each datapoint represent one ROI.
Statistics: Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction: ns (not significant): p > 0.05; *p ≤ 0.05.
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manual gating strategy, which allowed the discovery of novel cell
types and robust cell identification with high efficiency and
objectivity from a large-scale singe-cell dataset.

We then looked at the cell density of the SSC-clustered cell
groups in the disease progression (Figure 7, S8). It was
Frontiers in Immunology | www.frontiersin.org 10
noteworthy that the immune cell populations with significant
change in disease progression, Treg cells and the CD163+

myelomonocytic cell subset, were identified using the SSC
approach as group #15 (Figures 6, 7A) and #12 (Figures 6,
7B), respectively, and showed the similar change. Interestingly,
FIGURE 6 | SSC of all immune cells from all ROIs based on the 10 mIHC markers. A total of 20 cell groups were interpreted based on their expression of mIHC
markers. Cell groups with statistical significance were highlighted in red; please see also Figure 7.
A B C

FIGURE 7 | Cell density per mm2 at different disease stages of selected cell groups that clustered by SSC. (A) Group #15 was interpreted as FOXP3+ Treg cells,
(B) Group #12 was interpreted as a CD163+ myelomonocytic cells (CD163+CD68+), and (C) Group #7 was interpreted as a new CD1C+ subset (CSF1R+CD1C+),
please also see Figure 6. Each datapoint represent one ROI. Statistics: Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction: ns (not significant):
p > 0.05; *p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001.
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the SSC approach also identified a myeloid cell lineage; group #7
characterized by CSF1R and CD1C (Figure 6), which was not a
predefined population in the manual gating strategy, also showed
significant increase with disease progression (Figure 7C).

We reasoned that the SSC approach clustered some immune
populations into distinct subsets that were not pre-defined by
image cytometry manual gating. For example, groups #11, #12,
and #19 were all attributed to CD163+ myelomonocytic cells
based on the high staining density of CD163, but only group #12
was found to have a significant increase that showed the same
trend in manually gated CD163+ myelomonocytic cells
(Figure 4C). In addition, the cell densities of the SCC-
clustered CD163+ myelomonocytic cell subset (Group #12) in
NSQ, NDBE, Dys, and EAC (Figure 7B) were all proportional to
the manually gated CD163+ myelomonocytic cells (Figure 4C).
We therefore cautiously concluded that this specific
myelomonocytic cell subset (Group #12) might be a subset of
total CD163+ myelomonocytic cells, which is more likely to play
a role in the progression of the disease compared with the other
subsets. We postulated the same for the new CD1C+ subset
(CSF1R+CD1C+, group #7) belonging to a wider CD1C+

population in manual gating. There were four subsets: Groups
#1, #4, #8, and #10, which all showed relatively low intensities of
most markers. They were labeled as unclassified immune cells
and are elaborated in Discussion.

Spatial Analysis of SSC-Identified CD163,
CD1C Subsets, and Treg Cells in Disease
Progression
Both manual gating and SSC approaches revealed a clear
increasing density of Treg cells, the CD163+ myelomonocytic
cells, and the new CD1C+ cell subset. We then further studied
their spatial relationship for possible cell-cell interactions
during disease progression by interrogating the SSC data
using two spatial analyses. First, we calculated the average
shortest distance between the centers of two cell nuclei of two
given cell subsets and applied 30 and 50 mm as two thresholds
to evaluate cell proximity (Figures 8A–F, S9A). Although
reflecting the absolute distance between cells, the average
shortest distance could be affected by the overall cell
compactness and distribution pattern. We therefore applied a
second approach of neighborhood enrichment analysis that
computed the likelihood that a given cell subset was neighbored
by other cell subsets compared to the random background
(Figures 8G, S9B).

We first focused on the CD1C+ subset and examined their
neighbors. The shortest average distance observed from the
CD1C+ subset to Treg cells followed a clear gradual decrease
from NDBE to Dys and then EAC (Figure 8A). Especially in
EAC, the majority of the cells of the two subsets were within 30
mm. Neighborhood enrichment analysis also revealed that Treg
and CD1C+ subsets were slightly depleted in each other’s
neighborhood in NDBE but significantly enriched in Dys and
EAC (Figure 8G, highlighted by yellow solid- and dotted-line
boxes). A similar finding was observed in the average distance
from the CD1C+ subset to CD8+ T cells, but it was generally
Frontiers in Immunology | www.frontiersin.org 11
further (>50 mm) (Figure 8B) compared with the distance from
CD1C+ to Treg cells through all disease stages (Figure 8A). In
the neighborhood of CD8+ T cells, there were increasingly
enriched CD1C+ cells from NDBE to Dys and EAC
(Figure 8G, highlighted by purple dashed-line boxes); but in
the neighborhood of CD1C+ subsets, the enrichment of CD8+ T
cells varied between the disease stages (Figure 8G, highlighted by
purple solid-line boxes). The CD1C+ subset was unlikely to have
direct cell–cell interaction with other T cells in all disease stages
because they were not enriched in each other’s neighborhoods
and the average distances were far (Figures 8C, G, highlighted by
red solid- and dotted-line boxes).

We then focused on the CD163+ myelomonocytic cell subset.
The shortest average distance (<30 mm) was observed from CD163+

myelomonocytic cells to Treg in Dys (Figure 8D), which also had
the most significant neighborhood enrichment (Figure 8G,
highlighted by green solid-line boxes in Dys). The shift of their
neighborhood phenotype from a slight depletion in NDBE to
enrichment in Dys (Figure 8G, highlighted by green solid-line
boxes, NDBE vs. Dys), mirrored the shift of the proportion of
CD163+ myelomonocytic cells, which increased from 15% to 45%
(Figure 5B, NDBE vs Dys). This was consistent with literature
reporting that Treg cells induce the polarization of CD163+

myelomonocytic cells (referred to as M2-like macrophages in the
literatures) (31–33). In EAC, the average distance from CD163+

myelomonocytic cells to Treg cells was close (Figure 8D, EAC), but
it was unlikely that they were spatially correlated, as revealed by the
neighborhood enrichment analysis (Figure 8G, highlighted by
green solid- and dotted-line boxes, EAC). This was likely due to
Treg cells having significantly higher density in EAC (Figures 4B
and 7A), such that they were spatially closer to all their neighbors
but not specifically to the CD163+ myelomonocytic cell subset. The
average distance from CD163+ myelomonocytic cells to CD8+ T
cells was greater overall (Figure 8E) than to Treg cells (Figure 8D).
CD8+ T cells were increasingly enriched in the neighborhood of
CD163+ myelomonocytic cells in disease progression (Figure 8G,
highlighted by blue solid-line boxes), but variation was observed in
the vice versa (Figure 8G, highlighted by blue dotted-line boxes).
The spatial relationship between CD163+ myelomonocytic cells and
other T-cell subsets was unclear, where the average distance
decreased with disease progression (Figure 8F), but the
neighborhood phenotype varied (Figure 8G, highlighted by black
solid- and dotted-line boxes). It was not unexpected as this T-cell
group was probably a diverse population consisting of multiple T
helper cell subsets.
DISCUSSION

In this study, we modified our previously described mIHC
methodology with an automated staining protocol and developed
image analysis pipelines, including nuclear segmentation,
automated image co-registration, and an unsupervised clustering
approach based on SSC for cell phenotyping. The pipelines were
demonstrated to be effective and accurate when acquiring our
dataset under the 10 immune lineage biomarkers. An
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unsupervised clustering approach via SSC successfully identified the
cell populations with statistically significant changes and further
identified the CD1C+myeloid subset (CSF1R+CD1C+), highlighting
its potential in processing mega-scale mIHC datasets and
discovering unique cell populations.

Using complement analytic approaches of image cytometry
manual gating and unsupervised SSC, and two spatial analytical
approaches of the average shortest distance and neighborhood
Frontiers in Immunology | www.frontiersin.org 12
enrichment analysis, we characterized the immune complexity in
the stepwise normal-metaplasia–Dys-malignancy progression on
well-defined ROIs of all disease stages. To summarize, in the first
step from NSQ to NDBE, the total immune cell density
significantly increased, specifically the Treg cells and CD1C+

subsets. From NDBE to Dys, total immune cell and Treg cell
densities stabilized, while the CD1C+ subset and CD163+

myelomonocytic cells continued to show increasing trends and
A B

D E F

C

FIGURE 8 | Spatial analysis of selected SSC cell subsets. (A–F) Average distance analysis: violin plots represented the shortest average distance from one cell subset to
another. Statistics: Mann–Whitney–Wilcoxon test two-sided with Bonferroni correction: ns (not significant): p > 0.05; *: p <=0.05; **: p <=0.01, ***: p <=0.001, ****: p <=0.0001.
(B) Neighborhood enrichment analysis: the heat map represents the enrichment or depletion of a cell group in the neighborhood of another; colored boxes denote pairs of cell
subsets, e.g., yellow boxes denote the analysis of the CD1C+ subset and Treg cells; each box represents the enrichment/depletion of the target cell group in the neighborhood of
the reference cell group or cell phenotype of interest; gray boxes indicate enrichment/depletion that is not significant.
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became more proximal with Treg cells. Notably, only at this
stage, the proportion of CD163+ myelomonocytic cells in the
total myelomonocytic cells significantly increased. At the last
neoplastic stage from Dys to EAC, total immune cells and Treg
cells significantly increased in density again while the other
immune cells largely remained unchanged. The study also shed
a light on the possible mechanism of T-cell subset recruitment
and polarization from BE to EAC, where the interaction between
the new CD1C+ subset and Treg cells appeared to increase
during the progression of disease, indicating their potential
role in immunosuppression during EAC development.

An understanding of the complex immune populations in
cancer has been increasingly important in the past decades and
has been studied under various topics including cancer initiation,
progress ion, metastas is , prognosis , and efficacy of
immunotherapy (34–36). EAC serves as an excellent model for
cancer initiation and progression because it can be clearly
categorized into histopathologically defined stages such that
the immune complexity can be studied at each individual
stage. However, it is only recently that multi-parametric
methods have begun to emerge. To our knowledge, there has
been only one other study aiming to comprehensively depict the
immune landscape in the BE and EAC progression: in 2021,
Lagisetty and colleagues used xCell, an algorithm that
deconvolutes bulk RNA-seq data, to determine the prominent
immune components in BE, Dys, and EAC (37). Consistent with
our observations, the authors also found increased presence of
Treg cells and CD163+ myelomonocytic cells (referred to as M2-
like macrophages in the study) in disease progression. However,
xCell revealed that the increase of CD163+ myelomonocytic cells
occurred between high-grade Dys and EAC, whereas it was not
significant in our results. This discrepancy may be attributed to
different types of raw data, RNA-seq compared with mIHC, and
thus does not necessarily have highly expected concordance. It is
noteworthy that the 2021 Lagisetty study also validated the xCell
results using a commercially available 6-marker multiplex
method for CD3, CD8, CD163, FOXP3, PD-L1, and PanCK.
Only the IHC, but not xCell, identified an abrupt decrease in
FOXP3+ Treg cells between Dys and EAC, whereas our 10-
marker mIHC found the opposite: that the Tregs significantly
increased. Interestingly, our results on Treg cells were actually in
line with the overall conclusion of the 2021 Lagisetty study that
EAC reflects an immunosuppressive microenvironment. We
reasoned that the contradictory observation on Treg cells
might be due to the fact that the 2021 Lagisetty study used
only the tissue cores from tissue microarrays (TMAs) that have
limited stromal components, while we used full-thickness EMR
tissue and specifically included the stromal margin adjacent to
the epithelium where immune cell traffic is commonly found. In
addition, we also combined low- and high-Dys into a single stage
and only used EAC with the T1a stage, whereas in the Lagisetty
study, low- and high-Dys were studied separately, and the EAC
samples ranged from stage 1 to 3.

It was interesting that both this study and ours identified
CD163+ myelomonocytic cells in the disease progression,
although different methods were used. CD163 has been
Frontiers in Immunology | www.frontiersin.org 13
commonly used as a marker for the M2-like type of tumor-
associated macrophages (TAMs), which include a range of diverse
cell populations that share an overall immunosuppressive function
(38, 39). How such function is exerted still attracts active research.
For example, it has been reported thatM2-like TAMs express a high
level of IL-10 (40), an immunosuppressive cytokine that suppresses
antigen-presenting cell function (41), while maintaining the Treg
cell function, which could also be recruited by M2-like TAMs,
leading to a positive feedback loop of immunosuppression (42–44).
Although the molecular mechanism remains not entirely clear, M2-
like TAMs have been associated with the general poor prognosis
and aggressiveness of many cancer types [reviewed in (45)],
including breast cancer (46), liver cancer (47), and non-small-cell
lung cancer (48). It is noteworthy that the identification of M2-like
macrophages in clinical samples usually relied on the
immunostaining of one or two markers, which are unlikely to be
sufficient to mark a specific macrophage population with a sole
phenotype. In this study, we used a more general term, “CD163+

myelomonocytic cells,” which was mainly identified by its high
expression of CD163 and may include other cell types such as
monocytes. Our discovery here highlighted the importance of using
techniques that allow for more markers to dissect the complex cell
composition, identify specific immune cell subsets, and take spatial
context into consideration when studying patient samples.

Together, these innovations and research findings highlight
several key factors in the rapidly developing multiplex imaging
field (summarized in Table 4). First, in addition to the choice of
tissues, accurate detection of tissue-based biomarkers is essential,
typically achieved by immunostaining in most multiplex
methods. Although antibodies are widely available for such
research purposes, their performance should be validated and
confirmed by pathologists, especially when used in clinical
samples. mIHC is advantaged in this regard as pathologists are
more familiar with evaluating tissue staining based on peroxidase
colorimetric IHC approaches. Second, depending on how images
are acquired, current multiplex methods can be categorized into
simultaneous and sequential. The former acquires the images of
all markers in one round, such as routine multi-color
immunofluorescence or Image CyTOF, whereas the latter relies
on sequential cycles of detection and removal of each marker,
thus requiring a robust approach to coregister images.
Coregistration could be challenging because images are likely
to be acquired days apart and the tissues are subjected to
repeated cycles of heating and washing to remove the previous
markers. In this study, we demonstrated that the feature
matching-based algorithm was extremely effective and accurate
for mIHC image coregistration. Third, all multiplex imaging
methods quantify marker expression through the signal
deconvolution of corresponding images, which is digitally
achieved, involving three major steps: nuclear segmentation
that recognizes the cell nucleus and marks the boundary of the
cell; deconvolution of raw images to isolate signal intensities that
are measured within the boundary of the cell; and the conversion
of the signal intensity into a single value that represents the
marker expression level. In general, methods with higher image
resolution will lead to more accurate quantification and allow for
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more sophisticated computation algorithms (55). Microscopic-
based imaging methods, such as mIHC, CyCIF (53), and
CODEX (54) yield higher-resolution images compared with
mass spectroscopy-based Image CyTOF (51). Fourth, a
marker’s staining intensity does not directly represent the
protein level in a single cell, providing only a slice of the cell,
rather than an intact cell, being stained. This is a universal issue
to all two-dimensional multiplex imaging methods and imperfect
segmentation labels. For example, in flow cytometry analysis that
examines intact cells, CD3-CD8-, CD3+CD8+, and CD3+CD8-

populations are represented by fully separated scatters, whereas
in image-based methods, the populations are less separated and
have small ambiguous overlaps (Figure S4D in (20) This may
hinder the objectivity and efficiency when interpreting high-
dimensional multiplex imaging data. To overcome these issues,
we applied the SSC approach based on the extension of our
previous work (22) and demonstrated its efficiency and
objectivity in analyzing mIHC data.

The increasing application of multiplex imaging techniques
also leads to a rapid development of image analysis tools, such as
SSC in this study. Apart from the efficiency and accuracy, it is
possible that these unsupervised clustering tools will generate
subsets that, if biologically relevant, are difficult to interpret for
their identities. For example, unclassified immune cell subsets in
this study and “CD45+ other” in other multiplex imaging studies
(56). It does not necessarily mean that these cells do not have
biological significance, but they are unclear if analyzed using only
one clustering method and a limited antibody panel. We
therefore applied two approaches herein. In spatial analysis, we
also observed that the average distance between all cell subsets
Frontiers in Immunology | www.frontiersin.org 14
was overall closer in a normal esophagus. We postulated that that
was related to the distinct microarchitecture of the squamous
epithelium of a normal esophagus, as compared with the
columnar epithelium of NDBE, Dys, and EAC. A squamous
epithelium is known for an undulating pattern of rete ridges that
a columnar epithelium lacks; immune cells were more enriched
at sites with higher microvascular densities along rete ridges (57),
which were also observed in a normal esophagus (Figure S10). It
is also important to distinguish between reference and target
subsets in spatial analysis. For example, in Dys, CD163+

myelomonocytic cell subsets were enriched in Treg cell
neighborhoods, but Treg cells were not abundant in CD163+

myelomonocytic cell neighborhoods.
There were limitations in this study in that our cohort was

relatively small, and all the antibodies used for panel design were
targeted to discrete immune cell lineages, and epithelial and
stromal cells were not studied. However, we compensated with
well-annotated ROIs and a deep interrogation of the data using
multiple independent analytical approaches. Our results shed
light on the dynamic changes in the immune landscapes during
the development and progression of BE and EAC and
highlighted a few potential candidate cell types of interest,
including CD1C+ and CD163+ cell subsets. Taken together,
this study points to a number of future research directions for
deciphering complex cell phenotypes and interactions using
minimal clinical samples, opening up new avenues for
translational research in cancer. Conclusions and methods in
this study paved the path to more effective strategies for early
detection of EAC and risk stratification of BE patients, and
continued efforts are needed to further investigate the precise
TABLE 4 | Summary of multiplex imaging methods.

Classic IHC
or IF

Improved/Commercial
multiplex IF

Image Mass
Cytometry (Image

CyTOF)

Slide-Seq Sequential
Multiplex IHC

CyCIF CODEX

No. of markers 1–3 markers Up to 6 markers ~30 markers n/a
(RNA based)

10–20 markers 10–20
markers

10–30 markers

Quantitative Semi-
quantitative

Semi-quantitative Semi-quantitative Quantitative Semi-
quantitative

Semi-
quantitative

Semi-quantitative

Tissue required A single
FFPE

A single FFPE A single FFPE Freshly
sectioned
cryo tissue

A single FFPE A single
FFPE

A single FFPE

Image resolution High
(0.2–0.5 µm
per pixel)

High
(0.2–0.5 µm per pixel)

Medium
(1 µm per pixel)

Low and not
cell based
(10 µm per
pixel/bead)

High
(0.2–0.5 µm
per pixel)

High
(0.2–0.5 µm
per pixel)

High
(0.2–0.5 µm per pixel)

Image acquisition Simultaneous Simultaneous Simultaneous Simultaneous Sequential Sequential Sequential
Specialized
antibodies needed?

No Yes
Commercial kit
Primary antibodies with
specific fluorophores

Yes
Commercial kit
Primary antibodies
with specific metal
isotopes

No
But need
specialized
beads

No No Yes
Primary and secondary
antibodies with specific
oligos

Specialized
equipment for
imaging needed?

No Yes
Commercial equipment
(Vectra, etc, multi-color
fluorescent scanner)

Yes
Commercial
equipment (Hyperion
Fluidigm)

No
But need
sequencer

No
Common
brightfield slider
scanner

Maybe
Fluorescent
slider
scanner

Yes
Commercial equipment for
staining and image
acquisitions

Cost Low High Very high High–very
high

Medium Medium Medium–high

Reference (49) (50) (51) (52) (20) (53) (54)
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roles of the various immune populations discovered in this study
and validate the biomarkers in larger patient cohorts.
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