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Interferons (IFNs) are a group of cellular proteins with critical roles in the regulation of
immune responses in the course of microbial infections. Moreover, expressions of IFNs
are dysregulated in autoimmune disorders. IFNs are also a part of immune responses in
malignant conditions. The expression of these proteins and activities of related signaling
can be influenced by a number of non-coding RNAs. IFN regulatory factors (IRFs) are the
most investigated molecules in the field of effects of non-coding RNAs on IFN signaling.
These interactions have been best assessed in the context of cancer, revealing the
importance of immune function in the pathoetiology of cancer. In addition, IFN-related
non-coding RNAs may contribute to the pathogenesis of neuropsychiatric conditions,
systemic sclerosis, Newcastle disease, Sjögren’s syndrome, traumatic brain injury, lupus
nephritis, systemic lupus erythematosus, diabetes mellitus, and myocardial ischemia/
reperfusion injury. In the current review, we describe the role of microRNAs and long non-
coding RNAs in the regulation of IFN signaling.
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INTRODUCTION

Being firstly recognized as antiviral factors that interfere with viral replication (1), interferons
(IFNs) are a group of cellular proteins classified in three families (2). Thirteen IFN-a variants, a
single IFN-b and numerous other IFNs (IFN-ϵ, -k, -w, and -d) are classified as Type-I IFNs (3, 4).
Type II IFN family only includes IFN-g (5), a protein that potentiates proinflammatory signals
through priming macrophages for antimicrobial functions and induction of nitric oxide synthesis
and inhibition of the activity of NLRP3 inflammasome (6, 7).

Secretion of IFNs from infected cells can lead to induction of innate immune response resulting
in cytokine release and induction of function of natural killer cells and antigen presentation (3, 8).
These proteins have critical roles in the regulation of immune responses in the course of microbial
infections. Moreover, expressions of IFNs are dysregulated in autoimmune disorders. Based on
org April 2022 | Volume 13 | Article 8772431
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these roles, the identification of cellular mechanisms of
regulation of IFNs has practical significance. Regulation of
IFNs expressions is accomplished by different mechanisms,
including of binding of regulatory molecules to their 3′
untranslated regions (3′ UTRs). This region contains both AU-
rich elements (AREs) and microRNA (miRNA) recognition
elements (2). RNA-binding proteins can target AREs and
either induce mRNA degradation or stabilize mRNA.
Meanwhile, the binding of miRNAs with miRNA recognition
elements is involved in the regulation of mRNA translation via
the miRNA-induced silencing complex (2). In the current
review, we describe the role of miRNAs and long non-coding
RNAs (lncRNAs) in the regulation of IFNs.

Interactions Between miRNAs and IFNs
miR-301a has been found to contain a binding site in the 3′-UTR
of the Interferon regulatory factor 1 (IRF-1) gene. Through the
modulation of the expression of this gene, this miRNA
participates in the proliferation of hepatocellular carcinoma
cells. Expression of miR-301a has been increased in primary
hepatocellular carcinoma tumors and cell lines, parallel with
down-regulation of IRF-1. In vitro studies have shown the role of
chronic hypoxia in the induction of miR-301a and down-
regulation of IRF-1. Moreover, suppression of miR-301a
induces cell apoptosis and reduces cell proliferation. Taken
together, the regulation of miR-301a on IRF-1 expression is
implicated in the pathogenesis of hepatocellular carcinoma (9).
Another study in this malignancy has shown that IRF-1 can
induce the expression of miR-195 to inhibit CHK1 expression.
Up-regulation of IRF-1 or down-regulation of CHK1 induces cell
apoptosis and increases PD-L1 expression in hepatocellular
carcinoma cells (10).

In lung cancer cells, miR-19 has been shown to influence the
expression of IFN-induced genes and MHC class I, signifying the
impact of miR-19 in connecting inflammation and
carcinogenesis (11). The IRF2-targeting miRNA miR-1290 has
also been shown to be up-regulated in lung cancer. Over-
expression of miR-1290 has been correlated with lymph node
metastasis and advanced clinical stage. miR-1290 could enhance
cell proliferation, colony formation, and invasive abilities in lung
cancer cells. This miRNA could also promote the expression of
cell proliferation-related proteins CDK2 and CDK4 and induce
epithelial-mesenchymal transition (EMT) (12). Another study in
lung cancer samples has shown up-regulation of IRF6 and down-
regulation of miR-320, a miRNA that targets IRF6. IRF6 siRNA
or miR-320 mimics could inhibit the growth and migration of
lung cancer cells. Taken together, the miR-320/IRF6 axis has
been suggested as a molecular axis involved in the pathogenesis
of lung cancer (13).

Experiments in squamous cell carcinoma samples and cell
liens have shown up-regulation of IRF2-targeting miRNA miR-
664. This miRNA has been found to increase tumorigenic
behaviors of cells both in vitro and in vivo (14).

Participation of IFN-related miRNAs has also been assessed
in the pathoetiology of non-malignant conditions. For instance,
the IRF2 targeting miRNA miR-221-3p has been found to be
over-expressed in patients with the major depressive disorder
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compared with normal persons. Notably, serum miR-221-3p
levels have been positively correlated with the level of depression.
Mechanistically, miR-221-3p can enhance the expression
of IFN-a in astrocytes through targeting IRF2. In fact,
this miRNA participates in the induction of anti-
neuroinflammatory signals by ketamine and paroxetine
through the IRF2/IFN-a axis (15).

miR-126 and miR-139-5p are two miRNAs that participate in
the dysregulation of plasmacytoid dendritic cells in systemic
sclerosis. Expressions of these miRNAs have been correlated with
the expression of type I IFN-responsive genes. TLR9 stimulation
of plasmacytoid dendritic cells has induced expressions of miR-
126 and miR-139-5p in cultures of normal cells as well as those
obtained from patients with systemic sclerosis. USP24 has been
identified as a target of miR-139-5p (16). Table 1 summarizes the
results of investigations that assessed the effects of miRNAs on
IFN signaling.

miR-26a is an example of miRNAs that participate in the
regulation of host immune responses during viral infections.
Expression of this miRNA is increased upon infection with
Feline Herpes Virus 1 (FHV-1). This virus could induce the
expression of miR-26a through a cGAS-dependent route since
down-regulation of cellular cGAS could result in blockage of poly
(dA:dT) or FHV-1-induced expression of miR-26a. Functional
studies have shown the impact of miR-26a in the induction of
STAT1 phosphorylation and enhancement of type I IFN signals,
which inhibit viral replication. In fact, miR-26a directly targets
SOCS5 mRNA. SOCS5 silencing has led to an increase in STAT1
phosphorylation and induction of antiviral responses mediated
by type I IFNs (37).

Another study has shown a time-dependent down-regulation
of miR-155 upon infection with the dengue virus. Exogenous up-
regulation of this miRNA could limit replication of the dengue
virus in vitro, indicating that down-regulation of miR-155 has a
beneficial effect for replication of this virus. The results of in vivo
experiments have also confirmed the impact of miR-155 in
protection against the life-threatening effect of dengue virus
infection. This activity of miR-155 has been shown to be
exerted through targeting Bach1, and subsequent activation of
the HO-1-mediated suppression of NS2B/NS3 protease activity of
dengue virus. Taken together, modulation of miR-155 expression
has been suggested as a therapeutic option for the management of
dengue virus infection (38). miR-218 is another miRNA that can
regulate host responses to viral infections since its down-
regulation by porcine reproductive and respiratory syndrome
virus can facilitate replication of this virus through suppression
of type I IFN responses (39). Table 2 shows the effects of miRNA
on IFN signaling in the context of viral infections. Figure 1
illustrates the aberrant expression of various miRNAs, which
adversely affect the IFN signaling pathway triggering several
kinds of human diseases and malignancies as well as their role
in the context of viral infections.

Interactions Between lncRNAs and IFNs
LncRNAs are a group of regulatory non-coding RNAs that
share several characteristics with mRNAs, but lacking open
reading frames. They participate in epigenetic regulation of
April 2022 | Volume 13 | Article 877243
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TABLE 1 | The effects of miRNAs on IFN signaling (ANT, adjacent normal tissue).

Type of
diseases

miRNA Sample Cell Line Target, Pathway Discussion Ref

Nasopharyngeal
carcinoma

miR-9 – CNE2, 5–8F IFI44L, PSMB8, IRF5, PSMB10,
IFI27, IFIT2, TRAIL, IFIT1

miR-9 modulates levels of IFN-induced genes and
MHC class I. (17)

Hepatocellular
Carcinoma
(HCC)

miR-
301a
(Up)

20 pairs of HCC and
ANTs

Huh7, Hep3B,
HepG2, Hepa1-6

IRF-1, Caspase-3 miR-301a via down-regulating IRF-1 could induce
HCC.

(9)

HCC miR-195
(–)

30 pairs of HCC and
ANTs; WTB6 mice

Hepa1-6, Huh-7,
Hep3B, HepG2

IRF-1, IFN-g, CHK1, STAT3 IRF-1 via modulating miR-195 by down-regulating
CHK1 could up-regulate apoptosis in HCC. (10)

HCC miR-
146a
(Up)

– PLC/PRF/5 INF-a, SMAD4, STAT1/2 miR-146a could suppress the sensitivity to INF-a in
HCC cells. (18)

Lung Cancer
(LC)

miR-19
(–)

– CNE2, HONE1,
A549, HCC827

IRF-1/7/9, IFI-6/27/35, HLA-B/F/
G

miR-19 via regulating the expression of interferon
could affect the expression of IFN-induced genes
and MHC class I in human lung cancer cells.

(11)

Non-Small Cell
Lung Cancer
(NSCLC)

miR-
1290
(Up)

41 pairs of NSCLC
and ANTs

A549, H1299,
SPC-A1, H1970,
H460, BEAS-2B

IRF-2, CK2/4, E/N-cadherin Overexpression of miR-1290 by targeting IRF2
could contribute to cell proliferation and invasion of
NSCLC.

(12)

NSCLC miR-320
(Down)

21 pairs of NSCLC
and ANTs

A549, NCI-
H2170

IRF-6 miR-320 via targeting IRF-6 could affect
pathogenesis of NSCLC. (13)

Cutaneous
Squamous Cell
Carcinoma
(cSCC)

miR-664
(Up)

Athymic nude mice HSC-1, A431,
HSC-5, HaCaT

IRF-2 miR-664 via suppressing IRF-2 could function as an
oncogene in cSCC. (14)

Cervical Cancer
(CC)

miR-587
(Up)

41 pairs of CC and
ANTs, nude mice

Ect1/E6E7,
HeLa, SiHa,
CaSki, C-33A

IRF-6, Cyclin-D1, CDK4 miR-587 by repressing IRF6 could promote CC.
(19)

Gastric Cancer
(GC)

miR-19a,
miR-18a
(–)

20 pairs of GC tissues
and ANTs; BALB/c
nude mice

MKN45, AGS,
SGC7901, GES1

IFN-g, IRF-1, Axin2, SMAD2,
Wnt/b-catenin

IRF-6 by regulating MIR17HG-miR-18a/19a axis via
Wnt/b-catenin signaling could promote GC
metastasis.

(20)

Glioblastoma
(GBM)

miR-
203a
(Down)

NSG mice MT330, SJG2 IFN-a, IFN-b, IFN-l1, IFI-1/6,
IFT20, p65, NF-kB, STAT1-3

miR-203a via an ATM-dependent interferon
response pathway could suppress GBM. (21)

Osteosarcoma miR-
4295
(Up)

15 pairs of OS and
ANTs

MG-63, Saos-2,
hMSC

IRF-1 miR-4295 via targeting IRF1 could promote cell
proliferation, migration and invasion. (22)

Systemic Lupus
Erythematosus
(SLE)

miR-146 WBCs from patients
with SLE

THP-1 cells Type I IFN inhibits miR-146a maturation via
increasing expression of MCPIP1. (23)

Major
Depressive
Disorder (MDD)

miR-221-
3p (Up)

(n=64) perioperative
patients

Astrocytes IRF-2, IFN-a, NF-kB miR-221-3p via targeting IRF2 could up-regulate
IFN-a expression in MDD patients. (15)

Systemic
Sclerosis

miR-126,
miR-139-
5p (Up)

Blood samples of SS
patients (n=72) and
healthy control (n=26)

pDCs IFI-6, IFIT1, CXCL10, USP24,
TLR-7/8/9

miR-126 and miR-139-5p via TLR9-mediated
response and IFN signaling could regulate the
activation of plasmacytoid dendritic cells.

(16)

Newcastle
Disease (ND)

gga-miR-
455-5p
(Down)

– 293T, BHK-21 IFN-I, SOCS3 gga-miR-455-5p via targeting cellular suppressors
of SOCS3 could suppress ND virus replication. (24)

Sjögren’s
Syndrome (SS)

miR-
1248 (–)

– phSG IFN-b, IRF-1/9, IFIT1, IFI-6/44,
IFIH1, MX1, JAK-1/2, STAT-1/2/
3

miR-1248 could activate IFN-b via the direct
association with both AGO2 and RIG-I. (25)

Traumatic Brain
Injury (TBI)

miR-155
(-)

C57BL/6 mice IFN-I, IFN-a2/4/5, IL-6, IFN-b1,
IRF-1, TNF-a, SOCS1C

Up-regulation of miR-155 after brain injury promotes
IFN-I to exert a neuroprotective function. (26)

Edwardsiella
Tarda TX1 (E.
tarda TX1)

pol-miR-
194a
(Up)

Fish FG-9307, 293T IFN-I, IRF-7 pol-miR-194a via targeting IRF7 could participate in
the regulation of flounder immune response and
microbial infection.

(27)

– miR-17
(-)

C57BL/6J mice VSMCs,
RAVSMCs

IRF-9 miR-17 knockdown via up-regulating IRF-9
expression could promote vascular smooth muscle
cell phenotypic modulation.

(28)

– miR-155
(-)

– EPC, BHK-21 IFN-I, PIAS4a Overexpression of miR-155 via targeting IFN-I could
contribute to antiviral response in EPC. (29)

– miR-
181a,

– U937, 293T,
monocytes,
MDM, MDDC

IFN-I/II, IFN-a, IFN-b, IFN-g,
ERK, STAT-1

Interferons via down-regulating miR-181a and miR-
30a could induce the expression of SAMHD1 in
monocytes.

(30)

(Continued)
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gene expression through modulation of histone or DNA marks
as well as regulation of the stability of RNAs and interacting with
regulatory proteins (59).

Several lines of evidence suggest that lncRNAs include an
important subgroup of the IFN target genes. Additionally, the
IFN response has been shown to be regulated by several lncRNAs
encoded by host or pathogens (60). Kambara et al. have
identified approximately 200 lncRNAs whose expressions are
induced by IFN in primary human hepatocytes (61). Notably,
among them has been lncRNA-CMPK2/NRIR which has
exhibited an intense induction after IFN stimulation in various
human and mouse cells. This lncRNA is located near the
protein-coding IFN-stimulated gene CMPK2. Expression of
this lncRNA has been shown to be induced in a JAK-STAT-
dependent manner. Silencing of lncRNA-CMPK2/NRIR has
resulted in a significant decrease in HCV replication in IFN-
induced hepatocytes, implying the role of this lncRNA in the
modulation of antiviral effects of IFN (61).

NRAV is another lncRNA whose expression is regulated by
IFNs. Microarray analyses in cells overexpressing this lncRNA
has shown down-regulation of several ISGs. NRAV has been
shown to be able to partially preclude IFN-induced expression of
its target ISGs, possibly via affecting its transcription or through
epigenetic mechanisms (62).

IFNG-antisense-1 (IFNG-AS1) is another lncRNA that
participates in the regulation of IFN responses. This lncRNA is
located downstream of the IFNG locus. Expression of IFNG-AS1
is strongly correlated with expression of IFNG (63, 64). CD4+
and CD8+ T cells as well as NK cells express this lncRNA. IFNG-
AS1 expression by CD4+ T cells depends on two transcription
factors being involved in Th1 polarization, namely STAT4 and
TBX21 (65).

AFAP1-AS1, lncMX1-215, linc00513, BANCR, IFITM4P,
LUCAT1, NEAT1, MALAT1, DANCR, NRIR, and FIRRE are
among lncRNAs whose interactions with IFN signaling have
Frontiers in Immunology | www.frontiersin.org 4
been assessed (Table 3). For instance, the up-regulated lncRNA
AFAP1-AS1 can participate in the invasiveness of lung cancer
cells through increased expression of IRF7 and induction of
RIG-I-like receptor signals (66). On the other hand, lncMX1-
215 is an IFNa-induced lncRNA that can affect the
immunosuppressive responses through interfering with H3K27
acetylation (67).

LncRNAs can also affect response to protozoan parasites such
as cryptosporidium. NR_033736 is a novel lncRNA that has been
found to be up-regulated in intestinal epithelial cells upon
infection with this protozoon. This lncRNA can suppress
transcription of type I IFN-controlled genes in host cells
infected with this microorganism. Notably, type I IFN
signaling can trigger the expression of NR_033736. In fact,
NR_033736 participation in the negative feedback regulatory
mechanism of type I IFN signaling results in fine-tuning of
innate defense mechanism against microorganisms in the
epithelial cells (68).

Investigations in the context of lupus nephritis have shown
that RP112B6.2 via targeting the IFN-I by epigenetically
inhibiting the expression of SOCS1 could aggravate symptoms
of this disease (69). Linc00513 is another lncRNA that
participates in the pathogenesis of lupus through promoting
IFN signaling (70).

The impact of lncRNAs on IFN signaling has also been assessed
in the context of diabetes mellitus. Lnc10 contains a type I
diabetes-associated single nucleotide polymorphism. This
lncRNA can regulate the expression of the IRF7-driven
inflammatory network regulating gene Ebi2 in immune cells.
Expression of Lnc10 in pancreatic b-cells has been shown to be
up-regulated by diabetogenic incitements, including pro-
inflammatory cytokines and viral infections (71). Figure 2
represents the role of several lncRNAs in various types of human
cancers and immune-related disorders as well as their impact on
viral infections via regulating the IFN signaling pathway.
TABLE 1 | Continued

Type of
diseases

miRNA Sample Cell Line Target, Pathway Discussion Ref

miR-30a
(-)

– miR-155,
miR-155*
(–)

– HeLa, PDC IFN-I, IFN-a, IFN-b, NF-kB,
PI3K, AKT, p38

miR-155 in cooperation with its star-form partner
miR-155* could regulate IFN-I production. (31)

– Bta-miR-
204
(Down)

bEEC – IFN-t, BoLA, PD-L1/2 IFN-t by down-regulating bta-miR-204 could
enhance the expression and function of BoLA. (32)

– miR-30c-
5p (–)

Vero E6, IFN-I/III, IFN-l, IFIT1, ISG-15,
SOCS-1

The coronavirus PEDV via the miR-30c-5p/SOCS1
axis could evade type III interferon response. (33)

– miR-744
(–)

– RMCs PTP1B, INF-I, CCL2/5, CXCL10,
IL6, ERK, p38, MX1, IFIT3,
TYK2, STAT1/3, JAK1, NF-kB

miR-744 by targeting PTP1B could enhance the
INF-I signaling pathway in primary human renal
mesangial cells (RMCs).

(34)

– miR-155
(Up)

C57BL/6 mice 293T,
RAW264.7,
BMMs

SOCS1, IFN-b, MITF, TRAP INF-b-induced miR-155 by targeting SOCS1 and
MITF could inhibit osteoclast differentiation. (35)

– miR-221
(–)

– H69, HIBEpiC ICAM-1, IFN-g, PRRSV, p65 miR-221 via targeting ICAM-1 translation regulating
IFN-g could induce ICAM-1 expression in human
cholangiocytes.

(36)
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TABLE 2 | The effects of miRNA on IFN signaling in the context of viral infections.

Virus miRNA Sample Cell Line Target Discussion Ref

Infectious stress miR-22 Mir22-KO mice – – miR-22 enhances the IFN response to viral
infections. (40)

Infection with
influenza virus

miR-144 Wild-type mice – TRAF6-IRF7 miR-144 diminishes host responses to the
influenza virus. (41)

Feline Herpes
Virus 1(FHV-1)

miR-26a (Up) – F81, 293T IFN-a, IFN-b, ISG-15,
SOCS5, STAT-1

miR-26a by targeting SOCS5 and
promoting Type I IFN signals could inhibit
FHV-1 replication.

(37)

Human Herpes
Simplex Virus
Type 1 (HSV-1)

miR-23a (–) – HeLa IRF-1, RSAD2, EGFP,
Myc

miR-23a via suppression of IRF-1 could
facilitate the replication of HSV-1. (42)

Dengue Virus
(DENV)

miR-155 (Down) Breeder ICR mice Huh-7 HO-1, IFN-a-2/5/17,
BACH1, Nrf2, OAS-1/
2/3

miR-155 by inducing HO-1-mediated
antiviral interferon responses could inhibit
DENV replication.

(38)

Porcine
Reproductive &
Respiratory
Syndrome Virus
(PRRSV)

miR-218, miR339-5p,
miR-99b, miR-365-
5p, miR-378, miR-
345, miR-27b-3p

SPF pig PAMs, marc-145,
Vero-E6, ST, 293T

IFN-I, IFN-b, SOCS3 Downregulation of miR-218 by PRRSV
could facilitate viral replication via
repressing of type I IFN responses.

(39)

PRRSV miR-30c (–) – PAM, Marc-145,
U4A

IFN-I, IFNAR-2, ISG-
15, OAS-1, JAK-1

miR-30c via targeting IFNAR-2 could
promote type 2 PRRSV infection. (43)

PRRSV miR-382-5p (Up) – MARC-145, 293T,
BHK-21

IFN-I, IFN-b, HSP60,
MAVS, IRF-3, TBK1

miR-382-5p by negatively regulating the
induction of IFN-I could promote PRRSV
replication.

(44)

PRRSV2 miR-541-3p (Up) MARC-145, MA-
104, 293T

IRF7, miR-541-3p via IRF7 could promote the
replication of PRRSV2. (45)

Influenza A virus,
TMEV

miR-673 (–) Dgcr8-/- mouse, Dicer+/+

mouse
NIH3T3, ESC IFN-b1, MAVS During pluripotency, an interaction between

MAVS (mitochondrial antiviral signaling
protein) and miR-673 could act as a switch
to suppress the antiviral IFN.

(46)

Influenza Virus A/
WSN/33 (H1N1)

miR-302a (–) C57BL/6 mice A549, THP-1, 293T,
MLE-12, H9

IFN-b, TNF-a, IRF-5,
CCL-2/5, IL-6/8, M1,
NP, NF-kB

miR-302a via targeting IRF5 expression
and cytokine storm induction could
suppress IAV.

(47)

H1N1 miR-93 (Down) C57BL/6 mice AT2, MLE12, A549,
293T, Murine T-
cells, Murine B-cells,
B-cells, NK cells

IFN-I, IFN-b, IRF-3, IL-
6/8/10, NF-kB, ISG15,
OAS1, RIG-I, p38/65,
ERK, JAK-1/2

Inhibition of miR-93 by up-regulating JAK-1
could promote interferon effector signaling
to suppress influenza A infection.

(48)

Influenza A virus
(IAV) H5N1

miR-21-3p (Down) 26 H5N1-infected
patients serum samples
and 13 serum samples
from normal persons

A549 IFN-I, FGF2, IFN-b,
IFN-a, MxA, OAS

miR-21-3p by refraining IFN-I response
could modulate FGF2 to facilitate influenza
A virus H5N1 replication.

(49)

Foot & Mouth
Disease Virus
(FMDV)

miR-103, miR-107
(Down)

20 pairs of blood samples
from patients with
enterovirus 71 (EV71) and
normal blood samples

VERO, RD IFN-I, IFN-a, IFN-b,
SOCS3, STAT3

miR-103/miR-107 by regulating SOCS3/
STAT3 pathway could inhibit EV71
replication and facilitate IFN-I response.

(50)

FMDV miR-4334-5p (Up) – PK-15, BHK-21 IFN-b, TNF-a, OAS,
ISG54, ID1, VP1

miR-4334-5p by suppressing IFN
pathways via direct targeting ID1 could
facilitate FMDV propagation.

(51)

HIV-1 miR-128 (–) – HeLa, 293T, THP-1,
Jurkat

INF I, IFN-a, TNPO3, IFN-I via enhancing miR-128 by targeting
TNPO3 mRNA could modulate HIV-1
Replication.

(52)

Infectious Bursal
Disease Virus
(IBDV)

gga-miR-27b-3p (Up) – DF-1 IFN-I, IFN-b, IRF3, NF-
kB, SOCS3, SOC6,
STAT-1

gga-miR-27b-3p via targeting cellular
suppressors of SOCS3 and SOCS6 could
enhance type I IFN signals and inhibit
replication of IBDV.

(53)

IBDV gga-miR-155 (Up) – DF-1 TANK, SOCS1, IFN-I,
chIRF3

gga-miR-155 via targeting SOCS1, and
TANK could enhance IFN-I and suppress
IBDV.

(54)

IBDV gga-miR-9* (Up) – DF-1 IRF-2, INF-b gga-miR-9* by targeting IRF-2 to promote
IBDV replication could inhibit IFN
production in antiviral innate immunity.

(55)

Hepatitis C Virus
(HCV)

miR-122 (–) – Huh7 INF-a, INF-b, EGFP,
SOCS1

miR-122 via blocking suppressor of
SOCS1 could modulate INF-I expression. (56)

(Continued)
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DISCUSSION

Non-coding RNAs that regulate IFN signaling have been shown
to participate in the pathogenesis of different types of cancer as
well as immune-related disorders. IRFs are the most investigated
molecules in the field of effects of non-coding RNAs on IFN
signaling. For instance, IRF-1 has been shown to have functional
interactions with miR-301a, miR-195, miR-19a, miR-18a, miR-
4295, miR-124, and miR-155. Meanwhile, IRF-2 has interactions
with miR-1290, miR-664, and miR-221-3p. Besides, IRF-6
interacts with miR-320, miR-587, miR-19, and miR-18a. These
interactions have been best assessed in the context of cancer,
Frontiers in Immunology | www.frontiersin.org 6
revealing the importance of immune function in the
pathoetiology of cancer.

In addition, IFN-related non-coding RNAs may contribute to
the pathogenesis of neuropsychiatric conditions through
modulation of immune responses in CNS-resident cells. Major
depressive disorder is an example of these conditions in which
the role of IRF-targeting miRNAs has been identified. Among
non-malignant conditions, are systemic sclerosis, Newcastle
disease, Sjögren’s syndrome, traumatic brain injury, lupus
nephritis, systemic lupus erythematosus, diabetes mellitus, and
myocardial ischemia/reperfusion injury have been found to be
associated with dysregulation of IFN-related non-coding RNAs.
TABLE 2 | Continued

Virus miRNA Sample Cell Line Target Discussion Ref

Human
Papillomavirus
16 (HPV16)

miR-122 (–) – SiHa, CaSki, C33A OAS-1, MxA,
pmCherry-E6, IFN-a,
IFN-b, STAT1, SOCS1

miR-122 via blocking suppressor of
cytokine signaling 1 in SiHa cells could
inhibit HPV E6 gene and enhance
interferon signaling.

(57)

Human
Cytomegalovirus
(HCMV)

Hcmv-miR-UL112 (–) – PBMCs, K562 TNF-I, IFNAR, CD107 Hcmv-miR-UL112 activity by inhibiting INF-I
secretion could attenuate NK cells. (58)
April 2022 | Volume 13 | Article 877
FIGURE 1 | A schematic diagram of the interaction between several miRNAs and interferons in causing various human diseases. Mounting evidence has
demonstrated that miRNAs could have an important contribution to the regulation of expression of IFN-induced genes. Aberrant expression of such ncRNAs could
lead to various human diseases such as major depressive disorder, Sjögren’s Syndrome, Systemic Sclerosis as well as different kinds of cancers. As an illustration, a
recent study has detected that overexpression of miR-301a could promote hepatocellular carcinoma via directly targeting IRF1 (9). Moreover, another research has
figured out that miR-587 could play a key role in the progression of cervical cancer by down-regulating the expression of IRF6 (19). In addition, another finding has
denoted that miR-1248 via activating the expression levels of IFN-b, IRF1/9, MX1, JAK-1/2, STAT-1/2, TYK2 as well as direct association with both AGO2 and RIG-I
could have a crucial role in Sjögren’s syndrome (25). Furthermore, miR-26a could suppress feline herpesvirus 1 (FHV-1) replication via targeting SOCS5 and up-
regulating the expression levels of IFN-a, IFN-b, ISG-15, STAT-1, and IFITM1 in type I IFN signaling (37). Blue lines indicate the positive regulatory effect among
miRNAs and their targets, and crimson lines depict negative effects among them. All information regarding the role of these miRNAs in the modulation of the IFN
signaling cascade in various types of human diseases and cancers can be seen in Tables 1 and 2.
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TABLE 3 | Interactions between lncRNAs and IFNs.

Type of Diseases LncRNAs Sample Cell Line Target Discussion Ref

NSCLC AFAP1-AS1 (Up) NSCLC (n=165),
banging lung tumor
patients (n=118), health
control (n=173)

A549, H1975,
H1650, H1395
H12994

IRF-7, IFN-g, RIG-I, Th1/2,
IL-10/12, Bcl-2, TNF-a,
NF-kB

AFAP1-AS1 via upregulating IRF-7 and
the RIG-I-like receptor signaling could
promote migration and invasion of
NSCLC.

(66)

Head & Neck
Squamous Cell
Carcinoma
(HNSCC)

lncMX1-215 70 HNSCC and 18
normal oral mucosa
tissues from patients;
BALB/c nude mice

HN4, HN6,
HN30, Cal27,
SCC4, SCC25,
Detroit 562, 293T

IFN-a, H3K27ac, H3k18ac,
H3K9ac, Caspase-3 PARP,
Snail, STAT-1

IFN-a-induced lncMX1-215 by interfering
with H3K27 acetylation could decrease
immunosuppression in HNSCC.

(67)

Cryptosporidium
Infection

NR_033736 BV2 mice, IEC4.1, HCT-8,
BV2, RAW264.7

IFN-a, IFN-b1, IFN-a12/13,
IFN-I, ISGF-3, IFI-44, IFIT-1,
OAS2/3, IRF-9, H3K4me3,
STAT-2

NR_033736 via regulating IFN-I-mediated
gene transcription could induce intestinal
epithelial anti-cryptosporidium defense.

(68)

Lupus Nephritis
(LN)

RP11-2B6.2 (UP) 22 LN kidney biopsies
and 7 control samples,
PBMC

HeLa, HK2 IFN-I, IFI27, IFIT-1/3, ISG,
Mx2, OASL, ASO1,
CXCL10, JAK1, STAT-1,
SOCS1

RP112B6.2 via targeting the IFN-I by
epigenetically inhibiting the expression of
SOCS1 could aggravate symptoms of LN
disease.

(69)

Systemic Lupus
Erythematosus
(SLE)

linc00513 (–) 139 SLE patients Hela, THP-1,
PBMCs

IFN-I, IRF-9, OAS-1/2/3,
IFI-27/44/44L, ISG-15/20,
IFIT-1/3, Mx1/2, XAF1, NF-
kB, STAT-1/2

Overexpression of linc00513 via
promoting IFN signaling could play a role
in lupus pathogenesis.

(70)

Diabetes Mellitus
Type 1

Lnc10 (–) – EndoC-bH1 IFN-I, IFN-g, IFITM1, IL-1b,
STAT-1

Overexpression of lnc10 via IFN-I could
enhance the immune response in
pancreatic b-cells.

(71)

Myocardial I/R
Injury

BANCR (–) – iPS cell-derived
cardiomyocytes

IFN-b, IFNAR-1, STAT-1/2 BANCR by targeting STAT-1 could
promote IFN-b-induced cardiomyocyte
apoptosis.

(72)

Infectious Bursal
Disease Virus
(IBDV)

loc107051710 (–) – DF-1 IRF-8, IFI-1/6, IFN-a, IFN-b,
Mx1, IFIT-5, STAT-1/2

loc107051710 by regulating IRF-8 could
promote the production of IFN-a and
IFN-b, thereby modulating the antiviral
activity of ISGs.

(73)

Influenza A Virus
(IAV)

IVRPIE (Up) – A549, BEAS-2B,
MDCK, BHK21

IFN-b1, ISG, IRF-1, IFIT-1/
3, Mx1, ISG-15, IFI44L

IVRPIE via regulating IFN-b1 and ISG
expression could promote host antiviral
immune responses.

(74)

Influenza A Virus
(IAV); H1N1, IAV-
PR8, IAV- CA04

ISR (–) C57BL/6 mice A549, 293T, NIH/
3T3, 4T1, MDCK

IFN-b, IFNAR-1, RIG-I,
MxA, ISG-15, OAS2

ISR could be regulated by RIG-I-
dependent signaling; during IAV infection,
it could also govern IFN-b production and
inhibit viral replication.

(75)

Influenza Virus A/
WSN/33 (H1N1)

IFITM4P (–) – A549, 293T,
K562, HeLa,
MDCK, Huh7,
Mcf7, HepG2

IFITM-1/2/3, miR-24, Mx1,
RIG-I, p65, IL-6

IFITM4P by acting as a competing
endogenous RNA could regulate host
antiviral responses.

(76)

Influenza Virus A/
WSN/33 (H1N1),
Sendai Virus (SeV)

Lnc-MxA (–) – MDCK, 293T,
A549,

IFN-b, RIG-I, MAVS, IRF-3,
INFAR-1, p65, ISG-15,
MxA

Lnc-MxA by forming RNA-DNA triplexes
could inhibit b interferon transcription. (77)

Herpes Simplex
Virus 1 (HSV-1),
Influenza A Virus
(IAV), LPS

LUCAT1 (–) PBMCs THP-1, THP-1
KO, hMDDC

IFN-I, IFN-a, IFN-b, IRF-3,
IFI1-6, ISG, TNF-a, Mx2,
JAK-1/3, STAT1

LUCAT1 by interacting with STAT1 in the
nucleus could limit the transcription of
ISGs.

(78)

Severe Acute
Respiratory
Syndrome
Coronavirus 2
(SARS-CoV-2)

RP1-20B21.4,
RP11-329L6.1,
RP11-498C9.3,
NEAT1, MALAT1 (–)

Dataset – miR-122, miR-122-5p, IRF-
9, IFIT-1/2/3, MX1, OAS2/
3, IFNL-1 IFNG, JAK,
STAT-1

The SARS-CoV-2 infection could lead to
differential expression of lncRNAs. Also,
IFN response is involved in SARS-CoV-2
infection.

(79)

HIV-1-BAL-HSA NRIR, MIR3945HG,
C8orf3,
AC053503.1,
AL359551.1 (–)f

– CD14+

monocytes,
MDMs

IFN-a, IFN-ϵ, IFN-g, IFN-l,
Mx1, IFIT2

Interferons could mediate the Response
of lncRNAs in macrophages in HIV. (80)

Vesicular Stomatitis
Virus (VSV), VSV-
GFP

lncLrrc55-AS (–) C57BL/6 mice RAW264.7, NIH/
3T3, 293T,
MDCK, MLE12,
3LL, Hepa

IFN-a4, IFN-b, IRF-3, IFN-I,
p65, p38, ERK, JAK,
STAT-1

Interferon-inducible cytoplasmic
lncLrrc55-AS by strengthening IRF3
phosphorylation could promote antiviral
innate responses.

(81)

(Continued)

Ghafouri-Fard et al. ncRNAs and Interferons

Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8772437

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 3 | Continued

Type of Diseases LncRNAs Sample Cell Line Target Discussion Ref

– GRASLND, NEAT1
(–)

– ASCs IFN-II, IFN-a, IFN-b, IFN-g,
IRF-1/2/6, IFI-44/44L,
IFNGR-1/2, STAT-1/2

GRASLND via suppressing the IFN-II
pathway could enhance chondrogenesis. (82)

– BANCR (–) – ARPE-19, IFN-g, IL-1b, TNF-a, JAK,
STAT-1

IFN-g by activating the JAK-STAT1
pathway could upregulate the expression
of BANCR in retinal pigment epithelial
cells.

(83)

Ghafouri-Fard et al. ncRNAs and Interferons
These non-coding RNAs represent a novel group of biomarkers
for these conditions since their expressions are dysregulated in
the biofluids of patients with these disorders.

Consistent with the important role of IFN signaling in the
response of the immune system to viral infections, non-coding
RNAs that regulate these signals can also participate in the
pathophysiology of these conditions. The interactions between
non-coding RNAs and IFN signaling have been assessed in the
context of SARS-CoV-2, HIV, and influenza infections.
Particularly, some miRNAs have been reported to enhance
antiviral responses through modulation of IFN signaling.
Frontiers in Immunology | www.frontiersin.org 8
Identification of the impact of these miRNAs in response
to viral infections could facilitate the design of efficient
therapeutic modalities for these disorders. The preliminary
results of in vitro and in vivo studies have suggested modulation
of expression of certain miRNAs as an efficient strategy for
limiting viral infections.

Notably, single nucleotide polymorphisms in the seed region of
IFN-interactingmiRNAs can interfere with or induce their bindings
with miRNA targets. These polymorphic regions can hypothetically
affect IFN responses, thus participating in the pathogenesis of
autoimmune disorders, malignancies, or viral infections.
FIGURE 2 | A schematic illustration of the role of several lncRNAs in regulating the IFN signaling pathway in several human diseases, including autoimmune
conditions and viral infections. Accumulating evidence has illustrated that lncRNAs modulating IFN signaling cascade could participate in the pathogenesis of various
kinds of human cancers as well as immune-related disorders. It has been reported that lncRNA RP11-2B6.2 could play an important role as a positive regulator of
type I INF signaling pathway in Lupus Nephritis via up-regulating the expression levels of IFIT-1/3, ISG, Mx2, CXCL10, JAK1, STAT-1, TYK2, and decreasing SOCS1
expression (69). Moreover, another research has revealed that lncRNA loc107051710 could elevate the expression levels of IFN-a, IFN-b, Mx1, STAT-1/2, OAS via
modulating IRF8, thereby enhancing the antiviral activity of ISGs to prevent infectious bursal disease virus (IBDV) infection (73). Blue lines indicate the positive
regulatory effect among lncRNAs and their targets, and brown lines depict a negative one among them. All the information regarding the role of these lncRNAs
involved in the modulation of the IFN signaling cascade in various types of immune deficiency diseases and cancers can be seen in Table 3.
April 2022 | Volume 13 | Article 877243
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Identification of these variants within the human genome might
facilitate the design of specific treatment modalities for these
conditions in the context of personalized medicine.

Several dysregulated IFN-related miRNAs, particularly miR-9,
miR-18, miR-301a, miR-195, miR-19, miR-1290, miR-320, miR-
664, miR-587, miR-203a, and miR-4295 have been shown to
participate in the pathogenesis of human cancers. These
miRNAs represent appropriate targets for anti-cancer therapies
since they can affect immune responses against cancer. Future
studies are needed to evaluate the effects of these miRNAs-
targeting therapies in xenograft models of cancer.
Frontiers in Immunology | www.frontiersin.org 9
Taken together, non-coding RNAs that regulate IFN signaling
can participate in a variety of malignant and non-malignant
disorders, particularly those related to abnormal immune responses.
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GLOSSARY

ESCs Embryonic Stem Cells
FGF2 Growth Factor2
bEEC Primary Bovine Endometrial Epithelial Cell
BoLA Bovine Leukocyte Antigen
VSMCs Vascular Smooth Muscle Cells
RAVSMCs Rat Aortic VSMCs
RD Rhabdomyosarcoma Cells
pDCs Plasmacytoid Dendritic Cells
hMSC Normal Human Mesenchymal Stem Cells
ATM Ataxia-Telangiectasia Mutated
MDDCs Monocyte-Derived Dendritic Cells
MDMs MDM, Monocyte-Derived Macrophage
PBMC Peripheral Blood Mononuclear Cell
GES1 Gastric Epithelial Cell Line
HSP60 Heat Shock Protein 60
MAVS Mitochondrial Antiviral Signaling Protein
BHK Baby Hamster Kidney
DENV Dengue Virus
FHV-1 Feline Herpesvirus 1
CHK1 Checkpoint Kinase 1
INCR1 IFN-Stimulated Non-Coding RNA 1
ASCs Adipose-Derived Stem Cells
MDCK Madin-Darby Canine Kidney
mulNTEPI Murine Intestinal Epithelial
BoLA Bovine Leukocyte Antigen
PME-1 Phosphatase Methylesterase 1
PAMs Porcine Alveolar Macrophages
VERO African Green Monkey Kidney Cells
RD Human Rhabdomyosarcoma Cells
EPC Epithelioma Papulosum Cyprini
LPS lipopolysacaridase
IRF-1 Interferon Regulatory Factor-1
ISGs Interferon-Stimulated Genes
IFNAR Heterodimeric Interferon Receptor
hMDDC Primary Human Monocyte-Derived Dendritic Cells
MDMs Monocyte-Derived Macrophages
ASCs Adipose-Derived Stem Cells
LPS Lipopolysaccharide
bEEC Primary Bovine Endometrial Epithelial Cell
RIG-I Retinoic Acid-Inducible Gene I
IFT Intraflagellar Transport
IFIT1 Interferon Induced Protein with Tetratricopeptide Repeats 1
IFIH1 Interferon Induced with Helicase C Domain 1
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