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Neisseria meningitidis, the causative agent of meningococcal disease (MD), evades
complement-mediated clearance upon infection by ‘hijacking’ the human complement
regulator factor H (FH). The FH protein family also comprises the homologous FH-related
(FHR) proteins, hypothesized to act as antagonists of FH, and FHR-3 has recently been
implicated to play a major role in MD susceptibility. Here, we show that the circulating
levels of all FH family proteins, not only FH and FHR-3, are equally decreased during the
acute illness. We did neither observe specific consumption of FH or FHR-3 by N.
meningitidis, nor of any of the other FH family proteins, suggesting that the globally
reduced levels are due to systemic processes including dilution by fluid administration
upon admission and vascular leakage. MD severity associated predominantly with a loss
of FH rather than FHRs. Additionally, low FH levels associated with renal failure,
suggesting insufficient protection of host tissue by the active protection by the FH
protein family, which is reminiscent of reduced FH activity in hemolytic uremic
syndrome. Retaining higher levels of FH may thus limit tissue injury during MD.
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INTRODUCTION

Neisseria meningitidis is a Gram-negative commensal bacterium
carried in the nasopharynx by up to 24% of the population (1).
Upon infection, it can cause meningococcal meningitis and/or
septicemia, collectively called meningococcal disease (MD). MD
is a severe, debilitating and life-threatening disease with an
occurrence of 2 – 20 per 100,000 in developed countries (2, 3).
The complement system plays a major role in preventing MD,
exemplified by deficiencies in components of its terminal
pathway that are associated with recurrent N. meningitidis
infection (4, 5).

N. meningitidis is known to exploit human complement
regulator factor H (FH) to avoid complement-mediated
clearance (6, 7). FH is a glycoprotein circulating in plasma at
around 300 µg/mL (8, 9). It is the major regulator of the
alternative pathway and is composed of 20 complement
control protein (CCP) domains. FH is crucial in protecting
human cells from complement-mediated damage and contains
two regions involved in the binding to human cells, located in
CCP6 to CCP8 and in CCP19 and CCP20 (10). N. meningitidis
expresses various proteins to recruit FH to its surface (6, 7, 11–
13). FH-binding protein (fHbp) plays a dominant role in evading
complement-mediated clearance upon infection (14). This
lipoprotein binds FH at CCP6 and CCP7, while leaving the
complement regulatory capabilities of FH intact (15). The
‘hijacking’ of FH aids N. meningitidis in avoiding complement-
mediated clearance, prolonging its survival in human circulation
(6, 7, 16).

The FH protein family is encoded in tandem in the CFH-
CFHR locus. CFH encodes FH and its short splice variant, FH
like-1 (FHL-1), while the five CFHR genes encode the homologs
FH-related (FHR)-1, FHR-2, FHR-3, FHR-4A and FHR-5 (17).
FHR-1, FHR-2 and FHR-5 circulate in blood as dimers, with
FHR-1 and FHR-2 also forming heterodimers (18, 19). The
FHRs have high sequence identity to the ligand binding
regions of FH (CCP6-8 and CCP19-20), but lack CCP domains
homologous to FH CCP1-4, which are involved in complement
regulation (20, 21). Therefore, FHRs are hypothesized to
compete with FH binding to cellular surfaces, enhancing
complement activation (17).

A previous genome-wide association study identified that,
apart from SNPs in CFH, gene variations in CFHR3 were also
found to associate with MD susceptibility (22). This was the first
indication that the FHRs might play a role in MD, with FHR-3 as
the most promising candidate to compete with FH. FHR-3 has
the highest sequence identity with FH CCP6 and CCP7 (91% and
85%, respectively), and was found to bind to fHbp in vitro,
competing with FH for binding (23).

Since we recently developed FHR-specific ELISAs, we were
now able to make the translation from genetics and in vitro data
towards the study of FH family proteins and their levels during
the acute stage of MD. We previously reported that the levels of
FHRs are 10 – 100 fold lower in comparison to FH during
steady-state (8, 19, 24). However, based on previous reports
regarding the levels of FH (8, 25, 26) and FHR-3 (8) during
sepsis, we hypothesized that the levels of FH and the FHRs may
Frontiers in Immunology | www.frontiersin.org 2
very well be altered during an episode of acute MD, possibly
affecting their ratio and changing the balance of alternative
pathway activation and regulation.

In this study, we analyzed the serum levels of FH and all FHRs
from a cohort of pediatric MD patients during the acute stage of
disease in relation to N. meningitidis serogroup, diagnosis and
severity parameters and compared these with levels during
convalescence in surviving patients. We report here that not
only FH and FHR-3, but plasma concentrations of all FH family
proteins are greatly decreased during the acute phase of MD.
However, predominantly low FH plasma concentrations are
associated with the severity of MD and renal failure.
MATERIALS AND METHODS

Study Cohort
Patients in this study (n = 106) were a subset of the cohort recruited
at St. Mary’s Hospital, London (UK) between 1992 and 2003, the
details of which have been reported previously (16, 22, 27–29). All
samples were obtained with informed consent of the parents or
guardians of each patient according to the local ethics committee
and the Declaration of Helsinki and were stored at -80°C until use.
Cases included in this study had microbiologically confirmed MD
and had acute serum samples taken during hospitalization, and a
serum sample taken after convalescence (in survivors, n = 91).

Blood Markers of Disease Severity
White cell count (WCC), platelet count, activated partial
thromboplastin time (aPTT), international normalized ratio
(INR), base excess, and levels of fibrinogen, C-reactive protein
(CRP), potassium, and lactate were all determined as part of
routine diagnostics at St. Mary’s Hospital, London (UK).
Glasgow Meningococcal Septicemia Prognostic Score (GMSPS)
and Pediatric Index of Mortality (PIM) score were determined as
previously described (30, 31).

Measurement FH and FHR Proteins
in Serum
FH family proteins and total human IgG levels in serum were
determined by in-house developed ELISAs as previously described
(8, 19, 24, 32). In short, FH was measured by ELISA using an in-
house generated, specific mouse monoclonal antibody (mAb)
directed against CCP domains 16/17 of FH (clone anti-FH.16,
Sanquin Research, Amsterdam, the Netherlands) as the capture
mAb and polyclonal goat anti-human FH (Quidel, San Diego, CA,
USA), which was HRP-conjugated in-house, as the detecting Ab.
FHR-1/1 homodimers and FHR-1/2 heterodimers were captured
using clone anti-FH.02 (Sanquin Research), and detected with
biotinylated anti-FH.02 (Sanquin Research) or anti-FHR-2 (clone
MAB5484, R&D Systems, Minneapolis, MN, USA), respectively.
For the specific detection of FHR-3, an in-house developed mAb
directed against FHR-3 and FHR-4A (clone anti-FHR-3.1,
Sanquin Research) was used as the capture mAb. A biotinylated
mAb directed against FHR-3 and FH (clone anti-FHR-3.4,
Sanquin Research) was used as detecting mAb. To measure
May 2022 | Volume 13 | Article 876776
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FHR-4A, a rat anti-mouse kappa mAb (RM-19, Sanquin
Research) was coated on the plate before addition of the capture
mAb (clone anti-FHR-4A.04, Sanquin Research), capturing
specifically FHR-4A. The detecting mAb was a biotinylated
polyclonal rabbit anti-human FHR-3 (Sanquin Research). FHR-
5 was measured by using two specific mAbs: anti-FHR-5.1 as a
capturing mAb and biotinylated anti-FHR-5.4 as detection mAb
(both from Sanquin Research).

To determine whether fHbp affects the measurement of FH and
FHRs by ELISA, e.g. by sterically hindering or otherwise affecting
specific antibody binding to FH or any of the FHRs, the ELISAs
were performed as described above, using pooled normal human
serum (> 400 healthy donors, Sanquin diagnostics) with purified
fHbp (a kind gift of Prof. Christoph Tang, University of Oxford,
UK) added during the sample step. A concentration of 100 µg/mL
fHbp was used relative to 100% serum, representing an approximate
1-to-1 molar ratio with FH, using fHbp wildtype variants 1 and 3, as
well as the fHbp variant 1 mutant that is unable to bind FH.

N. meningitidis Quantification
Three sets of primers/probes widely used in molecular
diagnostics laboratories targeting three different conserved
genes (metA, sodC and tauE) in N. meningitidis were used for
bacterial load quantification by qPCR (Supplementary Table 1).
Master mixes (LightCycler® 480 II Master mix, 2X conc., Cat. nr.
04887301001, Roche, Basel, Switzerland) contained 2.5 µL
primers (200 nM), 2.5 µL probe (100 nM) and 20 µL template
DNA in a total reaction volume of 50 µL, following
manufacturer’s recommendations. Initial denaturation of 95°C
for 7 minutes was followed by 50 cycles of 95°C for 10 s, 60°C for
40 s, and 72°C for 1 s and a final cooling step at 40°C for 10 s.
Quantification was estimated using N. meningitidis DNA
Standards copies/µL (dilution series of 1.15x10-6 to 1.15x10-3)
AMPLIRUN®DNA Control (1.15x10-7 copies/µL. Amplification
data were analyzed by instrument software (Roche).

Statistical Analysis
Data were analyzed using GraphPad Prism, version 8 (GraphPad
software, La Jolla, CA, USA) and R version 3.5.0 (33). Statistical
significance between two groups was tested with a Mann-Whitney
test. Statistical significance between multiple groups was tested by
a Kruskal-Wallis test (unpaired data) or Friedman test (paired
data), both followed by a Dunn’s multiple comparison’s test.
Correlations (r) were assessed using Pearson’s measure of
association, followed by the Benjamini-Hochberg procedure to
control for the false discovery rate (FDR, set to 0.05).
RESULTS

Study Cohort
Serum samples were available from 106 children with MD
(Table 1). The patient age ranged from 0.1 – 16 years at
admission with a median age of 2.9 years with equal gender
distribution. Convalescent samples were drawn 10 – 2011 days
after infection, with a median of 65 days. Acute stage samples
were obtained at the first or second day of hospitalization. In
Frontiers in Immunology | www.frontiersin.org 3
seventeen patients, samples were also obtained during
subsequent days. Fourteen patients (13%) were diagnosed with
localized meningococcal meningitis , 75 (71%) with
meningococcal septicemia, and seventeen (16%) with both (i.e.
proven septicemia and meningitis). Fifteen out of the 106
patients did not survive. Death occurred at a median of one
day (range 0 – 11). N. meningitidis serogroup was successfully
typed in 69 cases, with serogroup B being the most prevalent (43
cases, 61%), followed by serogroup C (24 cases, 34%) and single
cases of serogroup A and W135.

FH and FHR Protein Levels Decrease
Equally During MD
We assessed the levels of FH and all FHRs in the first sample
drawn at the acute stage and at convalescence from MD patients,
using in-house developed ELISAs (Figures 1A, B) (8, 19, 24).
FH, FHR-1/1, FHR-1/2, FHR-2/2 and FHR-5 levels at
convalescence were comparable to those of healthy children
(Table 2) (9). Levels of FHR-3 and FHR-4A were found to be
higher at convalescence than FHR-3 and FHR-4A levels in
healthy children. Two children appeared to carry a
homozygous CFHR3/CFHR1 deletion, as evidenced by the lack
of either protein in their convalescent sample. No apparent
CFHR3/CFHR1 deletion was found among the non-survivors,
based on their acute stage FHR-3 and FHR-1/1 levels.

At the acute stage, both FH and all FHRs were markedly
decreased, with median levels 50-64% lower than found at
convalescence (Figure 1B, Table 2). In contrast to all other FH
family proteins, the acute stage FHR-4A levels, while being
significantly decreased compared to those found at convalescence,
were not significantly lower compared to the normal range found in
healthy children. The relative decreases of all FH family proteins
strongly correlated with each other, indicating a similar underlying
mechanism (Figures 1C, D). Of note, the FH and FHR ELISAs
were unaffected by the possible presence of circulating fHbp in
human serum (Supplementary Figure 1).

FH Family Proteins Show Different
Kinetics Following the Acute Stage of
Infection
After having established that all FH family proteins were
decreased proportionally during the acute phase of infection,
we investigated the changes in concentration on subsequent
days in a subset of seventeen patients. In contrast to the equal
decrease upon infection, recovery of the FH family proteins in
the subsequent days differed from each other (Figures 2A, B).
TABLE 1 | Patient characteristics.

Number of female cases (%) 52 (49%)

Median age (y) at admission (IQR) 2.9 (1.3 – 7.9)
Median time interval (days) of convalescence sample drawn
after admission (IQR)

65 (49 – 78)

Cases of meningococcal meningitis (%) 14 (13%)
Cases of meningococcal septicemia (%) 75 (71%)
Cases of meningococcal septicemia and meningitis (%) 17 (16%)
May 2022 | Volume 13
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The median FH levels remained low during the first days of
hospitalization but showed a sign of recovery to normal levels at
day four. In contrast, levels of FHR-1/1, FHR-1/2, FHR-2/2 and
FHR-3 showed a quicker recovery. FHR-4A levels did not
change during the first four days of hospitalization,
remaining at approximately 50% of convalescent levels. Blood
Frontiers in Immunology | www.frontiersin.org 4
levels of FHR-5 recovered more steadily, similar to FH. The
decrease in serum levels at the acute stage of MD was not
unique to the FH family proteins, since total IgG levels, which
were measured as a reference protein of similar molecular
weight as FH, showed a similar decrease and dynamics
(Figure 2C) (32).
TABLE 2 | FH protein family ranges during MD.

Protein
(µg/mL)

Reference interval (RI) Convalescent level
MD patients

Mann-Whitney test (p
value) (RI vs conv.)

Acute level MD patients Decrease
(median)

Mann-Whitney test (p value)
(conv. vs acute)

FH 282 (238 – 326) 295 (234 – 320) 0.8056 131 (109-181) 56% < 0.0001
FHR-1/1 11.36 (7.39 – 14.26) 11.85 (7.50 – 14.48) 0.7445 5.59 (3.96 – 8.07) 53% < 0.0001
FHR-1/2 5.40 (3.92 – 7.01) 5.39 (3.99 – 6.90) 0.9624 2.59 (1.81 – 3.53) 52% < 0.0001
FHR-2/2 0.64 (0.40 – 1.11) 0.78 (0.41 – 0.98) 0.9316 0.28 (0.19 – 0.47) 64% < 0.0001
FHR-3 0.57 (0.38 – 0.80) 0.69 (0.48 – 0.98) 0.0074 0.30 (0.20 – 0.50) 57% < 0.0001

FHR-4A 0.91 (0.48 – 1.50) 2.16 (1.35 – 3.46) <0.0001 1.07 (0.63 – 1.49) 50% < 0.0001
FHR-5 1.23 (0.92 – 1.47) 1.23 (0.92 – 1.55) 0.9956 0.58 (0.37 – 0.88) 53% < 0.0001
May 2022
Reference intervals (RIs) as previously described for 110 healthy Dutch children (9). RIs and convalescent levels of MD patients of FHR-1/1, FHR-1/2, FHR-2/2 and FHR-3 exclude the non-
detectable levels of those who presumably carry the homozygous CFHR3/CFHR1 deletion. All protein levels depict median and interquartile range (IQR) in µg/mL. Mann-Whitney tests
describe comparisons between the RIs vs convalescent levels and between convalescent levels vs. during the acute stage.
A B

DC

FIGURE 1 | FH family protein levels are low at the acute stage of MD. (A, B) Differences in FH, FHR-1/1 homodimers, FHR-1/2 heterodimers, FHR-2/2
homodimers, FHR-3, FHR-4A and FHR-5 homodimers as assessed at the acute stage (samples obtained during the first or second day of hospitalization, n =
106) compared to levels at convalescence (n = 91). Two children appeared to carry a homozygous CFHR3/CFHR1 deletion, as evidenced by the lack of either
protein in their convalescent sample. They were excluded from the analysis for FHR-1/1, FHR-1/2, FHR-2/2 and FHR-3 (n = 104 and n = 89 for acute stage
and convalescence). Acute serum samples comprised 88 samples drawn at day 1 and 18 samples drawn at day 2 of hospitalization, for patients of whom no
day 1 sample was available. Levels of FHR-2/2 were calculated based on FHR-1/1 and FHR-1/2 levels. Shaded area indicates 95% range in healthy patients,
with dashed line indicating the median ****p < 0.0001. Scatter dot plots depict median and interquartile range (IQR) as red lines. Statistical significance was
tested using a Mann-Whitney test. (C) Correlations (r) between the relative decreases of FH family proteins (ratios between acute and convalescent levels, by
dividing acute levels over convalescent levels) were assessed using Pearson’s measure of association, followed by the Benjamini-Hochberg procedure to
control for the false discovery rate (FDR, set to 0.05). Blue shades indicate, from light to dark: p < 0.05; p < 0.01; p < 0.001; and p < 0.0001. (D) Examples of
correlations in (C), showing relative decrease in FH levels versus relative decrease in FHR levels. A/C ratio, acute/convalescent ratio; Conv., convalescent.
| Volume 13 | Article 876776
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FH and FHR Levels Associate With Clinical
and Laboratory Parameters
Next, we analyzed whether the low FH and FHR levels at the
acute stage were related to the classification or severity of MD.
Levels of FH, FHR-1/1, FHR-1/2, FHR-3 and FHR-4A were
lower in patients diagnosed with septicemia in comparison to
those with meningitis alone (Figure 3). Levels of FHR-2/2 were
comparable between the patient groups, while FHR-5 levels were
lower in patients who were diagnosed with septicemia alone
when compared to meningococcal meningit is with
accompanying septicemia (Figure 3).

We also assessed whether the FH and FHR levels at acute
stage correlated with the clinical parameters WCC, platelet
count, aPTT, INR, fibrinogen, CRP, potassium, base excess,
lactate, the severity scores PIM and GMSPS, and the bacterial
load (Table 3 and Figure 4). Overall, all correlations indicated a
negative effect of low acute stage FH and/or FHR levels, i.e. low
protein levels correlating with more adverse clinical values.
Acute stage FH levels correlated with most clinical parameters,
with only potassium, lactate and the PIM score showing no
significant correlation with FH. Of the FHRs, FHR-1 and FHR-5
correlated most with various clinical parameters. There was a
striking correlation between low levels of all FH family proteins
and base excess. Although reduced base excess correlated with
increased lactate levels in the patients (r = -0.56, p < 0.0001), the
FH family protein levels were not correlated with lactate.
Although both base excess and lactate are markers of impaired
perfusion and shock, the correlation with base excess and not
with lactate may have been influenced by the increase in base
Frontiers in Immunology | www.frontiersin.org 5
excess associated with resuscitation with high chloride-
containing fluids (normal saline or 5% albumin), which cause
a worsening of base excess due to hyperchloremic acidosis (34).
FH family protein levels were lowest in those patients receiving
renal support (Figure 5 and Supplementary Figure 2). All
patients receiving renal support were diagnosed with sepsis,
precluding any further analysis of the relationship between FH
levels and kidney function.

Acute stage levels FH, FHR-1/1, FHR-1/2, FHR-4A and FHR-
5 correlated with bacterial load, which is a well-established
marker of MD severity (Figure 4). We determined the N.
meningitidis bacterial load in 62 patients of whom sufficient
acute stage serum was available. The bacterial load ranged from
8.52*100 to 1.04*109 copies per mL serum (median = 5.68*104).
We did not observe a difference between serogroups B and C in
bacterial load (p = 0.33, Mann-Whitney test), nor did we observe
a difference in severity (by PIM score, p = 0.26, Mann-Whitney
test). Except for FHR-5, we did not observe a significant
association between N. meningitidis serogroups B or C and
acute stage FH family protein levels (Supplementary Figure 3).
Bacterial load correlated negatively with base excess (r = -0.42,
p < 0.001) and positively with lactate (r = 0.68, p < 0.0001).
DISCUSSION

The role of complement in MD is complex and can be regarded
as a “double-edged sword”. While its activation is essential for
the clearance of invading microbes, too much complement
A

B C

FIGURE 2 | FH family protein level dynamics during the acute stage of MD. (A) FH family protein levels in paired samples (n = 17) as assessed during the first four days
of infection (day 1 until day 4), compared with the concentration at convalescence (C). Shaded area indicates 95% range in healthy patients, with dashed line indicating
the median. Friedman test followed by Dunn’s multiple comparisons test, with every acute stage dataset compared to the levels found at convalescence. ****p < 0.0001;
***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant. (B) FH family protein levels as in (A), normalized to the levels found at convalescence. (C) Total IgG levels in
unpaired samples (maximum n = 16) as assessed during the first four days of infection and at convalescence. The 95% range in healthy patients is not depicted, due to
variability of total IgG levels during childhood. Lines depict median and IQR.
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activation may contribute to immunopathology. Plasma levels of
FH are subjected to a similarly delicate balance: high FH levels
protect host tissues from complement-mediated damage, but this
also increases survival of FH-binding pathogens such as N.
meningitidis (16, 35). In contrast, low FH levels decrease
complement evasion of FH-binding pathogens but renders
host tissue more vulnerable to complement-mediated damage.
This delicate balance in FH levels is further complicated by the
presence of the proposed FH antagonists, the FHRs. It is
hypothesized that the competition between FH and the FHRs
determines to what extent and at what rate alternative pathway
activation takes place on surfaces (17). With the recent insight
that fHbp also binds FHR-3, it was suggested that the levels of
FHR-3 determine if N. meningitidis successfully recruits FH and
evades complement, and thereby would play a crucial role in
Frontiers in Immunology | www.frontiersin.org 6
developing MD (23). Our previous research demonstrated that a
systemic competition between FH and FHR-3 is unlikely to occur
during steady-state, where the molar excess of FH is ~130-fold
compared with FHR-3 (8). However, it was unknown up until
now whether this would also hold true during MD.

Although FH and possibly FHR-3 play an important role in
MD susceptibility, the dynamics of their plasma levels during
the acute stage of MD were unknown. By measuring all FH
family protein levels during MD in the first days after
admission, we observed that the protein levels of both FH
and the FHRs were markedly decreased during the acute stage
of MD, whereas their recovery towards normal levels showed
different kinetics. FH and FHR-5 levels slowly progressed to
normal levels, suggesting a low synthesis rate of these proteins
by the liver, or alternatively, that their consumption or loss
FIGURE 3 | FH family proteins per clinical syndrome. Protein levels of FH, FHR-1/1, FHR-1/2, FHR-3, FHR-4A and FHR-5 at the acute stage (first sample obtained
during hospitalization, n = 106), according to the diagnosed clinical syndrome: meningococcal meningitis (M, n = 14), meningococcal septicemia (S, n = 75), or both
(M+S, n = 17). Statistical significance was tested using a Kruskal-Wallis test, followed by a Dunn’s multiple comparisons test. Lines depict median and IQR. **p <
0.01; *p < 0.05; ***p < 0.001; ns, not significant.
TABLE 3 | Clinical and laboratory parameters.

Parameter Normal range MD patients
n Median (IQR)

WCC (*109/L) 4.0 – 11.0 105 9.3 (3.7 – 23.5)
Platelet count (*109/L) 150 – 400 105 196 (132 – 256)
aPTT (s) 30 – 40 99 45.9 (36 – 61.9)
INR 0.8 – 1.2 94 1.6 (1.3 – 1.8)
Fibrinogen (g/L) 1.5 – 4.0 84 3.1 (1.9 – 4.5)
CRP (mg/L) 5 – 10 93 92 (54 – 157)
Potassium (mM/L) 3.5 – 5.0 103 3.5 (3.2 – 3.9)
Base Excess (mEq/L) -2 – 2 104 -7 (-10 – -5)
Lactate (mmol/L) 0.5 – 1 56 1.6 (0.9 – 3.7)
PIM 0 100 4.9 (2.4 – 14.0)
GMSPS 0 106 10 (7 – 12)
May 2022 | Volume 13
n, number of informative cases; IQR, interquartile range; WCC, white cell count; aPTT, activated partial thromboplastin time; INR, international normalized ratio; CRP, C-reactive protein;
PIM, Pediatric Index of Mortality; GMSPS, Glasgow Meningococcal Septicemia Prognostic Score.
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from the circulation may be prolonged. FHR-1, FHR-2 and
FHR-3 showed quicker recoveries within a few days after
admission, while FHR-4A did not recover during the first
four days. As the main production site of the FH protein
family is the liver, the various observed recovery rates
indicate that liver synthesis is not generally low during MD.
Frontiers in Immunology | www.frontiersin.org 7
During the acute stage of MD, necrotic or damaged tissue,
including the vasculature, will activate complement (36, 37). The
reduction of FH and the FHRs in the circulation may therefore
be due to the subsequent recruitment of these proteins to sites of
complement activation. Alternatively, it can be hypothesized that
the protein levels are low because of dilution due to
FIGURE 4 | Associations of acute stage FH family protein levels with clinical and laboratory parameters. Pearson correlation coefficients (r), considering twelve
severity markers and seven FH family proteins (including the different dimers). Correlations were assessed using Pearson’s measure of association, followed by the
Benjamini-Hochberg procedure to control for the false discovery rate (FDR, set to 0.05). Blue shades indicate, from light to dark: p < 0.05; p < 0.01; p < 0.001; and
p < 0.0001. WCC, white cell count; aPTT, activated partial thromboplastin time; INR, international normalized ratio; CRP, C-reactive protein; PIM, pediatric index of
mortality; GMSPS, Glasgow Meningococcal Septicemia Prognostic Score.
FIGURE 5 | FH family proteins are low in patients who receive renal support. Serum levels of FH, FHR-1/1, FHR-1/2, FHR-2/2, FHR-3, FHR-4A and FHR-5 at the
acute stage of patients who did (n = 15) or did not (n = 90) receive renal support. Both surviving and non-surviving patients are included here. Statistical significance
was tested using a Mann-Whitney test. Lines depict median and IQR. ****p < 0.0001; ***p < 0.001; **p < 0.01; ns, not significant.
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administration of resuscitation fluids and additional passive
leakage into the tissues due to increased vascular permeability
(38). Both processes could account for the lower protein levels
during the acute stage of meningococcal septicemia, which is a
more systemic disease in comparison to meningococcal
meningitis. In support of combined dilution and increased
vascular permeability as underlying mechanisms, the serum
levels of IgG (of similar molecular weight as FH) were also
decreased, suggesting a non-selective lowering of proteins in the
blood compartment. This is in line with clinical vascular leakage
and edema formation known to occur during treatment at the
early stage of the disease. If vascular leakage and dilution would
be accounting completely for the initial loss of proteins, similar
recovery rates are expected. However, the FH protein family
showed different dynamics in subsequent days, suggesting that
other processes are at play. We could not determine whether
their different dynamics are reflecting different roles for each of
the proteins during inflammatory responses or are due to
different rates of synthesis.

Finally, FH levels could be low due to recruitment via fHbp
on the meningococci. However, this was also observed for FHRs
that are not bound by N. meningitidis (23). Moreover, the
observed decreases of all FH family proteins correlated
strongly with each other and were reduced to a similar extent
as IgG. This suggests that the reduced plasma concentrations are
due to general leakage from the circulation rather than
consumption due to binding on meningococci.

FHR-3 is the only FHR bound by fHbp that can compete with
FH in vitro and might affect N. meningitidis survival (23).
However, its acute stage protein levels did not correlate with
bacterial load. The vastly different molar concentrations of FH
and FHR-3, with FH circulating at a >100-fold excess compared
to FHR-3, make it unlikely that substantial amounts of FHR-3
would be bound by meningococci, and that this would be
reflected in plasma levels. The proposed role of FHR-3 as
competitor of FH in meningococcal disease therefore is
unlikely to play a role in the circulation.

Of the FH protein family, FH was found to correlate most
with MD severity parameters. Lower FH levels during the acute
stage correlated with the prediction score GMSPS as well as the
blood variables which are known to be associated with MD
severity, including WCC, platelets, base excess, INR and aPTT.
The correlation of FH with coagulation markers such as
fibrinogen, INR and aPTT is in line with previous studies on
sepsis and FH (25, 26), and corroborates an in vitro study that
suggests a potential role for FH in coagulation (39). The
association of FH with severity also explains the observed
association of FH and FHRs with bacterial load. While, as
discussed above, this is unlikely to reflect consumption,
bacterial load is a strong predictor of severity, and thus the
associations with FH and FHRs are suggestive of FH and FHR
clearance due to severe inflammation and the accompanying
complement activation (40, 41).

The lowest levels of most FH family proteins were associated
with clinical manifestations of renal failure during
hospitalization. While this may be part of the association of
Frontiers in Immunology | www.frontiersin.org 8
reduced FH and FHRs with disease severity, regulation of
complement activation by FH is known to be involved in renal
d i s e a s e dur ing hemo ly t i c u r emi c syndrome and
glomerulonephritis (17). We speculate that the association of
FH (and FHRs) with impaired kidney function may not only be
linked to disease severity, but rather could indicate a specific
protective role of the FH family proteins in preventing renal
failure when levels drop because of disease.

The double activity of FH, protecting both host tissue and
meningococci against complement-mediated damage, makes
analysis of its role in MD challenging. Following what has
previously been found in vitro for N. meningitidis (16), where
small changes in FH levels greatly affect survival, we propose that
a balanced concentration of FH in blood is key in MD. Low
steady-state FH levels may reduce susceptibility towards MD, but
if MD does occur, the low FH levels may be insufficient to protect
the vasculature and kidneys from complement-mediated damage
(35). Indeed, it has previously been shown that inhibition of
complement improves survival of mice suffering from bacterial
meningitis (42). Therapeutic interventions that substantially
increase the levels of FH activity on host surfaces (and not on
microbial surfaces) may reduce tissue injury, when administered
as soon as patients have been treated with antibiotics to eliminate
meningococci from the circulation. A potentiating antibody that
increases the function of FH on host surfaces without enhancing
binding to meningococci might therefore be worth investigating
in acute stages of systemic inflammation (35).
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