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Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-
cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various
diseases including immunodeficiency, inflammatory diseases and hematologic
malignancies. These retroviruses persistently infect their hosts. Therefore, they need to
evade host immune surveillance. One way in which these viruses might avoid immune
detection is to utilize functional RNAs, rather than proteins, for certain activities, because
RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP
factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly
expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it
plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also
functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode
long non-coding RNAs as antisense transcripts. In this review, we reshape our current
understanding of how these antisense transcripts function and how they influence
disease pathogenesis.

Keywords: human T-cell leukemia virus type 1 (HTLV-1), HTLV-1 bZIP factor (HBZ), human immunodeficiency virus
type 1 (HIV-1), bovine leukemia virus (BLV), long non-coding RNA (lncRNA)
INTRODUCTION

Viruses that cause persistent infection have strategies to evade host immune responses (1, 2). These
viruses that cause chronic infection include human immunodeficiency virus type 1 (HIV-1),
hepatitis B virus, hepatitis C virus, Epstein-Barr virus (EBV) and other human herpes viruses, and
human T-cell leukemia virus type 1 (HTLV-1). EBV encodes a viral gene homologous to human IL-
10, vIL-10, which suppresses the host immune response (3). Nef and Vpu of HIV-1 downmodulate
major histocompatibility complex (MHC) class I expression, which leads to impaired cell-mediated
immunity against infected cells (4, 5). Another mechanism by which viruses may evade the immune
response is to utilize viral functional RNAs, rather than viral proteins, to accomplish some of their
purposes, since the host acquired immune system cannot recognize RNAs.

RNA falls into the general classification of messenger RNA (mRNA) and non-coding RNA
(ncRNA). NcRNAs include 1) classical ncRNAs such as transfer RNA (tRNA), ribosomal RNA
(rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA); 2) functional
microRNA (miRNA) and 3) long ncRNA (lncRNA) which is generally defined as ncRNA with a
length > 200nt (6, 7). The latter two groups have been shown to be biologically functional. These
miRNAs and lncRNAs play pivotal roles in diverse biological processes.
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In this review, we summarize recent findings on how
functional antisense transcripts influence the pathogenicity of
retroviruses, focusing on HTLV-1, HIV-1, and bovine leukemia
virus (BLV).
IMPORTANCE OF VIRAL RNAS IN VIRAL
PERSISTENCE AND INFECTIVITY

Viruses sometimes utilize viral-encoded RNAs, including
lncRNA, miRNA, and bifunctional RNA, for replication and
persistence in vivo. EBV encodes a variety of RNAs that do not
encode protein products. Two of these RNAs are EBER1 (167nt)
and EBER2 (173nt), which are expressed in all latency types I to
III and contain stem-loop RNA hairpins (8, 9). Additionally, two
viral non-coding RNA clusters, BamHI-A rightward fragment-
derived microRNAs (BART miRNAs) and BamHI-H rightward
fragment 1-derived miRNAs (BHRF1 miRNAs), have been
identified (9, 10). BART miRNAs are also expressed in all
latency types I to III, while BHRF1 miRNA is expressed only
in latency type III. BART miRNAs are more strongly expressed
in EBV-associated epithelial cells than in B lymphocytes. These
viral RNAs regulate the expression of a variety of viral and
cellular proteins involved in viral latency, host cell proliferation,
and the host immune response. Interestingly, aberrant
expression of EBV viral RNAs contributes to oncogenesis in
EBV-infected cells (11).

Another DNA virus, human cytomegalovirus (hCMV),
contains a virally encoded miRNA, called miR-UL112-1. This
miRNA maintains hCMV latency via regulation of IE27 (12),
and inhibits cytotoxicity by host NK cells (13). Kaposi-sarcoma
herpes virus (KSHV) also carries several miRNAs and a lncRNA.
The encoded miR-K5, miR-K9 and miR-K10 reactivate KSHV
from latent infection by targeting BCLAF-1 (Bcl2-associated
factor) (14). The lncRNA encoded by KSHV, polyadenylated
nuclear (PAN) RNA, promotes the expression of late viral genes
through nuclear RNA transport and interaction with
intracellular epigenetic modifiers and viral latent proteins (15).
HTLV-1 EXPRESSES AN
ANTISENSE TRANSCRIPT

HTLV-1 is the first pathogenic human retrovirus to be
discovered (16, 17). After the discovery of HTLV-1, HIV-1 was
found to be the causative agent of AIDS (18–20). Retroviruses are
classified as positive-sense single-stranded RNA viruses.
Retroviral genomic RNA is converted into DNA by reverse
transcriptase, and the resulting double-stranded DNA is
incorporated into the host genome, at which point it is called a
provirus (Figure 1). In their proviral genomes, retroviruses
universally share common viral genes called gag (structural
protein), pro (protease), pol (reverse transcriptase) and env
(envelope protein) which are flanked by the 5’ and 3’ long
terminal repeats (LTRs). The LTR has promoter activity in
both directions, sense and antisense (21, 22). It has recently
Frontiers in Immunology | www.frontiersin.org 2
been shown that mRNAs and lncRNAs transcribed from the
minus strand are also functionally and pathogenically active, and
they are the subject of this review.

The two major human retroviruses, HTLV-1 and HIV-1, both
target CD4+ T cells, but their modes of transmission are
completely different (23). For de novo infection, HTLV-1
transmits predominantly by cell-to-cell contact (24, 25) and
then amplifies a number of retroviral copies in the infected
individual by stimulating the proliferation of infected cells (26,
27). In contrast, HIV-1 efficiently infects via cell-free viral
particles in addition to cell-to-cell contact. Thus, unlike HIV-1,
HTLV-1 needs to induce proliferation of the infected cells – yet
at the same time, the virus protects the infected cells themselves
from being attacked by the host immune system. In this regard,
the antisense-encoded gene HBZ plays a critical role (28, 29).
THE VIROLOGICAL SIGNIFICANCE OF
HBZ, AN ANTISENSE GENE OF HTLV-1

The HBZ gene is encoded in the antisense strand of the provirus.
HBZ mRNA is transcribed from the 3’ LTR promoter of HTLV-
1. HBZ was the first retroviral antisense transcript to be
identified, in 2002 (30). HBZ is also the only retroviral gene
that is constantly expressed in all ATL cells (31). HBZ promotes
the proliferation of T cells, and knockdown of the HBZ gene
induces cellular death in both HTLV-1-infected and ATL cell
lines. Moreover, transgenic mice containing HBZ under the
control of a CD4+ T cell-specific promoter (HBZ-Tg mice)
develop systemic inflammation and T-cell lymphoid
malignancies (32). These observations show that the HBZ gene
plays an essential role in the oncogenesis of ATL.

HBZ does encode a protein product, and its protein product
has many important functions while localizing in the nucleus
with speckle-like structures (30, 33) (Figure 1). HBZ protein
consists of three major domains: an N-terminal transcription
activation domain (AD), a central domain (CD), and a C-
terminus bZIP domain with a leucine zipper motif (34). The
AD includes two LXXLL-like motifs and interacts with the p300/
CBP coactivator family (35). Interaction between HBZ and p300
has different effects on different pathways: activation for TGF-b
signaling and suppression for the AP-1 pathway. HBZ
upregulates Foxp3 expression by activating the TGF-b
signaling pathway in a p300-dependent manner; Foxp3
expression gives the HTLV-1-infected cells a Treg-like
phenotype (36). While HBZ induces Foxp3 expression, HBZ
directly interacts with Foxp3 to impede its DNA-binding activity
and function. HBZ also increases the number of induced Treg
cells with unstable Foxp3 expression, leading to convert them to
Foxp3-negative Treg cells with higher production of IFN-g (37).
Foxp3 is indeed expressed in almost all ATL cases (38). On the
other hand, both the CD and bZIP domains harbor nuclear
localization signals (NLSs). These NLSs allow HBZ to be retained
in the nuclei of infected cells (39). Through its AD and bZIP
domains, HBZ binds to a variety of transcription factors of the
AP-1 family, which also has a leucine zipper domain (40). Other
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bZIP transcriptional factors that interact with HBZ bZIP domain
are reported as follows: CREB and CREB-2 (41); ATF-1, -2 and
-3 (42, 43); C/EBPa and g (42, 44); MafB (45, 46).
HBZ mRNA ACTS AS BOTH CODING
AND NON-CODING RNA

The antisense HBZ gene is transcribed into mRNA and can be
translated into HBZ protein. Impressively however, HBZ mRNA
itself is also functional and pathogenic. We have discovered that
an HBZ mutant that acts only as mRNA because it cannot be
translated into protein (starting-codon ATG converted to TTG)
induces T-cell proliferation (31). Furthermore, another HBZ
mutant with silent mutations for all coding sequence could
produce the same protein, but its sequence is different from
the wild type, which alters RNA structure. This mutant did not
induce proliferation, but rather induced cell death. These
findings imply that HBZ mRNA itself promotes the
proliferation of HTLV-1-infected cells, and additionally, that
Frontiers in Immunology | www.frontiersin.org 3
the expression of HBZ protein without the functional RNA may
be toxic to the infected cells. Further analysis based on the
predicted stem-loop structures of the native HBZmRNA showed
that the first 20nt are important for the growth-promoting
activity of HBZ mRNA. Moreover, a recent study of HBZ
mRNA revealed that this antisense transcript can silence sense
transcriptions of HTLV-1 via displacing TATA box–binding
protein (TBP) and RNA polymerase II from the 5’ LTR, thereby
contributing to the latency of the virus (47).

In addition to maintaining viral latency and stimulating cell
proliferation, HBZ mRNA also has an anti-apoptotic effect. HBZ
mRNA influences transcription of many genes of the cell cycle,
proliferation and survival, including the survivin gene (48). The
survivin promoter is activated by HBZ mRNA. Survivin belongs
to the inhibitor of apoptosis protein (IAP) family that interferes
with caspases, the proteolytic components of the apoptotic
pathway (49). Interestingly, another group demonstrated that
HBZ protein also activates the suvivin promoter (50). HBZ
protein represses one of the Nuclear Factors Associated with
double-stranded RNA (NFAR) proteins, called NF110, which
FIGURE 1 | Both the mRNA and protein products of the HTLV-1 HBZ gene function to induce proliferation, survival, and phenotype change of infected cells. After
infection via its receptors (GLUT-1, neuropilin-1 and heparan sulfate proteoglycan), the HTLV-1 genome is integrated into the host’s DNA. HTLV-1 encodes viral
genes in the sense and antisense strand of the provirus. The antisense gene, HBZ, is transcribed into mRNA, and subsequently translated into protein. Both the
mRNA and the protein enhance the expression levels of CCR4, Tigit and Survivin. In addition, HBZ protein enhances transcription of PD-1 and Foxp3 genes.
April 2022 | Volume 13 | Article 875211
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has an antagonistic effect on the survivin gene (51). A further
study disclosed that the HBZ protein also enhances expression of
programmed cell death 1 (PD-1) without impairing T-cell
proliferation (52). Taken together, these reports suggest that
the mRNA and protein encoded by the HBZ gene may
complement and support each other’s functions in promoting
cell proliferation and preventing apoptosis (Figure 1).

HBZ is the first viral gene demonstrated to be bifunctional. A
recent study reported that a micropeptide translated from
lncRNA, APPLE, promotes oncogenesis of acute myeloid
leukemia by enhancing leukemia-specific translations. This
micropeptide is located in ribosomes and functions as an
oncoprotein, indicating that APPLE not only functions as
lncRNA, but also encodes functional protein (53). Thus, some
lncRNAs are bifunctional.

Concerted Gene Regulation by HBZ mRNA and Protein
Induces a Treg-Like Phenotype and Helps HTLV-1 to Evade
Host Immunosurveillance

As discussed, both molecular products of the HBZ gene (its
mRNA and its protein) activate expression of survivin. In
addition, these two HBZ gene products also target host genes
associated with the Treg-like phenotype (46, 54). CCR4 and
GATA3 are upregulated by both the mRNA and protein products
of theHBZ gene (Figure 1). BothHBZmRNA and its protein are
able to induce expression of GATA3, and GATA3 in turn bound
to GATA3-binding sites within the promoter region of CCR4,
leading to the activation of the CCR4 promoter (55). CCR4 is a
seven-transmembrane chemokine receptor that is known to be
selectively expressed on Treg, T helper 2 (Th2) and cutaneous
leukocyte antigen (CLA)-positive memory T cells. Treg cells and
skin-homing T cells migrate to their target tissues using CCR4 in
a ligand-dependent manner (56). Furthermore, signaling
through CCR4 is associated with proliferation of expressing
scells along with signaling from CD103 (55). In fact, more
than 90% of ATL cases express CCR4 protein on the cellular
surface (57). Currently, anti-CCR4 monoclonal antibody
(mogamulizumab) therapies are widely practiced in patients
with ATL (58, 59) or HAM/TSP (60).

Following this report, the T-cell immunoreceptor with Ig and
ITIM domains (TIGIT) gene was identified as another gene
upregulated by both the mRNA and protein of HBZ (Figure 1)
(61). TIGIT is an immune checkpoint receptor expressed on the
surface of Treg cells, cytotoxic T cells and NK cells, as well as
tumor-infiltrating T cells (62). TIGIT shows higher affinity to
CD155, which is expressed on dendritic cells and tumor cells,
than the immune-activating receptor CD226 (also known as
DNAM1) on the cytotoxic T cells and NK cells, resulting in
suppression of immune activation (63). Signaling through TIGIT
suppresses activation through phosphorylation of SHP-2, leading
to dephosphorylation of signaling molecules. Expression of
TIGIT on tumor-infiltrating T cells results in exhaustion of
tumor immunity (64). TIGIT expression on Treg cells
enhances their ability to suppress immune responses, especially
for the Th1 and Th17 cell subsets, through interaction with
CD155 (65). Thus, when HBZ mRNA and protein upregulate
TIGIT, they can suppress immune responses against HTLV-1.
Frontiers in Immunology | www.frontiersin.org 4
sIndeed, in HBZ-Tg mice, stimulation of CD4+ T cells with
CD155 enhanced the production of IL-10, an immunoinhibitory
cytokine (61). These data suggest that both the mRNA and
protein products of HBZ alter the immunophenotype of infected
cells into a Treg-like phenotype, allowing HTLV-1 to evade host
immunosurveillance. Since the CCR4 and GATA3 genes are
frequently altered, including with gain-of-function mutations,
in patients with ATL (66–68), this immune evasion mechanism
could also be closely related to the oncogenesis of ATL.
CONSTITUTIVELY EXPRESSED
ANTISENSE TRANSCRIPTS IN BOTH
LEUKEMIC AND NONMALIGNANT
BLV-INFECTED CELLS

BLV is closely related to HTLV-1. BLV also belongs to the
deltaretrovirus genus and causes leukemia of B lymphocytes. BLV
infects B cells of cattle, zebu and water buffalo in vivo and causes B-
cell persistent lymphocytosis in one-third of infected cattle. Just as a
small fraction of people infected with HTLV-1 develop ATL, about
5% of BLV-infected cattle develop fatal B-cell leukemia-lymphoma
(69, 70). BLV encodes a transactivator, G4, which is a nonstructural
protein resembling Tax of HTLV-1 (71). In addition, BLV encodes
miRNAs in the sense strand transcribed by noncanonical RNA
polymerase III (72, 73). These miRNAs are constitutively expressed
in BLV-induced B-cell leukemia-lymphoma. More intriguingly,
deletion of the BLV-derived miRNA cluster reduced viral
replication and suppressed leukemia development in vivo (74, 75).

Furthermore, recent deep sequencing studies revealed two
BLV antisense transcripts, called AS1 and AS2 (76). Of particular
interest is AS1, which contains a small open reading frame of 264
bp with ambiguous coding potential; however, the transcript is
mainly retained in the nucleus, suggesting that AS1 may play a
lncRNA-like role. These antisense transcripts are consistently
expressed in both tumor and non-tumor clones, implying an
important role for them in the life cycle of BLV and potentially in
tumorigenesis. Another high throughput sequencing method
revealed that a BLV provirus with a deletion of the 5’ LTR
could still induce B-cell persistent lymphocytosis – a
phenomenon also reported for HTLV-1 (77). Altogether,
recent findings support the virological significance of antisense
transcripts transcribed from 3’ LTR of BLV.
AN ANTISENSE TRANSCRIPT ENCODED
BY HIV-1 AND ITS VIRAL SIGNIFICANCE

In 1988, a year before the discovery of the HBZ gene (21), it was
reported that the antisense strand of the HIV-1 genome contained
an open reading frame (ORF) that was highly conserved among 12
isolated viral strains in GenBank and encoded a putative protein of
189 amino acid residues, later known as the antisense protein
(ASP) (78). The ASP gene overlaps the env gene of the sense
strand. Northern blot analysis detected ASPmRNA with a poly-A
April 2022 | Volume 13 | Article 875211
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tail in H9 cells during the acute phase of infection with HIV-1
strain IIIB (79). Moreover, the native promoter of ASP was
identified within the 3’ LTR, and antibodies to ASP were found
in HIV-1 infected patients (80, 81).

In spite of these solid findings, the ASP gene had little impact on
retrovirologists, since retroviral genes were generally thought to be
expressed only from the promoter of the 5’ LTR, and since,
especially in the research area of HIV-1, viral genes encoded in
the sense strand were under intense investigation. However, the
evidence for expression of the antisense transcript was solid, since
the promoter, poly-A tail, and protein translation initiation
sequence, were conserved in all 12 strains (78). Recently, new
discoveries have brought antisense transcription back into the
spotlight. Antisense transcriptional activity was reported to be
higher in monocyte-derived macrophages and dendritic cells than
in activated T cells. These antigen-presenting cells (APCs) with high
antisense transcriptional activity did not produce Gag protein (82).
A CD8+ T-cell-mediated immune response to ASP was revealed by
an ASP-specific IFN-g ELISpot assay, suggesting that antisense
transcription and encoded protein are active during the infection
and is targeted by host immunosurveillance (83). In a large cohort
study of ∼23,000 HIV-1 and simian immunodeficiency virus (SIV)
Frontiers in Immunology | www.frontiersin.org 5
sequences, the ASP ORF was present only in Group M viruses, and
correlated with the subtype which caused the pandemic (84). These
recent findings support the virological significance of the ASP gene
in vivo.
ASP mRNA REGULATES HIV-1
REPLICATION EPIGENETICALLY

Recently, it has become clear that natural antisense transcripts can
repress sense gene expression (85). Indeed, it has been shown that
HIV-1 antisense mRNA suppresses gene expression of the sense
strand (86). One mechanism of sense-strand repression appears to
involve polycomb repressive complex 2 (PRC2), which is mainly
composed of EZH2, EED and SUZ12 and modifies chromatin by
trimethylating lysine 27 on histone H3 (H3K27me3) to cause
transcriptional repression (87). Intriguingly, downregulation of
the ASP gene has been shown to reduce the recruitment of
EZH2 and two other epigenetic-related molecules, DNMT3A
and HDAC1, to the HIV-1 5’ LTR (88). A subsequent study
clearly showed that ASPmRNA associates with PRC2 (89). Ectopic
expression of ASP mRNA reduced HIV-1 replication and induced
FIGURE 2 | Retroviral antisense mRNAs persist in the nucleus and function like lncRNAs. Due to insufficient polyadenylation, human retroviral antisense transcripts
remain in the nucleus. Each mRNA acts differently to affect the survival of the infected cells (HTLV-1) or viral latency (HIV-1, HTLV-1), leading to persistent infection (91).
April 2022 | Volume 13 | Article 875211
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viral latency in Jurkat cells. This antisense mRNA was shown to
interact with PRC2 and to be recruited to the HIV-1 5’ LTR,
increasing the accumulation of the repressive epigenetic mark
H3K27me3, while simultaneously decreasing RNA polymerase II
and repressing proviral transcription. Taken together, these reports
show that the ASP gene antisense transcript plays a role in its
mRNA form, helping to induce and/or maintain viral latency. To
date, little is known about any function of the ASP protein, though
the fact that it is highly conserved (including its start codon)
suggests that it plays some important role. Thus, we speculate that,
like theHBZ gene in HTLV-1, the ASP gene in HIV-1 may encode
a bifunctional mRNA.
INSUFFICIENT POLYADENYLATION
CONFERS NUCLEAR RETENTION
ON THESE HUMAN RETROVIRAL
ANTISENSE mRNAS

Presumably, only the small amount of HBZ protein found in the
cell would be subject to host immunosurveillance. Furthermore,
the immunogenicity of HBZ protein is very low (90). The mRNA
can not be recognized by CTL. Thus, HBZ carries out many of its
functions in “stealth” forms and locations. We have recently
discovered that the antisense mRNAs of both HTLV-1 and
HIV-1 are normally localized primarily in the nucleus (91).
Nuclear retention of HBZ mRNAs in primary cells from ATL
and HAM patients was reported (92). However, HBZ mRNA was
present in the cytoplasm of cells in which HBZ mRNA was
overexpressed, suggesting that polyadenylation and promoter
activity were involved in its localization. Compared to HBZ
overexpressing cells, a length of poly-A tail was reduced and 3’
LTR promoter activity was weaker in HTLV-1 infected cells. These
findings were also confirmed for ASP in HIV-1. Furthermore,
there is no degradation of HBZ mRNA when HTLV-1-infected
cells are treated with cordycepin, an inhibitor of polyadenylation
although deadenylation is associated with mRNA decay (93).
Thus, due to the low transcriptional activity of the 3’ LTR, the
antisense mRNAs are often insufficiently polyadenylated, in other
words, shorter lengths poly-A tail compared to sense mRNAs,
resulting in their tendency to be retained in the nucleus where they
can affect the transcription of host genes. Polyadenylation is a
critical step for stabilization and transition of mRNA from nucleus
to cytoplasm (94). Therefore, HBZ mRNA is localized in the
nucleus due to insufficient polyadenylation, which is a mechanism
commonly observed in nuclear-localized lncRNAs (95).

Both HBZ, the antisense gene of HTLV-1, and ASP, the
antisense gene of HIV, encode mRNAs that are retained in the
Frontiers in Immunology | www.frontiersin.org 6
nucleus and contribute to the persistence of infection by
functioning in the proliferation of infected cells (for HTLV-1)
and in the latency of the virus (for HIV-1) (Figure 2). These
antisense mRNAs encode protein and yet function as RNA with
more than 200nt, suggesting that they are lncRNA-like RNA
molecule or “coding non-coding RNA (cncRNA)”. These
retroviral antisense transcripts exert their function in the
nucleus by regulating gene transcription, including through
epigenetic mechanisms, but the “end goals” of this gene
regulation differ, based on what is appropriate to each
retrovirus in establishing and maintaining infection.
CONCLUDING REMARKS

Retroviruses cleverly evade host immunosurveillance and
expand their own numbers by intricate mechanisms that
include the persistent expression of viral antisense transcripts.
These transcripts are disproportionally retained in the nucleus
and have lncRNA-like functions. These functions contribute to
the persistence of the virus, and to its pathological effects.
Moreover, the antisense transcripts of HTLV-1, and possibly
HIV-1, can function in both molecular forms, mRNA and
protein, suggesting that they are bifunctional.
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et al. Human T-Cell Leukemia Virus Type 1 (HTLV-1) bZIP Protein Interacts
With the Cellular Transcription Factor CREB to Inhibit HTLV-1
Transcription. J Virol (2007) 81:1543–53. doi: 10.1128/JVI.00480-06

42. Reinke AW, Grigoryan G, Keating AE. Identification of bZIP Interaction
Partners ofMeq, BZLF1, and K-bZIP Using Coiled-Coil Arrays. Biochemistry
(2010) 49:1985–97. doi: 10.1021/bi902065k

43. Hagiya K, Yasunaga J, Satou Y, Ohshima K, Matsuoka M. ATF3, an HTLV-1
bZip Factor Binding Protein, Promotes Proliferation of Adult T-Cell
Leukemia Cells. Retrovirology (2011) 8:19. doi: 10.1186/1742-4690-8-19

44. Zhao T, Coutts A, Xu L, Yu J, Ohshima K, Matsuoka M. Htlv-1 bZIP Factor
Supports Proliferation of Adult T Cell Leukemia Cells Through Suppression
of C/Ebpa Signaling. Retrovirology (2013) 10:159. doi: 10.1186/1742-4690-
10-159

45. Ohshima T, Mukai R, Nakahara N, Matsumoto J, Isono O, Kobayashi Y, et al.
HTLV-1 Basic Leucine-Zipper Factor, HBZ, Interacts With MafB and
Suppresses Transcription Through a Maf Recognition Element. J Cell
Biochem (2010) 111:187–94. doi: 10.1002/jcb.22687
April 2022 | Volume 13 | Article 875211

https://doi.org/10.1128/JVI.02333-14
https://doi.org/10.1093/hmg/ddl046
https://doi.org/10.1016/j.cell.2014.03.008
https://doi.org/10.1128/MCB.1.9.785
https://doi.org/10.3389/fmicb.2021.657387
https://doi.org/10.1126/science.1096781
https://doi.org/10.1126/science.1096781
https://doi.org/10.1016/j.canlet.2020.11.019
https://doi.org/10.1371/journal.ppat.0030163
https://doi.org/10.1126/science.1140956
https://doi.org/10.1038/ng.266
https://doi.org/10.1186/s12929-020-00637-y
https://doi.org/10.1073/pnas.77.12.7415
https://doi.org/10.1073/pnas.79.6.2031
https://doi.org/10.1126/science.6189183
https://doi.org/10.1126/science.6200935
https://doi.org/10.1126/science.6200935
https://doi.org/10.12688/f1000research.17479.1
https://doi.org/10.1016/0006-291X(89)92322-X
https://doi.org/10.1016/j.plasmid.2014.06.001
https://doi.org/10.1126/science.1059128
https://doi.org/10.1126/science.1080115
https://doi.org/10.1038/nm.2065
https://doi.org/10.1038/sj.onc.1201906
https://doi.org/10.1038/sj.onc.1201906
https://doi.org/10.1182/blood-2006-03-007732
https://doi.org/10.1182/blood-2006-03-007732
https://doi.org/10.1186/1742-4690-6-71
https://doi.org/10.1128/JVI.76.24.12813-12822.2002
https://doi.org/10.1128/JVI.76.24.12813-12822.2002
https://doi.org/10.1073/pnas.0507631103
https://doi.org/10.1371/journal.ppat.1001274
https://doi.org/10.1186/1742-4690-4-14
https://doi.org/10.3389/fmicb.2012.00247
https://doi.org/10.1074/jbc.M803116200
https://doi.org/10.1182/blood-2010-12-326199
https://doi.org/10.1371/journal.ppat.1003630
https://doi.org/10.1371/journal.ppat.1003630
https://doi.org/10.1073/pnas.1922884117
https://doi.org/10.1242/jcs.01727
https://doi.org/10.3389/fmicb.2017.02686
https://doi.org/10.1128/JVI.00480-06
https://doi.org/10.1021/bi902065k
https://doi.org/10.1186/1742-4690-8-19
https://doi.org/10.1186/1742-4690-10-159
https://doi.org/10.1186/1742-4690-10-159
https://doi.org/10.1002/jcb.22687
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Toyoda and Matsuoka Bifunctional Antisense Transcripts of Retroviruses
46. Matsuoka M, Mesnard JM. Htlv-1 bZIP Factor: The Key Viral Gene for
Pathogenesis. Retrovirology (2020) 17:2. doi: 10.1186/s12977-020-0511-0

47. Gazon H, Chauhan PS, Porquet F, Hoffmann GB, Accolla R, Willems L.
Epigenetic Silencing of HTLV-1 Expression by the HBZ RNA Through
Interference With the Basal Transcription Machinery. Blood Adv (2020)
4:5574–9. doi: 10.1182/bloodadvances.2020001675

48. Mitobe Y, Yasunaga J, Furuta R, Matsuoka M. HTLV-1 Bzip Factor RNA and
Protein Impart Distinct Functions on T-Cell Proliferation and Survival.
Cancer Res (2015) 75:4143–52. doi: 10.1158/0008-5472.CAN-15-0942

49. Mccarthy N. Survivin Death. Nat Rev Cancer (2004) 4:837–7. doi: 10.1038/
nrc1486

50. Murphy J, Hall WW, Ratner L, Sheehy N. Novel Interactions Between the
HTLV Antisense Proteins HBZ and APH-2 and the NFAR Protein Family:
Implications for the HTLV Lifecycles. Virology (2016) 494:129–42. doi:
10.1016/j.virol.2016.04.012

51. Nakamura N, Yamauchi T, Hiramoto M, Yuri M, Naito M, Takeuchi M, et al.
Interleukin Enhancer-Binding Factor 3/NF110 Is a Target of YM155, a
Suppressant of Survivin. Mol Cell Proteomics (2012) 11:M111.013243. doi:
10.1074/mcp.M111.013243

52. Kinosada H, Yasunaga JI, Shimura K, Miyazato P, Onishi C, Iyoda T, et al.
HTLV-1 Bzip Factor Enhances T-Cell Proliferation by Impeding the
Suppressive Signaling of Co-inhibitory Receptors. PloS Pathog (2017) 13:
e1006120. doi: 10.1371/journal.ppat.1006120

53. Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, et al. The
Oncomicropeptide APPLE Promotes Hematopoietic Malignancy by
Enhancing Translation Initiation. Mol Cell (2021) 81:4493–4508.e4499. doi:
10.1016/j.molcel.2021.08.033

54. Tanaka A, Matsuoka M. Htlv-1 Alters T Cells for Viral Persistence and
Transmission. Front Microbiol (2018) 9:461. doi: 10.3389/fmicb.2018.00461

55. Sugata K, Yasunaga J, Kinosada H, Mitobe Y, Furuta R, Mahgoub M, et al.
Htlv-1 Viral Factor HBZ Induces CCR4 to Promote T-Cell Migration and
Proliferation. Cancer Res (2016) 76:5068–79. doi: 10.1158/0008-5472.CAN-
16-0361

56. Yoshie O, Matsushima K. CCR4 and Its Ligands: From Bench to Bedside. Int
Immunol (2015) 27:11–20. doi: 10.1093/intimm/dxu079

57. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, et al.
Frequent Expression of CCR4 in Adult T-cell Leukemia and Human T-cell
Leukemia Virus Type 1-Transformed T Cells. Blood (2002) 99:1505–11. doi:
10.1182/blood.V99.5.1505

58. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al.
Defucosylated anti-CCR4 Monoclonal Antibody (KW-0761) for Relapsed
Adult T-cell Leukemia-Lymphoma: A Multicenter Phase II Study. J Clin
Oncol (2012) 30:837–42. doi: 10.1200/JCO.2011.37.3472

59. Cook LB, Phillips AA. How I Treat Adult T-cell Leukemia/Lymphoma. Blood
(2021) 137:459–70. doi: 10.1182/blood.2019004045

60. Sato T, Coler-Reilly ALG, Yagishita N, Araya N, Inoue E, Furuta R, et al.
Mogamulizumab (Anti-CCR4) in HTLV-1-Associated Myelopathy. N Engl J
Med (2018) 378:529–38. doi: 10.1056/NEJMoa1704827

61. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al.
HTLV-1 Bzip Factor Impairs Anti-viral Immunity by Inducing Co-Inhibitory
Molecule, T Cell Immunoglobulin and ITIM Domain (Tigit). PloS Pathog
(2016) 12:e1005372. doi: 10.1371/journal.ppat.1005372

62. Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the Next Step
Towards Successful Combination Immune Checkpoint Therapy in Cancer.
Front Immunol (2021) 12:699895. doi: 10.3389/fimmu.2021.699895

63. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The
Interaction of TIGIT With PVR and PVRL2 Inhibits Human NK Cell
Cytotoxicity. Proc Natl Acad Sci USA (2009) 106:17858–63. doi: 10.1073/
pnas.0903474106

64. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The
Immunoreceptor TIGIT Regulates Antitumor and Antiviral CD8(+) T Cell
Effector Function. Cancer Cell (2014) 26:923–37. doi: 10.1016/j.ccell.
2014.10.018

65. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, et al. Treg Cells
Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit
Proinflammatory Th1 and Th17 Cell Responses. Immunity (2014) 40:569–
81. doi: 10.1016/j.immuni.2014.02.012
Frontiers in Immunology | www.frontiersin.org 8
66. NakagawaM, Schmitz R, XiaoW, Goldman CK, XuW, Yang Y, et al. Gain-of-
Function CCR4 Mutations in Adult T Cell Leukemia/Lymphoma. J Exp Med
(2014) 211:2497–505. doi: 10.1084/jem.20140987

67. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al.
Integrated Molecular Analysis of Adult T Cell Leukemia/Lymphoma. Nat
Genet (2015) 47:1304–15. doi: 10.1038/ng.3415

68. Kogure Y, Kameda T, Koya J, Yoshimitsu M, Nosaka K, Yasunaga JI, et al.
Whole-Genome Landscape of Adult T-Cell Leukemia/Lymphoma. Blood
(2022) 139(7):967–82. doi: 10.1182/blood.2021013568
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