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Group 2 innate lymphoid cells (ILC2s) were initially identified as a new type of lymphocytes
that produce vigorous amounts of type 2 cytokines in adipose tissue. Subsequent studies
revealed that ILC2s are present not only in adipose tissue but also in various other tissues
such as lung and skin. ILC2s are generally recognized as tissue-resident immune cells that
regulate tissue homeostasis. ILC2s express receptors for various humoral factors and
thus can change their functions or distribution depending on the environment and
circumstances. In this review, we will outline our recent understanding of ILC2 biology
and discuss future directions for ILC2 research, particularly in adipose tissue and
metabolic homeostasis.
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INTRODUCTION

Innate lymphoid cells (ILCs) are predominantly tissue-resident lymphocytes that regulate tissue
homeostasis at steady-state. Unlike T and B lymphocytes, ILCs do not express Ragl/2-dependent
antigen receptors, but instead express receptors for a variety of humoral factors, including cytokines,
metabolites, and neuropeptides. ILCs are classified into three major groups based on their function
and developmental pathways; group 1 (natural killer (NK) cells and ILCls), group 2 (ILC2s), and
group 3 (lymphoid tissue inducer (LTi) cells and ILC3s) (1, 2). NK cells circulate in the blood and
require the transcription factor eomesodermin (Eomes) for their differentiation, which is important
for the expression of cytotoxic molecules such as perforin and granzymes. ILC1s are abundant in the
liver and skin, and their differentiation is regulated by the T-box transcription factor (T-bet) but
independent of Eomes. Both NK cells and ILC1s are capable of producing interferon (IFN)y (3). The
transcription factor GATA binding protein 3 (GATA3) governs the differentiation of ILC2s.
Initially identified in visceral adipose tissue, ILC2s have been found to produce robust amounts of
type 2 cytokines such as interleukin (IL)-4, IL-5, and IL-13 (4-6). Subsequent studies have revealed
that ILC2s are also present in various other tissues such as lung, skin and gut. Epithelial cell-derived
IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) activate ILC2s, with IL-33 being the major
activator (7-9). Although ILC2s are normally tissue resident cells, they can migrate from one tissue
to another in response to exogenous IL-25 and helminth infection (10). LTi cells are known to
produce lymphotoxin (LT), which plays a critical role in the development of lymphoid tissues
during fetal stage. ILC3s are mainly found in the adult intestine, and the transcription factor RAR-
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related orphan receptor yt (RORyt) is critical for their
development. ILC3s play an important role in maintaining an
optimal intestinal environment by producing the cytokines IL-
17A and IL-22 (11).

Adipose tissue is one of the major energy storage sites,
consisting of lipid-rich cells called adipocytes as well as stromal
vascular fraction comprised of preadipocytes, fibroblasts,
vascular endothelial cells, and various immune cells (12).
Among immune cells, macrophages are the most abundant
(typically 5-10% of stromal cells) and their number increases
with obesity (13, 14). Consistently, in obese patients,
approximately 40% of stromal cells are macrophages (14).
These macrophages ultimately produce large amounts of pro-
inflammatory cytokines, inducing chronic inflammation of
adipose tissue, leading to insulin resistance, glucose
intolerance, and ultimately type 2 diabetes. Furthermore,
obesity is thought to increase the risk of severe disease caused
by COVID-19 after SARS-CoV-2 infection (15). Therefore, it is
an urgent need to establish effective strategies to prevent obesity-
related comorbidities. ILC2s were initially discovered in adipose
tissue and have been found to mediate type 2 immunity (usually
considered as an “anti-inflammatory immune response”). Since
then, researchers have begun to explore the key role of ILC2s in
the regulation of adipose tissue homeostasis. In this review, we
will highlight the recent findings on the interaction between
ILC2s and adipose tissue. Furthermore, we aim to discuss the
potential of ILC2s as therapeutic targets for metabolic disorders.

DEVELOPMENT OF ADIPOSE TISSUE-
RESIDENT ILC2s

Like other ILCs, peripheral ILC2s emerge during development
from common lymphoid progenitors (CLPs) in the bone marrow
and fetal liver in a manner dependent on a transcriptional
repressor, 1d2 (1). Like other lymphocytes such as T cells and
B cells, IL-7 and Notch signaling play an important role in
differentiation from CLPs. Interestingly, relatively high
concentrations of IL-7 and intermediate Notch signaling
preferentially induce lineage commitment from CLPs to ILC
progenitor cells (16). IL-33 negatively regulates expression of
CXC chemokine receptor type 4 on ILC progenitor cells and
promotes their exit from the bone marrow (17). Subsequently,
ILC progenitor cells migrate to peripheral organs and
differentiate into mature ILC2s in a STAT5-dependent
manner. At the same time, especially in adipose tissue, platelet-
derived growth factor receptor o (PDGFRa)" and glycoprotein
38 (gp38)" mesenchymal cells are thought to further promote
ILC2 differentiation, presumably by supplying IL-33. There are
also mechanisms that regulate the survival and proliferation of
terminally differentiated ILC2s in adipose tissue (18). PDGFRa*
multipotent stromal cells in adipose tissue activate ILC2s by
producing IL-33. In addition, PDGFRo." multipotent stromal
cells directly interact with ILC2s via ICAM-1/LFA-1 axis to
promote ILC2 proliferation. ILC2s-derived IL-4 and IL-13
stimulate PDGFRo" multipotent stromal cells to produce IL-33

and recruit eosinophils by stimulating eotaxin production. ILC2s
also produce IL-5, which further activates eosinophils and
maintains a type-2 immune environment in adipose tissue.
Collectively, the interaction between ILC2s and PDGFRo*
multipotent stromal cells plays a pivotal role in the
maintenance of adipose tissue homeostasis.

FUNCTION OF ADIPOSE TISSUE-
RESIDENT ILC2s

As described earlier, ILC2s produce IL-5 and IL-13 in response to
IL-33 and recruit eosinophils to adipose tissue (19, 20).
Furthermore, ILC2/eosinophil-derived IL-4 and IL-13 induce
the differentiation of an anti-inflammatory M2 macrophages and
maintain a type 2 immune environment in adipose tissue. On the
other hand, numbers of pro-inflammatory M1 macrophages are
increased in adipose tissue during obesity. These macrophages
produce pro-inflammatory cytokines such as IFNy, tumor
necrosis factor (INF)o, IL-6, or IL-1B, which significantly
dampen the proliferation and function of ILC2s (21). In both
mice and humans, the number of adipose tissue-resident ILC2s is
markedly reduced in response to obesity (20, 22), and reduced
ILC2 function subsequently leads to a decrease in eosinophils
and M2 macrophages in adipose tissue, promoting pathological
adipogenesis and insulin resistance after high-fat diet (HFD)
feeding. On the other hand, adoptive transfer of activated ILC2s
into obese mice suppresses HFD-induced weight gain and
glucose intolerance (19). ILC2s together with regulatory T cells
(Tregs) as well as eosinophils and M2 macrophages, are known
to suppress adipose tissue inflammation. Adipose tissue-resident
Tregs function as a unique cell population that highly expresses
transcription factors GATA3 and peroxisome proliferator-
activated receptor y (PPARY). IL-33 directly stimulates Treg
proliferation, as adipose tissue Tregs highly express the IL-33
receptor ST2 (23, 24). In addition, ILC2s promote Tregs
proliferation in adipose tissue through ICOSL and OX40L
signaling in response to IL-33 (25).

Adipose tissue is generally categorized into white adipose
tissue (WAT), which is found in the abdominal cavity and
subcutaneously, and brown adipose tissue (BAT), which is
found mainly in the interscapular region in mice and
supraclavicular region, neck, para-aorta, paravertebral and
suprarenal regions in humans (26, 27). While WAT stores
excess energy as triglycerides, BAT produces heat in a way that
does not cause shivering in cold conditions, and plays a pivotal
role in maintaining body temperature (28). In addition to brown
adipocytes, beige adipocytes, a distinct type of cell that regulates
thermogenesis in vivo, have also been identified (29). Brown and
beige adipocytes express uncoupling protein 1 (UCP1), which
allows them to decouple mitochondrial respiration from ATP
synthesis and dissipate energy as heat. Although brown
adipocytes are most abundant in newborns and decrease with
age, beige adipocytes can be temporally induced to differentiate
within WAT in response to certain stimuli such as cold exposure.
This phenomenon is referred to as “WAT browning”. Therefore,

Frontiers in Immunology | www.frontiersin.org

June 2022 | Volume 13 | Article 876029


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Misawa et al.

ILC2 and Adipose Tissue

beige adipocytes are considered as an attractive target for
ameliorating obesity and its related diseases. Two independent
groups have reported that ILC2s are involved in WAT browning
(22, 30). Artis and colleagues reported that IL-33-activated ILC2s
produce methionine-enkephalin peptide (Met-Enk), which
activates UCP1 in white adipocytes and promotes beige
adipocyte differentiation under cold conditions. On the other
hand, Chawla and colleagues showed a slightly different
mechanism. Under thermoneutral conditions, ILC2s in WAT
recruit eosinophils in adipose tissue in response to IL-33 and
produce type 2 cytokines such as IL-4 and IL-13. These cytokines
directly activate proliferation of adipocyte precursors expressing
IL-4Ro and induce their differentiation into the beige adipocyte
lineage. However, the physiological source of IL-33 was not
clarified in any of the reports. Since then, studies have
demonstrated that adipose-derived stromal cells including
mesenchymal cells, mesenchymal stem cells, podoplanin®
fibroblasts, or CD31" endothelial cells produce IL-33 at steady
state (16, 24, 31-35). A recent study has also implied that
eosinophils could be another source of IL-33 in adipose tissues
(36). On the other hand, as mice age, mesothelial cells become
major producer of IL-33. Therefore, the source of IL-33 might
partially vary with age.

ILC2s in adipose tissue significantly decrease with age.
Recently, Dixit and colleagues reported that the lethality of the
aged mice subjected to cold conditions is considerably higher
than that of young mice (37). This may be because ILC2-
mediated WAT browning and subsequent heat production are
not well induced in aged mice, and thus they are unable to
maintain core body temperature. Taken together, these findings
suggest that ILC2s play a critical role in maintaining adipose
tissue homeostasis.

REGULATION OF ADIPOSE TISSUES
BY ILC2s AND SIGNALS FROM
OTHER ORGANS

Our group has previously demonstrated that ILC2s, which are
also present in the small intestine, promote obesity in HFD-fed
mice (38). Obesity was induced in HFD-fed Rag2”" mice (lacking
T cells, B cells, and NKT cells but with ILCs or NK cells), but not
in I12rg” Rag2”™ mice (lacking all lymphocytes). This result
suggests that ILCs are involved in the induction of obesity. As
mentioned above, adipose tissue ILC2s (WAT-ILC2s) suppress
obesity-induced adipose tissue inflammation. Consistently, we
found that adoptive transfer of WAT-ILC2s into I12rg” Rag2”
mice did not increase the number of M1 macrophages in adipose
tissues after HFD-feeding. On the other hand, adoptive transfer
of small intestinal ILC2s (SI-ILC2) into II2rg’"Rag2”" mice
promoted HFD-induced obesity and subsequent adipose tissue
inflammation. Unexpectedly, IL-33 and IL-25 were not involved
in SI-ILC2s-dependent obesity induction. In addition to ILC2s,
ILC3s (the major ILC population in the intestine) also seem to be
partially involved in the process of diet-induced obesity. SI-
ILC2s produce higher level of IL-2 than WAT-ILC2s.

Interestingly, Rag2”" mice lacking the B chain of the IL-2
receptor were less sensitive to HFD than Rag2”’™ mice,
implying that SI-ILC2-derived IL-2 plays an important role in
the induction of obesity. Further analysis is required to elucidate
the detailed mechanism of obesity promoted by SI-ILC2. Since
the microbiota is one of the most important factors affecting lipid
metabolism in vivo, it will be interesting to investigate the
interaction between SI-ILC2s and the microbiota and its
potential involvement in the regulation of obesity.

Recently, much attention has been paid to the relationship
between ILC2s and the nervous system. The sympathetic nervous
system innervating adipose tissue produces catecholamines, which
increase the expression of UCP1 in white adipocytes and promote
their differentiation into beige adipocytes (39, 40). ILC2s highly
express receptors for a variety of neurotransmitters including
catecholamines and neuron-ILC2 axis plays a pivotal role in
homeostatic control of adipose tissue (41-46). The sympathetic
nervous system promotes the production of IL-33 and activates
ILC2s in adipose tissue under cold conditions. Conversely, surgical
removal or drug-mediated ablation of sympathetic nerves greatly
reduces the number of ILC2s and eosinophils in adipose tissue
(47). Chronic obesity induces adipose tissue inflammation and
severely damages neuronal function (48), resulting in the loss of
ILC2s and consequent disruption of adipose tissue homeostasis.
Intestinal ILC2s express the B, adrenergic receptors (3,-AR) and
co-localize with adrenergic neurons. Treatment of mice with 3,-
AR agonist impairs the activation of ILC2s in the intestine (44). In
contrast, B,-AR signaling does not directly affect the ILC2 function
in adipose tissues. Rather, sympathetic nerves stimulate adipose
mesenchymal cells via adrenergic receptors to accelerate the
release of glial-derived neurotrophic factor (GDNF). As a result,
GDNF stimulates RET-expressing ILC2s in adipose tissue,
promotes the production of IL-5, IL-13, and Met-Enk, and
further regulate lipid metabolism (49). ILC2-intrinsic ablation of
RET promoted HFD-induced obesity, insulin resistance, and
glucose intolerance. These signals from sympathetic nerves are
projected from the brain, including the paraventricular nucleus of
the hypothalamus, suggesting that the “brain-fat circuit” regulates
ILC2 function and adipose tissue homeostasis. In the lung and
intestine, ILC2s express the receptor for neuropeptide NMU (41,
45, 46). Thus, NMU can directly activate the ILC2s-mediated type
2 immune response in these tissues. Studies in rats showed that
NMU is involved in the regulation of UCP1 expression in adipose
tissue, suggesting that the ILC2-NMU axis may also play an
important role in adipose tissue (50). Since ILC2s are often
located in close proximity to neuropeptide-producing nerves, it
is possible that ILC2s produce factors that are beneficial for nerves
and also induce proper lipid metabolism. Collectively, inter-organ
communication critically influences lipid metabolism, and ILC2s
play an important role in this process.

DISCUSSION

Here, we have outlined our current knowledge and perspectives
on the function of ILC2s in adipose tissue (Figure 1). The
regulatory mechanisms and functions of adipose tissue differ
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FIGURE 1 | Group 2 innate lymphoid cells (ILC2s) and adipose tissue homeostasis. IL-7 and Notch signaling promote differentiation of common lymphoid
progenitors (CLPs) into ILC progenitor cells (ILCPs). PDGFRo."gp38* mesenchymal cells further promote the differentiation of ILCP into mature ILC2s in adipose
tissues. The direct interaction between ILC2s and PDGFRo:™ multipotent stromal cells is critical for the maintenance of adipose tissue homeostasis. ILC2s, when
activated by cytokines such as IL-25 or IL-33, recruit eosinophils and M2 macrophages to sustain a type 2 immune environment in adipose tissues. ILC2s promote
WAT browning by producing type 2 cytokines and Met-Enk. ILC2s promote Treg proliferation in adipose tissues in response to IL-33. Neuron-derived
catecholamines activate adipose mesenchymal stromal cells to produce GDNF, which stimulates ILC2s and induces a type 2 immune response. During obesity, M1
macrophages produce pro-inflammatory cytokines and impair the function of ILC2s in adipose tissues. PDGFRa, platelet-derived growth factor receptor o; Met-Enk,

depending on the site. This is also true for ILC2s. ILC2-mediated
adipose tissue browning is observed in subcutaneous WAT,
whereas the neuron-ILC2 axis is observed in visceral WAT.
Therefore, it should be emphasized that the effects of ILC2s in
visceral WAT do not necessarily apply to subcutaneous WAT,
and vice versa. Nevertheless, there is no doubt that ILC2s play an
important role in adipose tissue homeostasis, and therefore,
enhancing their homeostatic role may help prevent the
development of metabolic abnormalities. Fine-tuning the
interactions between ILC2s and adipose tissue components,
including both immune and non-immune cells, is also
important for maintaining metabolic homeostasis. Identifying
the source(s) of cytokines that activate ILC2s, such as IL-33,
seems to be one attractive approach.

Obesity reduces the number and function of ILC2s in adipose
tissue, and their type 2 immune environment is compromised. In
this situation, recruiting ILC2s to adipose tissue would be another
attractive approach to prevent the development of adipose tissue
inflammation and subsequent metabolic disorders. ILC2s migrate
from the intestine to the lung in response to IL-25 and helminth
infections, but this phenomenon has not been observed in adipose
tissue. Further studies are necessary to fully understand the process
by which ILC2s move between tissues to develop methods to recruit
ILC2s to adipose tissue. In addition, it should be noted that the

overactivation of ILC2s associated with the type 2 immune responses
may sometimes be detrimental, as they induce allergic inflammation
and intestinal ILC2s promote obesity. ILC2s can change their
functions according to the environment and circumstances (51).
Therefore, it is essential to study the heterogeneity of ILC2s in
different types of adipose tissue in order to find appropriate ways to
regulate ILC2-mediated metabolic abnormalities.
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