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Lipopolysaccharide-induced
interferon response networks at
birth are predictive of severe
viral lower respiratory infections
in the first year of life
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Stacey N. Reinke4, Patrick G. Holt1,6 and Anthony Bosco1,6,7,8*
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Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup,
WA, Australia, 5Child Health Research Centre, The University of Queensland, Brisbane, QLD,
Australia, 6The University of Western Australia Centre for Child Health Research, The University of
Western Australia, Nedlands, WA, Australia, 7Asthma and Airway Disease Research Center, University
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Appropriate innate immune function is essential to limit pathogenesis and

severity of severe lower respiratory infections (sLRI) during infancy, a leading

cause of hospitalization and risk factor for subsequent asthma in this age group.

Employing a systems biology approach to analysis of multi-omic profiles

generated from a high-risk cohort (n=50), we found that the intensity of

activation of an LPS-induced interferon gene network at birth was predictive

of sLRI risk in infancy (AUC=0.724). Connectivity patterns within this network

were stronger among susceptible individuals, and a systems biology approach

identified IRF1 as a putative master regulator of this response. These findings

were specific to the LPS-induced interferon response and were not observed

following activation of viral nucleic acid sensing pathways. Comparison of

responses at birth versus age 5 demonstrated that LPS-induced interferon

responses but not responses triggered by viral nucleic acid sensing pathways

may be subject to strong developmental regulation. These data suggest that

the risk of sLRI in early life is in part already determined at birth, and additionally

that the developmental status of LPS-induced interferon responses may be a

key determinant of susceptibility. Our findings provide a rationale for the

identification of at-risk infants for early intervention aimed at sLRI prevention

and identifies targets which may be relevant for drug development.

KEYWORDS

innate immunity, respiratory infection, interferon, lipopolysaccharide (LPS), multi-
omics, systems biology, pathogen recognition receptor (PRR)
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Introduction

Severe lower respiratory tract infections (sLRIs) are a leading

cause of emergency room presentations by infants and children

(1, 2), and are a major risk factor for the development of asthma

and wheeze (3–6). Rhinovirus (RV) and Respiratory Syncytial

Virus (RSV) are the most important triggers of early life

respiratory infections and asthma development (7–9). Several

studies have found that associations between sLRI and asthma

are strongest in children with RV-related wheezing and early

aeroallergen sensitization (5, 6, 10, 11), although a causal

relationship remains to be established (7). However, RV can

routinely be detected in asthmatic children in the absence of

asthmatic symptoms, suggesting that RV may be necessary but

not sufficient to drive the pathogenesis of asthma (12). In this

regard it has been demonstrated that bacterial pathogens,

including Moraxella, Streptococcus, and Haemophilus species,

are important triggers of wheezy episodes in young children (13,

14), and may also contribute towards asthma inception (15, 16).

Furthermore, the presence of pathogenic bacteria in the

nasopharynx during acute respiratory viral infections may

increase the likelihood of infection spread to the lower

airways, amplifying ensuing inflammatory symptoms and

increasing risk of subsequent asthma development (17, 18),

although much remains unknown regarding virus-bacteria

interactions in the airways and asthma development (19, 20).

Conversely, exposure to microbes and their products during

early childhood has also been shown to protect against asthma,

perhaps most elegantly illustrated through the “farm effect” (21,

22). The underlying immunological mechanisms that determine

why some individuals are more susceptible to sLRIs in early life,

and subsequent asthma, are not well understood. Innate

immune function in the immediate postnatal period, which

experiences drastic developmental changes (8, 23–25), provides

a logical link between early life microbial exposure and infection

susceptibility. This has prompted investigation of molecular

events downstream of pathogen recognition receptor (PRR)

activation, such as Toll-like receptors (TLRs), in blood

collected at birth and in early life (26–31). For example,

reduced type 1/3 interferon response capacity following

stimulation with Polyinosinic-polycytidylic acid (Poly(I:C)) – a

potent activator of TLR3 – in cord blood cells is associated with

increased risk for febrile LRIs and early childhood wheeze (31).

Moreover, enhanced production of the proinflammatory

cytokine IL-1b following bacterial lipopolysaccharide (LPS)

activation of cord blood was observed in individuals at risk of

childhood-onset asthma, in association with increased SMAD3

methylation and maternal asthma status (30). These examples

reveal that aspects of innate immunity which may confer risk for

sLRIs and subsequent asthma are already detectable at birth. The

aim of the present study was to determine if innate immune

response profiles induced by bacterial LPS or viral nucleic acid

sensing pathways (Poly(I:C) and Imiquimod) at birth could
Frontiers in Immunology 02
predict sLRI in the first year of life. The rationale for selecting

these pathways is that previous studies have highlighted the role

of bacteria, respiratory viral infections, and innate immune

responses to the selected TLR agonists in asthma risk (7, 9, 15,

30–33).
Materials and methods

Study population

Subjects were a subset of 50 individuals from the Childhood

Asthma Study, a 10 year prospective birth cohort enrolled

prenatally for high risk of asthma development, as described

previously (5, 31, 34–36). Of the 60 subjects with at least one

CBMC aliquot remaining from the cohort, nine were excluded

due to insufficient information (withdrawn before the 1 year

follow-up) and a further subject was excluded for insufficient

sample volume. Acute respiratory infections were considered

sLRIs if wheeze and/or fever was present in addition to chest

rattle, as this definition has previously been linked to persistent

wheeze and asthma in this cohort (5, 35) (Supplementary

Methods). Respiratory viral infection histories were

determined from detailed assessment and nasopharyngeal

aspirates (RT-PCR) collected during home visits within 48

hours of symptom development (5, 34). Ethics was approved

by The University of Western Australia (reference RA/4/1/

7560), and fully informed parental consent was obtained for

all subjects.
Immunophenotyping

Approximately 1x106 CBMCs from each sample were

immunophenotyped with a panel of 11 monoclonal antibodies

to measure CD3, CD4, CD11c, CD14, CD19, CD25, CD123,

CD127, FcϵRIa, FoxP3, and HLA-DR. Individual cells were

acquired using the LSRFortessa platform with FACSDiva

software (BD Biosciences) following quality control measures.

FlowJo (v10.5) software and R were used for pre-processing and

analysis (Supplementary Methods).
In vitro cell culture

Samples were assigned randomized blocks and cultured

sequentially by the same personnel using consistent reagent/

s t imu l i s t o c k s . C o r d b l o o d e r y t h r o c y t e s w e r e

immunomagnetically depleted (EasySep kit, StemCell, Cat no.

18170) and each sample was cultured in RPMI 1640 (Gibco, Cat

No. 11875119) supplemented with 5% AB serum (Sigma-

Aldrich, Cat. No. H3667) for 18 hours (37°C, 5% CO2) with

1ng/ml LPS (Enzo Biochem, Cat No. ALX-581-007-L001;
frontiersin.org

https://doi.org/10.3389/fimmu.2022.876654
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Read et al. 10.3389/fimmu.2022.876654
derived from E. coli, serotype R515), 5ml/ml Imiquimod (In vivo

Gen, Cat. Code: tlrl-imq) or 50ml/ml Poly(I:C) (In vivo Gen,

Cat. Code: tlrl-pic), alongside matched unstimulated controls.

Poly(I:C), bacterial LPS, and Imiquimod were selected

as they are activators of TLRs 3, 4, and 7, respectively,

thereby triggering innate immune responses to LPS and viral

nucleic acid sensing pathways. However, it is noteworthy

that Poly(I:C), a synthetic analogue of double-stranded RNA,

can also activate the viral-related PRRs RIG-I and MDA5 (37).

Aliquots of culture supernatant were immediately snap frozen

in liquid nitrogen for metabolomic profiling or stored at -20°C

for cytokine quantification. Cell pellets were stored in TRIzol

reagent (Invitrogen, Cat No. 15596026) at -20°C for

RNA extraction.
Data generation

Detailed information on sample and data processing and

quality control are available in the Supplementary Methods.

RNA-Seq: RNA was purified with RNeasy MinElute Kits

(Qiagen, Cat No. 74204) and libraries were prepared with

NEBNext Ultra II Kits (NE BioLabs) for sequencing on the

NovaSeq 6000 (Illumina) platform. Standard methods were

applied for pre-processing, alignment (GRCh38), and

transcript quantification. RNA-Seq data is available from the

NCBI Gene Expression Omnibus repository (38) (accession

number GSE184383).

Cytokines: The concentrations of 48 cytokines (Bio-plex Pro,

BioRad, Cat. No: 12007283) were simultaneously quantified with

the Luminex 200 system (Luminex). Nine cytokines were outside

the limit of detection in >20% of stimulated samples and were

removed. Raw and processed data are provided in Data S1.

Metabolites: Untargeted metabolomic data was generated

with liquid chromatography (HILIC and C18 modes) separation

coupled to a Q Exactive Orbitrap mass spectrometer (Thermo

Fisher Scientific) in electrospray positive ionisation mode (LC-

MS/MS). QC samples were interspersed throughout the run

order to assess and correct variability. Metabolites were filtered

according to stringent statistical and annotation thresholds (39).

Raw and processed data are provided in Data S2.
Transcriptomic analysis

Differentially expressed genes (DEG) were identified [EdgeR

(40)] using an absolute log2 fold change >1.5 and an adjusted P

value < 0.01 (Benjamini-Hochberg adjusted False Discovery

Rate). Moderated t-statistics were calculated with limma/voom

(41). Pathways analysis of upregulated/downregulated genes was

performed with InnateDB (42). Cellular composition was

est imated from post-culture gene express ion with

CIBERSORTx (43) with single cell RNA-seq cord blood
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reference profiles curated from the Human Cell Atlas (44).

Gene expression data was partitioned into response context-

specific modules with WGCNA (45). Modules were annotated

by employing a consensus approach derived from Gene

Ontology (GOenrichmentAnalysis), ReactomePA (46), and

clusterProfiler (47) R packages, and InnateDB (42).

Additionally, we employed the blood transcriptional module

repertoire from BloodGen3Module to confirm that the principal

modules of interest related to innate immune function we

identified following WGCNA analysis (interferon and

proinflammatory modules) were captured with an independent

method (48). Separate response networks were created for each

condition and included matched unstimulated controls, as

detailed in the Supplementary Methods.
Master regulator analysis

To identify transcription factors that act as master regulators

of gene expression profiles, a gene regulator network was reverse

engineered with ARACNe (49) and transcription factor activity

was inferred with VIPER (50) (detailed in Supplementary

Methods). Significant TFs (p<0.05) were considered drivers of

the responses if they had known binding motifs in the region of

regulon target genes (500bp upstream and 100bp downstream)

determined by RcisTarget (51). Normalised expression scores

(NES) output t ed f rom VIPER were re ta ined for

downstream analysis.
Machine learning

Gene expression data was randomly assigned into training

and validation sets and filtered to only the respective module

genes for each analysis. The random assignment was 50%

training/50% validation. The RandomForest R package was

used for random forest model construction, and the number

of decision trees (ntree) and candidate variables (mtry) were

optimized according to the out-of-bag error rate (Supplementary

Methods). Model construction and classification was repeated

thousands of times after randomly re-assigning samples into

train/validation groups (retaining the original optimized

parameters) and this was repeated with 60/40 and 70/30 splits

(Supplementary Methods). This step was included to ensure the

results were robust with respect to the randomized train/test

group assignment. The same random assignment with respect to

individual subjects was applied for LPS/CTRL, Poly(I:C)/CTRL,

and Imiquimod/CTRL models. For random forest models used

to predict infection status in independent cohorts of infant/

childhood infection, CAS cohort data was filtered to respective

module genes and used as the training set, and the external gene

expression data was used for validation (filtered to identical

input genes).
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Multi-omic data integration

A DIABLO (52) model was constructed for supervised

multi-omic data integration, which generalizes Partial Least

Squares analysis to maximize co-expression between matched

datasets. All datasets (except immunophenotyping) for LPS-

stimulated CBMC samples were baseline adjusted prior to

analysis, and gene expression data was filtered to significantly

variable genes (n=6344) to reduce noise. The number of

components and feature selection parameters were tuned with

5x cross-validation (Supplementary Methods).
Results

Study population

The study population consisted of a subset of 50 children

within the Childhood Asthma Study (CAS) cohort (5, 34–36,

53). 23 subjects (46%) experienced at least one wheezy and/or

febrile sLRI in their first year (infancy) and this was the primary

outcome of interest (Table 1). These individuals typically

experienced 1 or 2 sLRIs in the first year of life, and a similar

number recorded both wheezy and febrile (8/23, 34.8%), wheezy

only (7/23, 30.4%), and febrile only (8/23, 34.8%) sLRIs (Table

S1 and Figure S1A). No difference was observed with respect to

sex, gestational weeks, birth weight, skin prick test positivity to

common aeroallergens, and URIs in infancy for the primary

outcome (Table S1). Overall, this subset was found to be

representative of the total CAS cohort (n=263) with respect to

key clinical characteristics (Table 1). RV was the most frequent

viral agent identified from the first year of life in this subset

(present in 56.9% of infectious nasopharyngeal samples)

followed by RSV (13.125%), and this was representative of the

total cohort (Figures 1, S1).
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Baseline flow cytometry

We applied an 11-colour flow cytometry panel to baseline

cord blood mononuclear cell (CBMC) samples to assess cellular

composition. Lymphocytes (T and B cells) composed the

majority of cell types identified among CBMC (Figures 1B and

S1B). CD14+ monocytes and conventional dendritic cells (cDC)

were identified among the myeloid compartment, and smaller

proportions of plasmacytoid DCs (pDC) and basophils were also

identified. The was no difference in baseline cellular composition

with respect to sLRI in the first year of life (Figure S1C).
Multi-omic profiling of innate immune
responses in CBMC

CBMC from all 50 subjects were cultured for 18 hours with

LPS, or Imiquimod, or Poly(I:C) to trigger innate immune

responses, along with unstimulated controls. This timepoint

was selected to capture signalling cascades downstream of the

immediate and secondary response programs (54–56). Gene

expression was profiled from cell pellets (RNA-Seq) and

supernatants were used to profile cytokines (multiplex assay)

and metabolites (LC-MS/MS). Matching PBMC samples

collected at age 5 were available for a subset of the subjects

(n = 27), and these were cultured in parallel under the same

conditions. Following data pre-processing and filtering, 17,363

transcripts, 39 cytokines, and 47 metabolites were available for

analysis (see Methods). We applied unsupervised Principal

Component Analysis (PCA; transcripts, cytokines) and

supervised Canonical Variate Analysis (CVA; metabolites)

dimensionality reduction for exploratory data analysis. The

samples from each biological layer clustered by stimuli as

expected (Figure 1C). For transcripts and cytokines, the first

two principal components captured interferon (IFN) and
TABLE 1 Characteristics and representativeness of the study subset.

CAS subset (n=50) Total CAS cohort (n=263) OR (95% CI) P value

Sex (female) 24/50 (48%) 115/251 (45.82%) 0.92 (0.48-1.77) 0.88

Gestation (weeks; mean [range]) 39.14 [36-41] 39.03 [34-41] NA 0.89

Birth weight (grams; mean [range]) 3496.52 [2755-4415] 3406.17 [2085-5110] NA 0.27

SPT+ at 0.5, 2, or 5 years 24/50 (48%) 118/198 (59.6%) 1.59 (0.82-3.13) 0.15

URI in first year 47/50 (94%) 215/235 (91.49%) 0.69 (0.13-2.46) 0.78

LRI in first year 39/50 (78%) 160/235 (68.08%) 0.6 (0.26-1.28) 0.18

sLRI in first year 23/50 (46%) 101/235 (42.98%) 0.88 (0.46-1.72) 0.75

Current wheeze at 5 years 14/43 (32.56%) 56/198 (28.28%) 0.82 (0.38-1.8) 0.58

Asthma at 5 years 9/34 (26.47%) 37/198 (18.69%) 0.64 (0.26-1.69) 0.35
front
CAS, Childhood Asthma Study; OR, Odds Ratio; CI, Confidence Interval; URI, Upper respiratory Infection (viral); (s)LRI, (severe) Lower respiratory Infection (viral); SPT, Skin Prick Test.
SPT positivity was determined from a panel of seven common allergens (house dust mite, cat dander, ryegrass, Alternaria, Aspergillus, cow’s milk, and egg white), along with positive
(Histamine) and negative (saline) controls at 6 months, 2 years, and 5 years (Supplementary Methods). sLRIy1 represents the primary outcome (sLRI incidence in the first year of life). For
categorical variables, odds ratios, 95% CIs and accompanying P values were determined by Fishers Exact test. For continuous variables, P values were determined by Mann-Whitney U test.
Variation in participant number relates to data availability (see Methods).
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FIGURE 1

Respiratory virus prevalence, baseline CBMC cell proportions, multi-omic data set overview. (A) Bar plot of viral agents detected from infectious
NPAs taken during year one (proportion of total virus+ NPAs). Bars denote study subset (n=50), grey fill represents individuals who recorded an sLRI
in year 1 from the total cohort (n=234). (B) Immunophenotyping of baseline CBMC samples. Y-axis shows cell type as a proportion of identified
cells. Scatterplots shows median and 95% CI. (C) Multi-level dimensionality reduction for gene expression (PCA), cytokine (PCA), and metabolite
(cross validated CVA) datasets. Axes show coordinates of the first (x-axis) and second (y-axis) components/variates. (D) Horizontal bar plots showing
top contributing features for the first (i-iii) and second (iv-vi) principal components or canonical variates for the corresponding plots in (C), above.
X-axis shows absolute contribution (%)/loading; red/blue indicates positive/negative relative contribution.
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proinflammatory features (e.g., CXCL10/IP-10, IL-1b, IL-6)
(Figure 1D). Poly(I:C)-stimulated cord blood sample clustering

by metabolites was driven by lysine on the first canonical variate,

and other amino acids (e.g., glutamine, histidine) were identified

for the second and third canonical variates (Figures 1C, D,

S1D,E).
IFN and proinflammatory gene
expression programs are upregulated in
CBMC responses

We focused on the transcriptomics data to further investigate

cord blood responses to LPS, Poly(I:C), and Imiquimod treatment

as these data provide genome-wide coverage. Employing

differential expression analysis, we identified 641 differently

expressed genes (DEGs) for the cord blood LPS response (Log2-

fold change > 1, FDR adjusted-P value < 0.01), and greater than

1000 DEGs for the imiquimod and Poly(I:C) responses

(Figure 2A). Pathways analysis [InnateDB (42)] identified an

enrichment of cytokine and chemokine signalling pathways

from upregulated genes in all responses, and IFN signalling

pathways were prominent for imiquimod and Poly(I:C) CBMC

responses (Figures 2B, S1F). Notably, the viral-related stimuli

triggered a common set of 429 upregulated genes and this

constituted a core antiviral response shared between Poly(I:C)

and Imiquimod responses (Figure S1G). In addition, we identified

462 and 243 genes that were specifically upregulated in response

to Poly(I:C) and Imiquimod respectively, demonstrating unique

signalling pathways downstream of their receptors (Figure S1G).

We next employed CIBERSORTx to estimate the post-culture

cellular composition from the RNA-Seq data (43). Prominent cell

types included monocytes, B cells, and CD4+ T cells (Figures S2A,

B). The erythrocyte proportion was negligible as a result of

immunomagnetic depletion (see Methods). Cell composition

changes were identified between stimuli and age, but not

sequence order or sex (Figures S2C,D). There was also no

difference in the estimated cellular composition between

individuals who were resistant or susceptible to sLRI in infancy,

aligning with the baseline flow cytometry findings (Figures S1C,

S2D). We also investigated variations in innate immune gene

expression in the matching samples collected at birth versus age 5

(n=27 per age/stimuli) (Figures S2E, F). Interestingly, the LPS

response at 5 years was characterised by upregulation of IFN-

related genes, including IRF1, STAT1, and IFIT1-3, compared to

birth. In contrast, IFN-related pathways were not prominent from

differentially expressed genes between birth and age 5 following

imiquimod or Poly(I:C) stimulation (Figures S2E, F). Finally, no

genes were significantly different between individuals resistant and

susceptible to sLRIs in infancy for any condition from this analysis

(data not shown), suggesting that sLRI risk is not conferred by

individual gene expression magnitude alone.
Frontiers in Immunology 06
Identification of co-expression networks
underlying the innate immune responses
at birth

Genes do not function in isolation, they work together in

networks (57), and for this reason gene expression data is not only

informative for differences in expression magnitude (e.g. fold

changes) but also in network structure (e.g. connectivity). We

employed weighted gene co-expression network analysis

(WGCNA) to elucidate the global connectivity structure and

functional organisation of gene expression patterns observed

from our CBMC samples. This analysis identified 11, 11, and 8

co-expression modules for the LPS, Imiquimod and Poly(I:C)

responses, respectively (Figures 2C–E, S3A,B). All responses

exhibited upregulation of IFN and proinflammatory modules,

and as we had already identified these as integral components of

the cord blood innate responses with dimensionality reduction and

differential expression analysis, they were therefore carried forward

for downstream analysis (Figures 2C–E, S3C–E). The LPS response

had the smallest IFN module (180 genes) compared to Imiquimod

(1114 genes) and Poly(I:C) (2201 genes) and the inverse was true of

the proinflammatory modules (LPS, 2297 genes; Imiquimod, 924

genes; Poly(I:C), 646 genes) (Figure 2F). Notably, there was

substantial overlap between IFN and proinflammatory module

genes of different stimuli, particularly between the Poly(I:C) IFN

and LPS proinflammatory modules (n=385 genes) (Figure S3F).

We next compared gene network patterns between the respective

responses. First, we calculated module preservation statistics, and

the results showed that the LPS-induced IFN module was highly

preserved within the IFN modules of the imiquimod and Poly(I:C)

responses but not vice versa (Figure S3G). The IFN modules

associated with the imiquimod and Poly(I:C) responses were

preserved within one another and the proinflammatory modules

were preserved between all responses (Figure S3G). Second, we

calculated ranked gene expression and ranked connectivity to

compare modules. A prominent disparity was observed between

expression magnitude (r = 0.88 & 0.82) and intra-module

connectivity (r = 0.57 & 0.59) between the cord blood LPS-

induced IFN module genes and the same genes following

Imiquimod and Poly(I:C) stimulation, respectively (Figure 2G).

To examine connectivity within modules, we plotted the

connectivity density across all genes in each module and also

identified the top 20 most connected genes (Figures 3A, B). The

connectivity of the LPS-induced IFNmodule was characterised by a

normal distribution, whereas the viral stimuli produced left-skewed

distributions (Figure 3A). Key IFN signalling genes (e.g. IRF1,

STAT1) were present among the most connected genes within the

LPS-induced IFN module, however the strength of the most

connected genes was reduced compared to the IFN modules of

the viral stimuli (Figure 3B). The LPS-induced proinflammatory

module displayed greater connectivity compared to the

imiquimod- or Poly(I:C)-induced proinflammatory modules
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FIGURE 2

IFN and proinflammatory gene expression following TLRs 3/4/7 activation in CBMC. (A) Volcano plot showing significantly upregulated (red) and
downregulated (blue) genes compared to matched unstimulated samples for the LPS (i), Imiquimod (ii), and Poly(I:C) (iii) responses, respectively.
Plots show the Log2 fold-change (x-axis) and FDR-adjusted p value (-Log10 transformed). Blue and red dashed lines indicate a Log2FC of -1 and 1,
respectively; black dashed line denotes a -Log10 FDR-adjusted p value of 2. (B) Top 10 overrepresented pathways from significantly upregulated
genes of the CBMC LPS (i), Imiquimod (ii), and Poly(I:C) (iii) responses. X-axis shows the FDR corrected p value (-Log10 transformed); black dashed
line indicated corrected p ≈ 0.05. (C–E) Modules identified from network analysis (WGCNA) of the LPS, Imiquimod, and Poly(I:C) responses,
respectively. Modules are plotted by moderated t-statistics (y-axis) and show the median, 25th and 75th quartiles ±1.5xIQR and outliers. Modules with
medians above the red line (moderated t-statistic = 2) are considered significantly upregulated and those below the blue line (-2) are considered
significantly downregulated. (F) Bar plot of the number of genes in the interferon and proinflammatory modules for the respective responses. (G)
Heatmap showing Spearman’s correlation values of ranked expression and ranked connectivity between CBMC response module genes. Expression
of member genes from the IFN and proinflammatory modules of each response were correlated against the expression of the same genes from the
other responses. The p value associated with all correlations was < 0.01.
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FIGURE 3

Network connectivity and master regulator analysis of IFN responses at birth and age 5 years identify IRF1 as a key driver. (A) Density plot of the
LPS (i), Imiquimod (ii), and Poly(I:C) (iii) CBMC response IFN module connectivity, respectively. Dashed line denotes median. Lilliefors p value >
0.05 indicates normal distribution. (B) Network wiring diagrams of the top 20 most connected genes for the LPS (i), Imiquimod (ii), and Poly(I:C)
(iii) CBMC IFN modules, respectively. Node size represents number of connections (degree) among the total network and edge width indicates
strength of correlation (red edges > 0.8). (C) Top 10 master regulators for the respective CBMC IFN modules. Bar plots show normalized
enrichment score (NES) for transcription factors which are significantly activated (NES>2, red line) or inactive/inhibited (NES<-2, blue line). Grey
shading indicates an adjusted P value < 0.05. (D) Network wiring diagrams of the most connected CBMC LPS-induced IFN module genes from
matched CBMC (i) and 5 year PBMC (ii) samples. Network characteristics are the same as above (B). (E) Network connectivity density plot for
the interferon module gene connectivity of the matched CBMC (blue) and 5 year PBMC (magenta) responses to LPS (i), Imiquimod (ii), and Poly
(I:C) (iii) stimulation. (F) Top drivers of the LPS-induced interferon module genes identified for matched CBMC (i) and 5 year PBMC (ii, 9 drivers
were significant at P <0.05 samples. Bar plot characteristics are the same as above (C).
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(Figure S4A). Genes encoding innate immune/proinflammatory

cytokines (e.g. IL1A/B, CXCL2/3/8) were among to most connected

genes in the proinflammatory modules of all responses at birth

(Figure S4A). In summary, although viral nucleic acid and bacterial

related stimuli activated overlapping sets of proinflammatory and

IFN response genes, the underlying network structure was

markedly different.
Identification of master regulators of the
innate immune responses at birth
and age 5

We employed VIPER (50) analysis to identify master

regulators which are predicted to drive module connectivity

patterns. This approach revealed that the LPS-induced IFN

module was putatively driven by BATF, STAT3 and IRF1

transcription factors (TFs) at birth, whereas the Imiquimod-

and Poly(I:C)-induced IFN module top drivers included

multiple STAT (e.g. STAT2) and IRF (e.g. IRF7) TFs

(Figure 3C). The proinflammatory modules for all three

responses were enriched for CEBPB, AP-1 (e.g. JUN, FOSL1/2)

and NF-kB (e.g. NF-kB, RELB) (Figure S4A). Importantly, we

repeated our analyses with input genes restricted to only those

preserved from the LPS responses IFN (169/180, 93.89%) and

proinflammatory (443/2297, 19.29%) modules and the result was

unchanged (Figures S4B, C). Finally, we compared gene network

patterns between CMBC and matched PBMCs samples (n=27)

collected at 5 years. The connectivity of the genes of the LPS-

induced IFN module was markedly higher at 5 years compared to

birth among matched samples, suggesting that the wiring of this

module is subject to developmental regulation (Figures 3D, E).

Additionally, IRF1 enrichment was only identified from cord

blood (Figure 3F). In contrast, the IFN responses provoked by

imiquimod and Poly(I:C) stimulation displayed comparatively

similar connectivity patterns between birth and age 5 years and,

supporting this, the putative drivers were also comparable

between birth and 5 years (e.g. STAT2, IRF7) (Figures 3E, S5A).

Imiquimod and poly(I:C) proinflammatory modules were

characterised by reduced intra-module connectivity in blood

collected at 5 years compared to birth (Figures S5B, C).
Innate immune responses at birth are
predictive of sLRI in the first year of life

To determine whether innate immune responses at birth

could predict the development of sLRIs in the first year of life,

we randomly assigned the data set into training (50%, n=25) and

validation sets (50%, n=25) and trained a random forest classifier

on the CBMC IFN modules. The classifier trained on the LPS-

induced IFN module genes could predict sLRIs in the first year of

life with an accuracy of 72% in the validation data set (Area under
Frontiers in Immunology 09
the ROC curve = 0.724) (Figure 4A). Whilst the accuracy of this

model may appear modest, it is known that risk biomarkers in

general possess poor accuracy to predict subsequent disease over a

specific time interval because the at-risk population will almost

always be heterogeneous with respect to the disease outcome (58).

In contrast, classifiers built from the Imiquimod- or Poly(I:C)-

induced IFNmodule genes were not predictive of sLRIs in the first

year of life (Figure 4A). To test whether this finding was

reproducible given the relatively small sample numbers available

as input, we repeated the analysis by randomly re-sampling

subject membership in the training/validation sets (retaining the

initial optimization parameters), and again found that only the

LPS-induced IFN module genes could predict sLRIs in infancy

better than chance on average (Figures 4B, S6A–C). Furthermore,

we observed markedly different connectivity patterns for the LPS-

induced IFN modules when stratified by individuals who did and

did not experience and sLRI in the first year of life (Figures 4C, D,

S6D), and this was not evident from the imiquimod- or Poly(I:C)-

induced IFN modules (Figures 4C, S6E, F). Specifically,

susceptible individuals had stronger gene network patterns for

the LPS-induced IFN module, although the putative drivers of the

response were comparable (IRF1, STAT3, BATF) (Figures 4D, E).

Restricting the Imiquimod and Poly(I:C) IFN responses to only

those genes of the LPS-induced IFN module did not exhibit

noticeable differences in connectivity density patterns in relation

to sLRI susceptibility in infancy (Figures S6E(iii),F(iii)). Whist the

connectivity density plot of the LPS-induced IFN module of

CBMCs of susceptible individuals (Figure 4C) resembled the

overall connectivity density of the 5 year PBMC connectivity

(n=27) (Figure 3E), the intra-module connectivity was

significantly different (Figures S6G, H), suggesting the similarity

may emerge from different processes. However, it should be noted

that among the subjects which had a PBMC sample available at 5

years (n=27), the proportion of individuals who experienced an

sLRI in infancy (29.63%) differed to that of the total subset (n=50,

46% sLRI positive in infancy). We also calculated module

eigengenes to summarise overall module expression and

compared this with clinical traits. The CBMC LPS-induced IFN

module eigengene stratified individuals susceptible to sLRIs in the

first year of life (p=0.016), as well as those with asthma (p=0.015)

and current wheeze (p=0.02) at 5 years of age (Figures 4F, S7A,B).

This result was only significant for the LPS response, was specific

for the IFN module, and was only observed for comparisons of

severe LRIs (Figures 4G, S7C–E).
IFN responses induced in CBMCs by TLR
ligands in vitro are representative of IFN
responses during natural infections

We questioned whether the IFN module gene expression

profiles exhibited by CBMCs following in vitro culture with

model antigens in our study are reflective of naturally occurring
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FIGURE 4

IFN genes activated following LPS stimulation at birth predict sLRI susceptibility in the first year of life. (A) Random forest (RF) classifiers were
trained on the respective IFN module genes from half the study subjects and validated on the remaining subjects (50/50). RF models were
optimised with respect to number of genes sampled at each split and number of trees grown. Plot depicts the area under the Receiver Operator
Characteristic curve (AUC-ROC) defined by the rate of false (x-axis, 1-specificity) and true (y-axis, sensitivity) positives. (B) RF model predictions
were repeated by re-sampling the training/validation set (50/50 random assignment) 2,000 times. Plot show the AUC-ROC for each re-sample,
with median (solid lines) and 95% CIs (dashed lines). (C) Network connectivity density plot of IFN module gene networks stratified by individuals
who did (orange) and did not (grey) record an sLRI in the first year of life. (D) Network wiring diagram of the most connected genes of the
CBMC LPS-induced IFN module gene from individuals resistant (I, n=27) and susceptible (II n=23) to sLRIs in infancy. Node and edge
characteristics are the same as Figure 3B. (E) Top 10 master regulators identified for the CBMC LPS-induced IFN response module for resistant
(i) and susceptible (ii) subjects. Bar plot characteristics are the same Figure 3C. (F) Box-and-whisker plot of the CBMC LPS-induced IFN module
eigengene, grouped by susceptible (orange) and resistant (grey) individuals. Boxes show median, 25th and 75th quartiles and whiskers are
determined by the Tukey method; P value determined by Mann-Whitney U test. (G) Plot of IFN module eigengenes for CBMC responses
grouped by individuals who were resistant (-) and susceptible (+) to LRIs and sLRIs in infancy. P values determined by Mann-Whitney U test and
significant result reflects (F). Plot shows median (symbol) and 95% CI (bars).
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IFN responses to childhood infections in vivo. To address this issue,

we trained RF classifiers on our CBMC-derived IFN module genes

and used them to classify samples from publicly available data sets

from the Gene Expression Omnibus. Gene expression data from

external cohorts was filtered to only those genes present in the

corresponding IFN modules for each analysis. The first data set

comprised whole blood gene expression profiles from children

(<17yrs) with febrile illnesses requiring hospitalization with

confirmed bacterial (n = 52) or viral (n = 92) infections versus

healthy controls (n = 52) [GSE72809 (59)]. We found that RF

classifiers trained on LPS- and Imiquimod/Poly(I:C)-induced IFN

module genes accurately predicted children with bacterial (AUC =

0.889) and viral (AUC = 0.874/0.838) infections, respectively

(Figures 5A, S7F). The second data set consisted of PBMC

samples from infants (<18mo, n=30) and young children (18mo-

5yrs, n = 32) who were hospitalized with acute viral bronchiolitis

[GSE113211 (60)]. Classifiers built on unstimulated and either

Imiquimod- (AUC=0.8) or Poly(I:C)- (AUC=0.877) induced IFN

genes could accurately stratify samples collected during acute illness

compared to matched post-convalescent samples (symptom-free,

8.8 ± 2.5 weeks post-infection), independent of age (Figures 5B,

S7G). The models performed well for infants (AUC = 0.922, Poly(I:

C); AUC = 0.827, Imiquimod) and children (AUC = 0.789, Poly(I:

C); AUC = 0.842, Imiquimod) separately (Figure S7G). The third

data set consisted of nasal-derived gene expression profiles from

study visits of asthmatic children (6-17yrs) with viral-related or

non-viral “cold”-like illness (1-6 days post-onset), some of which

later experienced exacerbations (n=83, 58 were viral-positive)

[GSE115770 (61)]. Symptomatic children with respiratory viral

infections were accurately predicted from symptomatic, yet virus-

negative, children from Imiquimod (AUC=0.8) and Poly(I:C)

(AUC=0.832) defined RF classifiers (Figures 5C, S7H).

Additionally, there was comparable accuracy classifying virus-

positive and virus-negative asthmatic children who subsequently

experienced an exacerbation (within 10 days of symptom onset)

(Figure S7H). In the same study, prediction performance was less

accurate from peripheral blood-derived gene expression profiles

(Figure S7H). Taken together, these analyses demonstrate that

CBMC-derived IFN gene expression patterns induced with LPS,

Imiquimod, or poly(I:C) in this study are representative of

childhood IFN responses to microbial pathogens.
Multi-omic integration of LPS-stimulated
CBMC data

Lastly, we employed multi-omic data integration (DIABLO

(52)) to identify correlated molecular features across biological

layers which may confer sLRI risk. Input data consisted of

CBMC baseline immune cell type proportions (n = 8),

significantly variable mRNA transcripts (n=6344), VIPER-

derived regulon activity scores (n = 1224), metabolites (n =

49), and cytokine/chemokine proteins (n = 39). Importantly for
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this analysis, input genes were selected as those which were

significantly variable between LPS-stimulated and unstimulated

CBMC samples and were not selectively enriched for IFN-

related transcripts. The data reinforced that LPS-induced IFN-

signalling transcripts (IRF9, STAT1, GBP2/4) and IRF1 activity

were key determinants of risk for sLRI in the first year of life, in

combination with lymphocyte and monocyte proportions,

immune regulators (e.g. RFX5, NFIX), amino acids, and

proinflammatory cytokines/chemokines (IL-1b, MIP-1a, MIF)

(Figure 5D). As we separately identified LPS-induced IRF1

activity from network, master regulator, and integrative

analyses, we further investigated IRF1 gene expression

correlations. IRF1 gene expression at birth positively correlated

with selective STAT and IRF family transcription factor genes

(e.g. STAT1, IRF7/9), proinflammatory mediators (e.g. IL-1b, IL-
6, CCL3/MIP-1a), and viral-related receptor genes (e.g. ICAM1,

IFIH1) (Figure 6A). Additionally, CBMC STAT1 and IFIH1 gene

expression was higher in response to LPS among individuals

who were susceptible to sLRIs in infancy, and IFIH1 expression

correlated with IRF1 and STAT1 expression (Figures 6B, C).
Discussion

Severe viral lower respiratory tract infections (sLRIs) are a

leading cause of hospitalization for infants and children and

constitute a major risk factor for subsequent asthma

development (2–6). Whilst it is increasingly recognised that

bacterial and viral pathogens may interact to drive the

pathogenesis of sLRIs, the underlying innate immune

mechanisms are not well understood. We employed a multi-

omic approach to systematically profile innate immune

responses to bacterial (LPS) and viral nucleic acid (Poly(I:C)/

Imiquimod) related stimuli at birth to first characterize these

responses and then investigate whether any response patterns

are associated with susceptibility to sLRI in the first year of life.

The data showed that whilst innate immune responses to the

panel of stimuli comprised overlapping proinflammatory and

IFN-mediated gene expression programs, the LPS but not Poly(I:

C)/Imiquimod response profiles at birth were predictive of sLRI

incidence in the first year of life. Moreover, sLRI susceptibility

was associated with the activation of a network of IFN genes, and

the connectivity patterns of this network in cord blood LPS

responses were strikingly exaggerated among infants susceptible

to sLRI. Furthermore, the connectivity pattern of these genes was

highly variable between the cord and 5 year LPS responses.

These findings were specific for the LPS-induced IFN responses

and were not observed following activation of viral nucleic acid

sensing pathways, nor from proinflammatory module genes of

any response tested, suggesting that the wiring of the LPS

response is specifically altered in children who are at

heightened risk for sLRI in infancy. It is noteworthy that

expression of the LPS-induced IFN module was not associated
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FIGURE 5

CBMC IFN responses reflect natural childhood response to infection; Multi-omic integration reinforces that LPS-induced IFN signalling at birth is
a determinant of sLRI risk in infancy. (A) A random forest classifier was trained on Unstimulated and LPS or Imiquimod/Poly(I:C) CBMC IFN
module gene expression data (n = 100) and used to predict children (<17yrs) hospitalized with bacterial (n = 52) and viral infections (n = 92),
respectively, from healthy controls (n = 52) from blood-derived gene expression profiles. Gene expression data sets were restricted to available
IFN module genes and RF models were optimised with respect to the number of genes and trees. Plot depicts the AUC-ROC defined by the
rate of false (x-axis, 1-specificity) and true (y-axis, sensitivity) positives. (B) RF classifiers trained on Unstimulated and Imiquimod or Poly(I:C)
CBMC IFN module gene expression data (n=100) and used to predict PBMC gene expression profiles from infants (<18mo; n=15) and children
(18mo-5yrs; n=16) presenting to hospital with acute viral respiratory infections from profiles collected during convalescence. Plot depicts the
AUC-ROC. (C) RF classifiers trained on Unstimulated and Imiquimod or Poly(I:C) CBMC IFN module gene expression data (n=100) and used to
predict asthmatic children (6-17yrs) with cold-like symptoms who do (n=193) and do not (n=105) have detectable airway viral infection from
nasal-derived gene expression profiles. Plot depicts the AUC-ROC. (D) Circos plot displaying the multi-layer risk profile for sLRI susceptibility in
infancy determined from multi-omic data integration, showing between block correlation from the 1st latent component; correlations stronger
that ±0.8 are shown. Peripheral lines represent the relative expression of features from individuals who were resistant (grey) or susceptible
(orange) to sLRIs in the first year of life. Input data was adjusted with respect to matched unstimulated samples (except baseline
immunophenotype data).
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FIGURE 6

LPS-induced IRF1 correlates with key interferon/proinflammatory mediators. (A) Plot of the association between LPS-induced IRF1 gene expression with
selected IFN and proinflammatory gene expression (left), viral-related receptor gene expression (center) and chemo/cytokine protein concentration
(right). Data was adjusted with respect to matched unstimulated samples and plots shows Spearman’s Rho value (symbol) and 95% CI (bars, 1000
bootstraps); Red and blue data points/labels denote positive and negative correlations, respectively, with a BH-adjusted p value <0.05. (B) Analysis of
selected IFN and proinflammatory gene expression (left), viral-related receptor gene expression (center) and chemo/cytokine protein concentration
(right) with respect to sLRI susceptibility in the first year of life. Data was adjusted with respect to matched unstimulated samples and plots show the
Mann-Whitney U test estimates and 95% CIs for CBMC data of individuals who are susceptible compared to resistant to sLRIs in infancy. Red data
points/labels indicate increased expression with a p value < 0.05. (C) Spearman’s correlation and associated p value between IFIH1 (x-axis) and IRF1/
STAT1 (y-axis) gene expression from CBMC samples stimulated with LPS (n=50). Data was adjusted with respect to matched unstimulated samples.
Dashed blue line represents a loess fit of the data.
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with mild (non-wheezy/non-febrile) lower respiratory tract

infections, highlighting a specific link to infection severity.

Master regulator analysis identified IRF1 as a key driver of

LPS-induced IFN responses at birth. By age 5, the data showed

that the activity of IRF1 may be replaced by other members of

the IRF transcription factor family, including IRF7, suggesting

that this response is subject to developmental regulation. In

contrast, IRF7 was the dominant driver of Poly(I:C)-/

Imiquimod-induced IFN response at birth and 5 years. IRF1

was also identified as a highly connected node of the LPS-

induced IFN network and correlated with distinct IFN-signalling

(e.g. STAT1 but not JAK1/TYK2) and proinflammatory (e.g.

CXCL9/10/11, IL-1b) mediators, several of which exhibited

significantly higher expression in infants at risk of sLRI. These

data suggest that an LPS-induced and IRF1-regulated IFN gene

network, detectable at birth, is associated with sLRI susceptibility

in infancy. Consequently, we conclude that susceptibility to sLRI

in infancy may be in part already determined at birth and this

may be exploited to identify at-risk infants for early intervention

and identify potential targets for drug development.

The contribution of bacteria and their products to the

severity of viral-related respiratory infections has been

suggested by numerous studies. For example, environmental

LPS exposure modulates the severity of RSV infections

depending on the levels of LPS exposure and TLR4 genotype

(62). Moreover, studies from our group in the same cohort have

demonstrated that sLRIs are often preceded by the transient

incursion of pathogenic bacteria in the airway microbiome (17,

18). Multiple other studies have reported that the presence of

pathogenic bacteria in the airways is associated with more severe

viral respiratory tract infections for both RSV and RV (63–66).

Additionally, bacterial colonization of the airway in neonates

with Streptococcus pneumoniae, Haemophilus influenzae, or

Moraxella catarrhalis was associated with persistent wheeze

and severe exacerbations of wheeze (15), which are generally

initiated by viral respiratory infections. Finally, Illi et al.

demonstrated that LPS responses at 12 months of age in

individuals who carry asthma-risk alleles on 17q21 are

associated with risk of wheeze (32).

The proposition that heightened LPS-induced IFN

responses/gene network connectivity patterns at birth may

confer risk of viral-related sLRI during infancy at first sight

may appear counterintuitive given the acknowledged protective

role of IFNs in antiviral immunity (67, 68). However, hyper-

production of IFNs in the airways during viral-associated

infections, especially during infancy, are also known to

contribute to accompanying inflammatory symptom severity

(60, 69). Furthermore, IFN responses during bacterial

infections have pleiotropic effects which may be beneficial or

detrimental, depending on the site of infection and the specific

pathogen involved (70, 71). For example, type I IFN mediated

suppression of IL-1b responses (72) on the one hand attenuates

lethal hyperinflammation associated with S. pyogenes (73) and
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on the other hand diminishes the antimicrobial function of IL-

1b, resulting in increased airway and systemic M. tuberculosis

colonisation (74). This suggests a balance exists between IFN

and proinflammatory responses which impacts the clinical

outcome of bacterial infection, although it is not clear how

anti-bacterial responses may protect against or exacerbate viral

infections. IRF1 promotes the constitutive expression of

interferon-mediated antiviral programs at baseline and the

inducible expression of these programs triggered by

respiratory viral infections (75–78), and acts as a branch point

between IFN responses and induction of specific pro-

inflammatory genes (79). The function of IRF1 following

bacterial infections is incompletely understood, although it

appears essential for IFN-related inflammasome activation

during Francisella novicida infection (75, 80) indicating a role

in IFN and proinflammatory responses following pathogenic

bacterial exposure. It is also notable in this context that IRF1

gene variants have been linked to childhood asthma risk and

dysregulated proinflammatory responses (81). We did not

observe a direct difference in IRF1 expression between

individuals who did or did not record an sLRI in the first year

of life at the time point investigated in our study. This suggests

that the sLRI risk putatively associated with IRF1 may be

conferred by its regulatory actions rather than its gene

expression magnitude, or that IRF1 expression dysregulation

occurs earlier than was measured in this study (18hrs). It is our

interpretation of the data that IRF1 is a key driver of the LPS-

induced IFN response networks associated with sLRI

susceptibility in the first year of life.

The immune system of newborns is subject to drastic

developmental changes in the first weeks (82) and months

(83) of life. Since our study focused on CBMC-derived innate

immune responses, we explored the extent to which CBMC

responses reflect immune responses to infections occurring at

later ages during childhood by applying classifiers trained on

gene expression data generate in this study to infection-

associated host response data derived from published cohorts.

This approach was not intended as validation of the principal

findings linking LPS-induced IFN response at birth with

subsequent sLRI risk, but rather to establish whether the IFN

response networks characterized from our in vitro experiments

in CBMCs are representative of those operating in nature. LPS-

induced IFN responses from CBMCs were used to accurately

stratify children presenting to hospital with current bacterial

infections, compared to controls, from whole blood samples

(59). Likewise, Imiquimod/Poly(I:C)-induced CBMC IFN

responses accurately classified children with febrile viral

infections. Moreover, the CBMC-derived IFN responses

induced by imiquimod or Poly(I:C) could classify infants and

children with viral bronchiolitis and asthma exacerbations from

blood and airway samples compared to controls, suggesting that

these signatures are robust to some extent to variations in

cellular composition between circulating blood and airway
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tissue. We also found that the accuracy of the random forest

models was higher when predicting infants (<18mo) compared

to younger (18mo-5yrs) (GSE113211 (60)) or older (6-17yrs)

children (GSE115770 (61)). These data support that the IFN

gene networks identified from our in vitro investigation of cord

blood are bona fide response mediators of infection in real

world contexts.

We acknowledge that our study has limitations that should

be addressed. Firstly, gene expression profiles were generated

from mixed cord blood cell populations and as such cannot

distinguish cell-specific information. Further investigation with

single-cell RNA sequencing may localize gene expression

programs potentially responsible for sLRI risk in individual

cells. Secondly, the study population consisted of 50 subjects

from a high-risk cohort, limiting the power to detect disease-

associated mechanisms. Follow-up studies with samples from

large, unselected cohorts may identify more subtle mechanisms

that confer risk for sLRI. Additionally, we utilised CBMC

samples for this work, because they are readily available and

abundant at birth. However, recent advances in sample

processing methods now enable the generation of multi-omic

data from small sample volumes, enabling longitudinal

profiling of infants/children with natural infections (82). We

profiled innate immune responses at a single timepoint

(18hrs), and therefore our analyses cannot capture response

dynamics. Finally, we employed three TLR ligands to

mimic PRR activation events experienced during bacterial or

viral infections. However, we acknowledge using TLR ligands is

not equivalent to using live bacteria or virus. Notwithstanding

these limitations, the major strengths of this study lie in the

systems biology approach that provided genome-wide

investigation of the CBMC responses, and the well

characterized prospective cohort design, which allowed us to

investigate sLRI risk with the totality of viral infections

and relevant clinical outcomes recorded. In summary, our

findings demonstrate that the risk of sLRI in early life is in

part already determined at birth, and that the developmental

status of LPS-induced interferon responses may represent a key

factor which confers susceptibility. Our findings provide a

rationale for the early identification of infants at risk for sLRI

and identifies potential targets which may be relevant for

drug development.
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