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Skin acts as the primary interface between the body and the environment. The skin
immune system is composed of a complex network of immune cells and factors that
provide the first line of defense against microbial pathogens and environmental insults.
Alarmin cytokines mediate an intricate intercellular communication between keratinocytes
and immune cells to regulate cutaneous immune responses. Proper functions of the type
2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33,
are paramount to the maintenance of skin homeostasis, and their dysregulation is
commonly associated with allergic inflammation. In this review, we discuss recent
findings on the complex regulatory network of type 2 alarmin cytokines that control skin
immunity and highlight the mechanisms by which these cytokines regulate skin immune
responses in host defense, chronic inflammation, and cancer.
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INTRODUCTION

Skin is the largest organ and acts as a protective barrier separating the body from the outside
environment (1). Epidermis, dermis, and subcutaneous fat together with skin appendages, sweat
glands, sebaceous glands, and hair follicles, form an integrated structure that enables proper skin
function (2). The foremost physical barrier of the skin consists of the epidermis, which in its
outermost layer is composed of brick and mortar-like stratum corneum and tight junctions that
regulate the inward and outward passage of fluid and electrolytes in and out of the skin (1, 3). The
skin has developed complex protective functions against constant exposure to various
environmental insults, such as solar radiation, pollutants, a broad range of microbial pathogens,
and allergens (4, 5). The immune system contributes to this first line of defense against microbial
pathogens and chemical insults (2).

In the epidermis, Langerhans cells (LCs) are epidermal-resident antigen-presenting cells (APCs),
which play a sentinel role as the first professional immune cells confronting the environmental
insults (6, 7). Activated LCs capture foreign antigens by extending their dendrites through
epidermal tight junctions. Next, they migrate to the lymph nodes to initiate cutaneous adaptive
immunity (8, 9). In addition, tissue-resident memory T cells (TRM cells), which are noncirculating
lymphocytes in peripheral tissues, persist in the epidermis to provide long-lasting protective defense
against future immunological challenges at the most probable sites of invasion (10–12). The dermis
is the stromal layer below the epidermis that encompasses an active immunological
microenvironment (2). The superficial papillary dermis is composed of a relatively loose
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connective tissue and contains vessels and sensory nerves (13).
A diverse range of immune cell types, including several T cell
subsets, macrophages, dendritic cells (DCs), innate lymphoid
cells (ILCs), and mast cells, is localized around vasculature and
extracellular matrix proteins in the dermis (14–16). This
complex network of dermal immune cells helps in many
aspects of host physiology, including protection against
pathogens, wound healing (17), sebum production (18), and
hair follicle homeostasis (19).

Cytokine-mediated communication allows immune cells to
achieve a context-appropriate response, as the homeostasis of a
multi-cellular organism is made possible by the proper cell-cell
communication across different cell types (20). The cytokine
superfamily consists of many ligands and receptors that mediate
key interactions between immune cells and non-immune cells,
including keratinocytes, fibroblasts, and endothelial cells, in the
skin microenvironment (21–23). As the primary barrier, which is
constantly exposed to environmental insults, the epidermis
functions as a key sensor and integrator of environmental cues
to regulate immunity in the skin (24, 25). As such, epidermis-
derived alarmin cytokines mediate an intricate intercellular
communication between epidermal keratinocytes and immune
cells to regulate cutaneous immune surveillance. Alarmins are
endogenous molecules that function as danger signals and are
rapidly released to the extracellular milieu in response to tissue
damage to trigger defensive immune responses (26). Among
them, the proper functions of type 2 alarmin cytokines, thymic
stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33, as
central orchestrators of T helper 2 (Th2) immunity, are
paramount to the skin homeostasis and their dysregulation is
commonly associated with chronic allergic inflammation
(27–29).

In this review, we discuss recent findings on the complex
functions of type 2 alarmin cytokines in regulating epithelium-
immune cell communication that governs host defense, chronic
inflammation, and cancer.
TSLP

TSLP is a member of the IL-2 family of cytokines, and its receptor
is a heterodimer that consists of the IL-7 receptor a chain (IL-
7Ra), which is shared with IL-7, and the TSLP receptor (TSLPR)
(30–32). TSLP is mainly expressed by the epithelial cells of the gut,
lung, and skin. Other cell types including DCs, basophils, andmast
cells can express TSLP (33, 34). At the organ level, TSLP is widely
distributed in several organs including the heart, liver, testis,
spleen, prostate, skin, lung, kidney, ovary, small intestine, and
colon (35). A variety of endogenous and environmental factors,
such as pro-inflammatory cytokines, tryptase, invading pathogens,
allergens, irritants, pollutants, and cigarette smoke, stimulate
epithelial cells to release TSLP at barrier surfaces (36–45).
Activation of protease-activated receptor 2 (PAR2), Toll-like
receptor 4 (TLR4), and a member of transient receptor potential
vanilloid (TRPV) channel family, including TRPV1, on the cell
membrane mediate the production of TSLP through transcription
factors, nuclear factor of activated T cells (NFAT), nuclear factor-
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kappa B (NF-kB), and interferon regulatory factor 3 (IRF-3) (46–
48). TSLP is post-translationally modified by endogenous
proteases, and cleaved TSLP has an increased biological activity
(49). Despite poor sequence homology of TSLP (43% amino acid
identity) and TSLPR (39% amino acid identity) between humans
and mice, TSLP has been shown to exhibit similar biological
functions in humans and mice (50).

Hematopoietic cell populations and sensory neurons express
TSLPR. TSLP first interacts with the cognate TSLPR, then IL-7Ra
can be recruited to the TSLP/TSLPR assembly to form the
extracellular ternary complex. This leads to the activation of an
intricate network of signaling pathways, including Janus kinase/
signal transducer activator of transcription (JAK/STAT) and
phosphatidylinositol-3 kinase (PI3K) pathways (51). Similar to
IL-7, this signaling plays a critical role in the activation and
differentiation of immune cells, such as B cells and T cells (52).
In contrast, TSLP also mediates Th2 immunity associated with
protection from helminth parasites and the pathogenesis of
allergic inflammation at barrier surfaces. TSLP strongly induces
the expression of major histocompatibility complex (MHC) class I
and II molecules and costimulatory molecules on DCs. TSLP-
activated DCs produce Th2-attracting chemokines, such as CCL17
and CCL22 (53), and induce Th2 differentiation through OX40
ligand upregulation on these cells (54, 55). Furthermore, TSLP can
directly activate naïve CD4+ T cells to differentiate and promote
Th2 effector function in a TCR-dependent manner (56–58),
indicating that TSLP is a key driver of Th2 immunity. In
addition, TSLP acts on CD4+ T cells to promote T helper 9
(Th9) differentiation and function through STAT5 activation in
airway inflammation (59). Th9 cells, IL-9 producing CD4+ T cells,
are closely related to Th2 cells and contribute to allergic
inflammation and anti-tumor immunity (60, 61). It remains
unclear whether these cells represent a truly unique Th cell
subset. TSLP also acts on basophils and group 2 ILCs (ILC2s) to
induce Th2 responses (62, 63). Thus, TSLP orchestrates type 2
immune responses by innate and adaptive immune cells at
barrier sites.

TSLP in Skin
Keratinocytes are a powerful source of TSLP in the skin under
chronic and severe barrier disruption (64, 65). TSLP is released
from keratinocytes in response to cutaneous pathogens, such as
Staphylococcus aureus (66) and Malassezia yeasts (67), and
environmental stimuli, such as ultraviolet radiation (68),
mechanical injury (41), and air pollutants (69). The
thermosensitive transient receptor potential channels TRPV3
and TRPV4 (70, 71), pattern recognition receptor TLR3 (72,
73), and PAR2 (38, 74) are among the receptors that can sense
the external stimuli and induce the production of TSLP in
keratinocytes. Vitamin D3 also induces the expression of TSLP
in keratinocytes, which leads to the development of an atopic
dermatitis-like phenotype (75). In contrast, TSLP is negatively
regulated by retinoid X receptor ab (RXRab) (76), aryl
hydrocarbon receptor (AhR) (77), and Notch signaling (64),
which function as a gatekeeper in keratinocytes. Chronic TSLP
release by keratinocytes responding to cellular and tissue damage
instigates type 2 immune response that leads to atopic dermatitis.
March 2022 | Volume 13 | Article 876515
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High TSLP expression is observed in a broad spectrum of skin
lesions of atopic dermatitis (53), psoriasis (78), Netherton syndrome
(79), and keloid (80). Continuous skin barrier disruption,
characterized by atopic dermatitis, facilitates epicutaneous
sensitization, which accelerates TSLP expression in keratinocytes.
Furthermore, TSLP promoter demethylation is detected in skin
lesions from patients with atopic dermatitis (81).

TSLPR is broadly expressed by immune cells and sensory
neurons in the skin. In particular, DCs are important TSLP-
responsive immune cell populations (27, 53–55, 82). Several DC
subsets, including epidermal LCs and dermal type 1 and 2
conventional DCs, respond to keratinocytes-derived TSLP
signals to initiate cutaneous adaptive immunity and provide
multiple soluble and surface-bound signals that help to guide T
cell differentiation, in particular Th2 cells (83–86). In atopic
dermatitis lesions, TSLP may contribute to the activation of LCs,
which then migrate to the draining lymph nodes and prime
allergen-specific Th2 responses (53). In addition, TSLP-mediated
LC activation can promote the differentiation of CD4+ T cells
into Th2 and follicular helper T cells (Tfh cells), which are
important regulators of humoral responses (87). Moreover, TSLP
and transforming growth factor-b1 (TGF-b1) synergistically
contribute to the pool of LCs during inflammation via the
promotion of LC differentiation from human blood BDCA-1+

DCs (88). Dermal DCs act as critical responders in TSLP-
mediated type 2 allergic inflammatory responses. TSLP
activates CCL17-producing CD11b+ dermal DCs to migrate to
draining lymph nodes and attract naïve CD4+ T cells to
differentiate into Th2 cells during contact hypersensitivity in
mice (89). Furthermore, TSLP-stimulated DCs act not only on
the priming of Th2 cells but also on the maintenance and further
polarization of Th2 central memory cells in allergic
inflammation (90). Besides Th2 priming, TSLP-mediated DC
activation conducts multiple CD4+ T cell fate specifications in
the skin, depending on the surrounding inflammatory
microenvironment. TSLP drives the differentiation of IL-21-
producing human Tfh cells through OX40 ligand in CD1c+

DCs and helps memory B cells to produce immunoglobulin G
(IgG) and IgE in a Th2 cell-dominated environment (91).
Furthermore, TSLP is highly produced by keratinocytes in
patients with psoriasis, where it synergizes with CD40 ligand
in skin DCs to promote the expression of the Th17-polarizing
cytokine IL-23 (78).

TSLP can directly activate CD4+ T cells and induce the
differentiation of a distinct population of effector Th2 cells in
lymph nodes (58). TSLP/TSLPR signaling amplifies IL-4
production from CD4+ T cells, which results in driving a
positive feedback loop between TSLP and IL-4 to exacerbate
Th2 cell-mediated allergic inflammation (92). In fact, atopic
dermatitis patients possess circulating CD4+ T cells expressing
high TSLPR levels, and the frequency of this subset correlates with
the severity of atopic dermatitis (93). In addition, Th2 cells express
more TSLPR than Th1 or Th17 cells (94). ILC2s are also
important targets of TSLP in allergic inflammation (95). TSLP-
elicited ILC2 promotes allergic inflammation, whereas IL-25 and
IL-33 are dispensable for this ILC2 response in an atopic
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dermatitis-like mouse model (95). Although IL-25 and IL-33 are
critical mediators to elicit ILC2s in the gut and lung for anti-
helminth immunity and allergic inflammation (96), skin-specific
ILCs may have distinct properties. Accordingly, transcriptomic
heterogeneity of ILC2s is apparent across tissues, and skin-resident
ILC2s express relatively low levels of receptors of type 2 cytokines,
such as TSLP, IL-25, and IL-33, and instead dominantly express
IL-18 receptor (IL-18R1), compared with other tissues (97, 98).
Indeed, IL-18 can activate skin ILC2s and synergize with type 2
cytokines in the development of atopic dermatitis-like disease (98).
Furthermore, two distinct populations of ILC2s, consisting of
skin-resident and circulating ILC2s, exist in the murine skin,
and they exhibit distinctive phenotypes and functions (99). The
response of ILC2s may ultimately depend on the nature of the
inflammatory stimulus in the microenvironment.

Keratinocytes-released TSLP signals directly reach out to
sensory neurons in the skin. PAR2-triggered release of TSLP
can stimulate sensory neurons to evoke the itch response in
allergic diseases such as atopic dermatitis, in a TSLPR- and
TRPA1-dependent manner (38). In addition, TRPV4 triggers
TSLP release, which activates sensory neurons through TSLPR
and TRPV4 in a dry skin-induced pruritus model (71). TSLP is
found to be involved in the later phase of itch progression in
allergic inflammation while neutrophil-derived CXCL10 drives
itch in the acute phase, which is mediated through CXCR3 on
sensory neurons (100). TSLP widely impacts a broad array of
dermal immune cells in the skin. TSLP elicits skin basophils, and
TSLP-dependent basophil-derived IL-4 promotes ILC2
responses during atopic dermatitis-like inflammation (101).
Furthermore, TSLP induces mast cell development through the
activation of mouse double minute 2 (MDM2) and STAT6,
which results in skin allergic inflammation (45, 102).

Excessive TSLP that is secreted by barrier-defective skin into
the systemic circulation leads to sensitization of the lung airways
to inhaled allergens characterized by allergic asthma-like
phenotype in mice (103, 104). Thus, high systemic levels of
skin-derived TSLP instigate the atopic march whereas IL-25 does
not (105). Meanwhile, regulatory T cell (Treg)-mediated
immunosuppression directly by TSLP from keratinocytes
protects against progression from a local skin inflammatory
response to a lethal systemic condition (106). TSLP has a dual
function as a pro-inflammatory and pro-homeostatic modulator,
and this may depend at least in part on the nature of surrounding
immune signals and the type of cells responding to TSLP in the
tissue microenvironment.
IL-25

IL-25 (also known as IL-17E) belongs to the IL-17 cytokine
family, which consists of six members, and shares relatively low
sequence similarity to the prototype member, IL-17 (alternative
name IL-17A) (107–109). IL-25 receptor (IL-25R) is a
heterodimer of the IL-17RA chain, which is shared with other
IL-17 family members, and the IL-25-specific IL-17RB chain
(108). Therefore, IL-25 exhibits a distinct function from other
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members of the IL-17 cytokine family and has been implicated as
a type 2 cytokine that induces the production of IL-4, IL-5, and
IL-13, which in turn inhibit the IL-17-dependent autoimmune
diseases (110). Furthermore, IL-25 enhances Th9 cell response to
prevent parasitic helminths infection (111, 112). IL-25 is
produced by epithelial and immune cells including Th2 cells,
macrophages, ILC2s, mast cells, basophils, and eosinophils (109,
113). In the extracellular space, IL-25 has been reported to be a
substrate for proteolytic cleavage by matrix metalloproteinase-7
(MMP-7) from airway epithelial cells during inflammation, and
cleaved IL-25 increases its activity to induce type 2 cytokines
(114). Expression of IL-25R has been reported on non-immune
cells, including fibroblasts and endothelial cells, and immune
cells, such as Th2 cells, natural killer T cells (NKT cells), DCs,
macrophages, ILC2s, mast cells, basophils, and eosinophils in the
inflammatory state (115, 116).

IL-25 in Skin
IL-25 has been reported to be highly expressed in several skin
inflammatory diseases, including atopic dermatitis (117), psoriasis
(118), pyoderma gangrenosum (119), acute generalized
exanthematous pustulosis (119), and cutaneous T-cell lymphoma
(CTCL) (120). IL-4, IL-13, IL-22, endothelin-1, and periostin
enhance the production of IL-25 from keratinocytes (120–122).
IL-25 induces allergic skin inflammation, characterized by elevated
expression of IL-4 and IL-5, dermal infiltration of immune cells,
epidermal hyperplasia, and impairment of skin barrier function in
mice (118). Epidermal keratinocytes-derived IL-25 is a central
regulator of a broad array of allergic inflammatory responses,
and the major targets of IL-25 are dermal ILC2s and
macrophages in the skin (123). IL-25 activates ILC2s to promote
IL-13 production, which in turn helps keratinocytes proliferate and
produce immune cell-attracting chemokines (124, 125). IL-25 also
promotes the recruitment of neutrophils via activation of
macrophages in a p38-dependent manner (119). On the other
hand, IL-25 responds to tissue injury and participates in cutaneous
would healing through an amelioration of angiogenesis and
collagen deposition in diabetic mice model (126).

The autocrine function of IL-25 in keratinocytes promotes
proliferation and inflammatory responses via STAT3
transcriptional factor, which results in amplification of
psoriatic skin inflammation (118). Unlike IL-17, IL-25 is not
capable of inducing antimicrobial peptides, b-defensin 2 and LL-
37, in keratinocytes (121). IL-25 acts synergistically with Th2
cytokines, IL-4 and IL-13, to down-regulate filaggrin expression
in keratinocytes exacerbating skin barrier defects (127). Down-
regulation of filaggrin expression by IL-25 is mediated at least in
part through the activation of NF-kB (107), whereas Th2
cytokines activate STAT6 (128, 129). In the fluorescein
isothiocyanate-induced contact hypersensitivity model, IL-25
induces hapten-specific Th17 immunity, rather than Th2
immunity, in the elicitation phase of contact hypersensitivity
(130). Following the hapten challenge, dermal DCs release IL-1b
in response to IL-25, and IL-1b directly activates Th17 cells. This
contrasts with the observed role of TSLP in DC activation and
hapten-specific Th2 cell differentiation in the sensitization phase
of contact hypersensitivity (131). These findings indicate that
Frontiers in Immunology | www.frontiersin.org 4
type 2 alarmin cytokines have distinct mechanisms for the
regulation of T cell responses during inflammation.
IL-33

IL-33 is the most recently discovered member of type 2 alarmin
cytokines (132). IL-33 was first described in 2005. It belongs to
the IL-1 family of cytokines, which includes IL-1a, IL-1b, IL-18,
IL-36a, IL-36b, IL-36g, and IL-37, and the receptor antagonists
IL-1Ra, IL-36Ra, and IL-38 (133). In contrast to its other family
members, IL-1 and IL-18, IL-33 has been shown to promote Th2
cytokine responses in helminth infection and allergic
inflammation (132). IL-33 is mainly expressed by non-immune
cells, including epithelial cells, endothelial cells, and fibroblasts.
It can also be expressed by immune cells, including macrophages
and mast cells, at the barrier sites, where it functions as an
alarmin following tissue damage (134, 135). IL-33 is localized in
the cell nucleus, and its N-terminal domain, which includes a
chromatin-binding motif, is required for its nuclear localization
(136). Unlike IL-1b and IL-18, the N-terminal portion of IL-33
does not require inflammasome-mediated cleavage by caspase-1
for extracellular release of the active form. Apoptosis-associated
caspase-3 and caspase-7 cleave and inactivate IL-33 at a
conserved residue, Asp178 (Asp175 in mouse), within the IL-1-
like cytokine domain (137). On the other hand, N-terminal
processing of extracellular full-length IL-33 can occur in the
central domain between the nuclear domain and the IL-1-like
cytokine domain. These residues are targeted by extracellular
proteases in the inflammatory microenvironment, including
neutrophil cathepsin G, neutrophil elastase, and mast cell
serine proteases, and the resulting 18-21 kDa cytokine forms of
IL-33 exhibit higher biological activity (138, 139). Full-length IL-
33 can be rapidly cleaved in its central sensor domain by
extracellular environmental allergens-derived proteases within
10-20 minutes (140). In contrast, cysteine oxidation of
extracellular IL-33 diminishes its biological activity (141).
Thus, following IL-33 release, the impact of IL-33 is tightly
regulated by post-translational modifications in the extracellular
milieu. Although IL-33 lacks a secretion sequence and is
sequestered in the nucleus via chromatin binding, IL-33 seems
to be released into extracellular space through an unconventional
secretion pathway following various stimuli. Environmental
allergens, including fungi and mites, and mechanical stress
trigger the release of IL-33 (142–145). Two primary scenarios
for IL-33 release have been proposed: passive release as alarmin
from necrotic cells during tissue damage and unconventional
secretion from living cells. A recent study suggests that IL-33 is
secreted through the extracellular vesicles pathway, commonly
referred to as exosomes, as surface-bound cargo, from living
airway epithelial cells (146). However, the molecular mechanisms
and pathways of IL-33 secretion in living cells remain unclear.

IL-33 binds to its receptor, suppressor of tumorigenesis 2
(ST2), on target cells (147, 148). ST2 is classified as a member of
the IL-1 receptor superfamily, which has a common intracellular
domain, known as the Toll/Interleukin-1 receptor (TIR) domain
March 2022 | Volume 13 | Article 876515
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(147, 148). IL-33 signals via its cognate receptor ST2, which is
highly expressed on Th2 cells, ILC2s, and mast cells, and induces
Th2-skewed immunity to help with the removal of invading
pathogens and helminths (29, 149). However, the detrimental
effects of its chronic expression in response to environmental
insults cause allergic inflammation. In addition, inappropriate
activation of the IL-33/ST2 axis after tissue injury can lead to
impaired wound healing and tissue remodeling (150–152). In
contrast, IL-33 can also support tissue homeostasis and repair
mediated by Tregs, which express ST2 predominantly in
nonlymphoid tissue (153, 154).

IL-33 in Skin
Epidermal keratinocytes are the predominant producer of IL-33
while also expressing ST2 on their surface (132, 155). Dermal
fibroblasts and macrophages can also produce IL-33 (104). IL-33
has been reported to be highly expressed in several skin diseases,
including atopic dermatitis (155), psoriasis (156), and vitiligo
(157). Serum IL-33 levels are higher in atopic dermatitis patients
compared with healthy individuals and it correlates with
excoriation and xerosis scores in atopic dermatitis (158). On
the other hand, an increase in IL-33 is observed in skin lesions of
psoriasis while no increase is observed in the serum (158). ST2 is
distributed widely on dermal immune cells, including Th2 cells,
Tregs, ILC2s, and mast cells. IL-33 is released from keratinocytes
exposed to the invading pathogens, such as Staphylococcus
aureus and house dust mite allergens, to instigate cutaneous
immunity (159, 160). Environmental insults, such as ultraviolet
B radiation and hypo-osmotic stress, and mechanical injury, also
trigger the induction of IL-33 in keratinocytes (161–163).
Interferon (IFN)-g and tumor necrosis factor (TNF)-a are
other known inducers of IL-33 in keratinocytes (164, 165).
Nuclear IL-33 is elevated in human keratinocytes stimulated by
TSLP and is required for TSLP-mediated suppression of
epidermal barrier integrity components, indicating that nuclear
IL-33 is a key mediator for chronic TSLP-induced skin barrier
dysfunction (166).

IL-33 is implicated in type 2 immune response and the
pathogenesis of allergic inflammatory diseases, such as atopic
dermatitis (167). Excess IL-33 release from keratinocytes
activates ILC2s to produce IL-5 and IL-13, which induce the
accumulation of eosinophils in the dermis (168). Basophils
induced by IL-33 also boost the ILC2 function via IL-4
signaling (169). IL-33 increases histamine generation in mast
cells through p38 activation (170). Furthermore, IL-33 is
involved in the induction of systemic allergic inflammation as
keratinocyte-derived IL-33 can mediate skin-gut crosstalk
culminating in the expansion of intestinal mast cells through
ILC2 activation and food anaphylaxis (163, 171).

IL-33/ST2 signaling activates sensory neurons to mediate itch
and pain responses (172–174). Excessive release of IL-33 from
keratinocytes irradiated with poison ivy-derived allergen
urushiol enhances the calcium influx in dermal peripheral
dorsal root ganglia neurons through its receptor, ST2, to evoke
itch and inflammatory responses (172). Neuronal ST2 signaling
is a critical regulator of the development of the dry skin itch, but
not an itch associated with atopic dermatitis (173). On the other
Frontiers in Immunology | www.frontiersin.org 5
hand, pathogen-derived lipopeptides, such as fibroblast-
stimulating lipopeptide-1, can activate TLR2 in dorsal root
ganglia, which, in turn, leads to infiltration of macrophages
and release of IL-33 from keratinocytes. IL-33 activates the
nociceptive sensory neurons at the superficial layers of the skin
to instigate and prime the inflammatory pain responses (174).
IL-33-mediated molecular mechanisms responsible for itch and
pain are an active area of investigation.

IL-33 also plays a regulatory role in the inflamed tissue to
restrain inflammation and promote remodeling in the skin, at least
in part through the regulation of Tregs and M2 macrophages (175,
176). IL-33/ST2 signaling induces the expansion of Tregs, which
have potent anti-inflammatory activity (177). IL-33 release from
keratinocytes following skin barrier disruption induces antigen-
specific Tregs to suppress excessive skin inflammation in a model of
contact hypersensitivity (175). The diabetic mice model shows that
IL-33 enhances extracellular matrix deposition and angiogenesis
through the polarization of M2 macrophages to promote wound
healing (176). Dysregulation of IL-33-mediated Treg induction
causes aberrant chronic inflammation and fibrosis in the skin
(151, 178). Furthermore, skin-resident Tregs from patients with
systemic sclerosis are differentiated into Th2-like Tregs, which
produce a higher amount of IL-4 and IL-13, by high expression
of skin-localized IL-33, suggesting that IL-33 might be an important
factor that contributes to fibrosis due to loss of normal skin-
localized Tregs function (98). Single-cell RNA sequencing analysis
of skin murine Tregs reveals a predominance of Th2-like Tregs,
which preferentially express high levels of the master Th2
transcription factor, GATA3, and are more differentiated into
cells, which have tissue reparative capacity (179). GATA3+ Tregs
in skin express ST2, which enables them to enact reparative
functions in response to alarmin IL-33 (180). Thus, IL-33/ST2
signaling has diverse impacts on skin-resident Tregs and their
function in the steady-state and fibrosis development.
BEYOND THE ROLE OF TYPE 2
CYTOKINES AS ALARMINS IN
SKIN HEALTH

TSLP, IL-25, and IL-33 alert the immune system in the skin to
respond to environmental insults, and their chronic
overexpression triggers allergic inflammation at barrier sites
(Figure 1). Importantly, the function of type 2 alarmin
cytokines extends beyond their physiological function in host
defense and pathological function in allergic inflammation and
involves other critical roles including skin cancer regulation and
sebum secretion (Figure 2). Keratinocyte-derived TSLP protects
the skin from carcinogenesis (181, 182). TSLP exerts its
dominant anti-tumor effects through the induction of CD4+

Th2 cell immunity in the early stages of keratinocyte cancer
development (181). In contrast, TSLP induces proliferation of
the malignant CD4+ T cells in CTCL lesions, which are marked
by a Th2 cell-dominant phenotype in advanced stages (183). It
has also been shown that TSLP can recruit IgE-bearing basophils
into inflamed skin, and IgE promotes inflammation-driven
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tumor growth during chronic tissue inflammation in a cutaneous
squamous cell carcinoma model (184). Baseline TSLP expression
in breast and pancreatic cancer has been linked to a pro-
tumorigenic function (185–188). A tumor-myeloid cell axis
independent of T cell response may mediate this tumor-
promoting function of TSLP (189). However, systemic TSLP
induction from the skin causes an effective CD4+ T cell-mediated
anti-tumor immune response at the site of developing cancer in
the breast (185). Topical treatment of calcipotriol, a TSLP
inducer (75), blocks skin cancer development in mice in a
TSLP-dependent manner, and synergistically with 5-
fluorouracil (5-FU) induces an effective CD4+ T cell-mediated
immunity against actinic keratosis, which is a precursor to
cutaneous squamous cell carcinoma in humans (190). IL-25
Frontiers in Immunology | www.frontiersin.org 6
also has potent anti-tumor effects against several tumor types,
including melanoma, through an increase in eosinophils
recruitment into the tumor (191, 192). In other models, IL-25
itself exhibits anti-tumor activity through the induction of
apoptosis in cancer cells without affecting nonmalignant cells
(193). In contrast, epidermal IL-33 contributes to a
microenvironment that supports tumor growth and
progression in murine skin. Nuclear IL-33 mediates focal
adhesion kinase (FAK)-dependent secretion of soluble ST2, a
decoy receptor, and CCL5 from squamous cell carcinoma cells,
which stimulates immunosuppressive Tregs leading to cancer
immune evasion (194). Continuous IL-33-driven stimulation of
Tregs shapes a tumor-promoting immune environment
associated with chronic inflammation in the murine skin, and
FIGURE 1 | Type 2 alarmin cytokines orchestrate immune responses in the skin. Epidermis-derived TSLP, IL-25, and IL-33 act as alarmins to instigate cutaneous
type 2 immunity through a complex and pleiotropic network of innate and adaptive immune cells. In addition, TSLP and IL-33 provoke sensory neurons to mediate
itch and pain responses. DC, dendritic cell; ILC2, group2 innate lymphoid cell; LC, Langerhans cell; TSLP, thymic stromal lymphopoietin; TSLPR, thymic stromal
lymphopoietin receptor. Created with BioRender.com.
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an increase in IL-33 expression and Treg accumulation are
observed in the perilesional skin of patients with cancer-prone
chronic inflammation (178). Furthermore, IL-33 induces the
recruitment of a subset of tumor-associated macrophages,
which express ST2 and high-affinity IgE receptor, FcϵRIa, and
produce TGF-b, in the tumor microenvironment, which results
in tumor progression in a mouse model of squamous cell
carcinoma (195). Nuclear IL-33 in keratinocytes also promotes
intrinsic TGF-b signaling through the SMAD signaling pathway,
which constitutes a cell-autonomous tumor promotion
mechanism in chronic inflammation (196). IL-33-stimulated
macrophages highly produce MMP-9, which proteolytically
trims activating receptor natural killer group 2, member D
(NKG2D) and its ligands MHC class I polypeptide-related
Frontiers in Immunology | www.frontiersin.org 7
sequence A/B (MICA/B) on the surface of tumor-infiltrating
lymphocytes and melanoma cells, and thus impedes the immune
surveillance of tumor-infiltrating lymphocytes (197). These findings
indicate that type 2 alarmin cytokines have distinct mechanisms for
the regulation of cutaneous malignancies.

Endogenous TSLP controls the steady-state level of sebum
secretion and sebum-associated antimicrobial peptide expression
through the activation of T cells in murine skin. TSLP
overexpression results in loss of white adipose tissue in
conjunction with sebum hypersecretion (18). TSLP helps to
maintain skin-resident RORgt+ ILCs within hair follicles, and,
by the virtue of their location, ILCs negatively regulate
surrounding sebaceous gland size and lipid content to regulate
commensal bacteria equilibrium and fine-tune the skin barrier
FIGURE 2 | Type 2 alarmin cytokines exhibit pro-homeostatic properties in the skin. The function of type 2 alarmin cytokines extends beyond their conventional
Th2-associated function in host defense and allergy. In the skin, these cytokines play critical roles in cancer regulation and sebum secretion. ILC, innate lymphoid
cell; MRSA, methicillin-resistant Staphylococcus aureus; ROS, reactive oxygen species; TSLP, thymic stromal lymphopoietin; TSLPR, thymic stromal lymphopoietin
receptor. Created with BioRender.com.
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surface in mice (198). These findings suggest that TSLP-elicited
ILCs and T cells play opposing functions in sebum secretion.
Finally, TSLP is found to activate neutrophils to protect the skin
from infection by methicillin-resistant Staphylococcus aureus
(MRSA) (199).
CONCLUSION

Epidermis-derived TSLP, IL-25, and IL-33 act as alarmins to
instigate cutaneous type 2 immunity through a complex and
pleiotropic network of innate and adaptive immune cells.
Accumulating evidence indicates that these type 2 alarmin
cytokines not only function in concert but also have distinct
physiological functions. Thus, the panoramic view of the
communications between keratinocytes and immune cells
through type 2 alarmin cytokines is required to fully
understand how these cytokines regulate cutaneous immunity.
The function of type 2 alarmin cytokines partly depends on the
nature of the inflammatory stimulus, the presence of supporting
cytokines and chemokines, and the surrounding microenvironment.
Frontiers in Immunology | www.frontiersin.org 8
Recent studies indicate that type 2 alarmin cytokines exhibit not
only conventional type 2 inflammatory properties but also
pro-homeostatic properties in the skin. Therefore, further
understanding of the spectrum of biologic processes regulated
by type 2 alarmin cytokines will provide new insights for the
development of effective therapeutic approaches to combat allergic
inflammation while utilizing the beneficial effects of these
cytokines in the skin.
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