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Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe
way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates
diverse immune responses by mimicking natural infection. Induction of pathogen-specific
antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV
can also elicit unintended off-target effects, termed non-specific effects. Such
mechanisms as short-lived genetic interference and non-specific innate immune
response or long-lasting trained immunity and heterologous immunity allow LAVs to
develop resistance to subsequent microbial infections. Based on their safety and potential
for interference, LAVs may be considered as an alternative for immediate mitigation and
control of unexpected pandemic outbreaks before pathogen-specific therapeutic and
prophylactic measures are deployed.

Keywords: live attenuated vaccine, non-specific effects of vaccination, pandemic, genetic interference, innate
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1 INTRODUCTION

As members of the ecosystem, humans encounter an enormous number of microorganisms during
their lifetimes. Microorganisms including bacteria, viruses, and parasites are present in the
surrounding environment and within the human body. Many microorganisms, especially
symbiotic bacteria which contribute to food digestion and immune development, are beneficial
but a small fraction, which are termed ‘pathogens,’ can cause infectious disease (1). Infectious
disease is the world’s leading cause of death, especially in low-income countries, but vaccines against
pathogens effectively contribute to minimizing their impact (2). However, there are no vaccines
against many dangerous pathogens. The ongoing coronavirus disease 2019 (COVID-19) outbreak
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to excess mortality in
the early stages of the outbreak due to the absence of effective vaccines. The experience with the
COVID-19 pandemic points to the need for innovative vaccine platforms that can be adapted
quickly upon the emergence of new pathogenic outbreaks.

Vaccine induces antigen-specific immune responses to a certain pathogen by exposing the
pathogen’s antigen to an immune system in a safe manner. Although the responses vary by type of
vaccine, vaccination can also provide partial protection against phylogenetically close variants due
to the similarity of antigenic structures. However, antibody and cell-mediated responses induced by
org May 2022 | Volume 13 | Article 8778451
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vaccination generally have no reactivity to unrelated pathogens.
Moreover, vaccination is recommended ahead of pathogen
circulation because adaptive immune response takes time
to develop.

Besides the highly selective immunologic nature of vaccines,
many studies report beneficial non-specific effects (NSEs) against
off-target diseases (3). Unlike traditional vaccine effects, NSEs
can be elicited immediately after vaccination and sometimes are
perpetuated for longer periods. Live attenuated vaccine (LAV)-
induced NSEs have been beneficial to non-infectious diseases
such as type 1 diabetes, multiple sclerosis, and cancer (4), but in
this review, we focus on the NSEs related to infectious diseases.
Also, the review covers the basic concept of superinfection and
interference that are important for understanding LAV-
induced NSEs.
2 SUPERINFECTION

In a microorganism-enriched environment, human infection can
involve multiple exogenous pathogens at the same time.
Superinfection and coinfection are interchangeable terms that
indicate multiple infections in a single host (5). These terms are
generally used for pathogenic infections, which are distinct from
harmless colonization by indigenous commensal bacteria. The
latter do not produce symptoms and are seldom noticeable.

Many superinfections are known to synergistically augment
disease severity. Respiratory viral infection by members of
Orthomyxoviridae, Paramyxoviridae, and Coronaviridae are
frequently associated with secondary bacterial infection (6, 7).
Post-influenza secondary bacterial infection, especially with
Streptococcus pneumoniae, is clinically important as this
superinfection is commonly found in fatal cases (8, 9). Similarly,
COVID-19-associated bacterial pneumonia, mostly associated
with Klebsiella pneumoniae and Staphylococcus aureus, increase
morbidity and mortality (10, 11). Primary infection with
respiratory virus stimulates and makes changes in the immune
system. Consequently, altered immunity sometimes adversely
affects a secondary infection. For example, influenza A virus
(IAV) infection induces robust interferon (IFN)-g secretion and
suppresses phagocytosis of alveolar macrophages which are key
players in bacterial clearance (12). Similarly, type I IFNs (IFN-I)
are important antiviral cytokines but IFN-I produced after IAV
infection drives a hyporesponsive immune milieu during
secondary bacterial infection (13). Immune responses against
mixed infection are difficult to understand because there are so
many variables in the course of superinfection. Further studies of
the host’s response in a time-dependent manner using animal
models are required as the immune response to primary infection
constantly changes as the infection progresses. For example, in a
mouse model, post-influenza pneumococcal pneumonia has
increased susceptibility that doesn’t peak until about 7 days after
IAV infection (14).

Secondary bacterial pneumonia, a well-known superinfection,
results from serial infections in the lung. It seems natural that
pathogenic synergism maximizes when superinfection occurs
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within the same organ, but in certain superinfections, two
infections in different tissues can also be synergistic and
aggravate the overall disease. This is common in chronic viral
infections. For instance, chronic hepatitis C virus infection is
associated with elevated risk for Mycobacterium tuberculosis, S.
aureus, and S. pneumoniae infections (15–17). Human
immunodeficiency virus (HIV) dramatically affects secondary
bacterial infections due to disrupted cellular immunity. The HIV
infection studies underscore the alteration of the immune
system, an important factor that affects an individual’s
susceptibility to superinfection.
3 INTERFERENCE

3.1 Homologous Interference
Unlike the prevalent synergistic pathology discussed above,
pathogens may form an antagonistic relationship, called
‘interference.’ Interference studies have been conducted using
defective interfering (DI) virus particles that cannot replicate as
they are missing essential genes (18). DI particles were
recognized as having greater clinical importance in recent
years when they were found to have interfering potential in
vivo (19–21). Early studies also focused on the competition
between two replication-competent viruses, especially between
mutant and their parental wild-type (wt) viruses (22). As
mutants largely maintain the original genetic sequences, these
viruses can efficiently coinfect the same cell with wt virus and
compete for the host’s mechanisms required for their replication.
In general, mutant viruses generated by spontaneous or artificial
mutation showed superior growth compared to parental wt virus
during coinfection (22). The interference was observed in other
RNA viruses including poliovirus (22, 23). These studies suggest
that interference occurs at earlier steps of viral RNA synthesis.
Interference was also reported in DNA viruses, including the
temperature-sensitive herpes simplex virus type 1 (HSV-1)
mutant that showed interference against a wt strain by
delaying viral genome synthesis (24).

The early pioneering studies contributed to establishing the
concept of viral interference. Homologous viral interference can
be considered ‘genetic interference’ because proliferation of
virulent strains is hindered by introduction of suboptimal
mutant genomes. Unfortunately, interference at the genetic
level based on an in vitro cell culture system has limitations for
human disease studies because it is difficult to assess immune-
mediated interference.

3.2 Heterologous Interference
Living multicellular organisms provide a niche for growth of
both intracellular and extracellular microorganisms. For this
reason, heterologous interference is common in humans and
animals. Even harmless microorganisms compete with each
other for energy sources and sometimes provide ‘colonization
resistance’ against pathogenic infection (25, 26). Heterologous
interference in living organisms is complicated because they
induce counteracting host factors related to innate and
May 2022 | Volume 13 | Article 877845
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adaptive immunity. Despite its complexity, study of heterologous
interference is important to understand the pathophysiology of
superinfection by unrelated pathogens.

IAV and influenza B virus (IBV) are antigenically distinct but
both have significant clinical importance (27). IAV and IBV, like
other RNA viruses, frequently yield variant strains that have
mutations in antigenic sites. Antibodies against IAV or IBV may
cross-react to homologous virus types. For example, IBV
hemagglutinin-specific antibodies can provide protection
against multiple IBV lineages (28). In contrast, IAV-specific
antibodies induced by vaccination are not reactive to
heterotypic (i.e., IBV) antigens (29). Thus, antibody-mediated
immune response to IAV is not protective against IBV and vice
versa. However, attenuated IAV infection provided shot-term
protection against IBV in a mouse model (29). Moreover, IAV
infection induced protection against IBV in the ferret model and
it was achieved within short intervals of less than 7 days (30).
Observed immediate protection was associated with decreased
lung viral burden of secondarily infected virus. As antigen-
specific adaptive immunity takes at least a week to reach the
peak level, heterotypic interference should employ other
mechanisms, such as innate immunity, to mitigate secondary
viral propagation. Another study showed that surviving club
cells, a type of lung epithelial cell that secret anti-inflammatory
protein (31), are reprogrammed after IAV infection to elicit
elevated antiviral responses (32). This antigenically unrelated
interference between IAV and IBV was temporary, and animals
eventually became susceptible again.

There have been other efforts to prove that IAV infection can
provoke non-specific protection against unrelated pathogens.
IAV-infected ferrets showed reduced viral burden after
secondary respiratory syncytial virus (RSV) infection (33).
When 3-, 7-, and 11-day intervals were tested, IAV infection
suppressed RSV better during shorter intervals. The heterologous
interference was not mediated by adaptive immunity because
cross-reactive cellular response was minimal between IAV and
RSV. In a mouse model, immediate protection (up to 7~14 days)
against RSV was achieved by attenuated infection with IAV.
Another study with IAV infection showed interference against
the RSV challenge for a longer period (34). In that study, mice
were challenged with RSV 5 weeks after IAV infection and showed
reduced weight loss and histopathology. As in the ferret model,
IAV-infectedmice did not develop RSV-specific cellular immunity
but transfer of splenocytes from IAV-infected mice resulted in
reduced pathology after RSV infection. It was proposed that IAV-
specific CD8+ T cells are recruited to RSV-infected lungs to exert
bystander activity. This type of protection, called ‘heterologous
immunity,’ will be discussed later in this review.

Systemic superinfection of lymphocytic choriomeningitis
virus (LCMV) and ectromelia virus (ECTV) in mice also
generated heterologous interference (35). When mice were
infected with LCMV 1 or 2 days prior to ECTV infection, the
coinfection extended survival of mice in an IFN-I–dependent
manner; however, infection of LCMV after ECTV infection did
not interfere with ECTV infection, indicating that timing of
LCMV administration affects the degree of interference. In this
Frontiers in Immunology | www.frontiersin.org 3
case, the CD8+ T cell count in the spleen was comparable
between coinfected and ECTV-only infected mice, suggesting
immediate heterologous interference was mediated by innate
immunity, such as IFN-I, rather than by long-lasting
heterologous immunity.

Chronic infection of murine gammaherpesvirus 68 (MHV68)
is an animal model for human gammaherpesviruses. MHV68-
infected mice showed significantly lower mortality after lethal
IAV infection compared to mock-infected control mice (36). The
interference lasted for 60 days after the MHV68 infection but had
disappeared by day 120. Adoptive transfer of alveolar
macrophages isolated from MHV68-infected mice protected
recipient mice from IAV challenge. In addition, MHV68
infection induced protection against another virus, bacteria,
and malaria infections (37–39). Broad-spectrum heterologous
interference achieved by MHV68 further suggests that protection
is mediated by non-specific immune responses rather than by
antigen-specific immune responses.
4 LAV-INDUCED NSE

LAV is a conventional prophylactic approach that has long been
used against bacterial infections by Mycobacterium and
Salmonella, and viral infections by polio, measles, mumps,
rubella, varicella zoster, rota, yellow fever, smallpox, and
influenza viruses. As the LAV is an infectious agent, people
who are vaccinated could be at risk of superinfection, and at the
same time be protected from secondary infection by interference
(Table 1). Live attenuated influenza vaccine (LAIV) has been
used against swine influenza, and superinfection of LAIV and a
wt strain was detected in a vaccinated swine population (57). It is
likely that humans administered the LAV often experience
superinfection until LAV strains are cleared by host’s immune
system. Also, human studies of Bacillus Calmette–Guérin (BCG)
vaccine suggest that LAVs can elicit beneficial protective effects
on subsequent infection by unrelated pathogens (41).

4.1 Bacterial LAVs
BCG vaccine is an attenuated Mycobacterium bovis strain
developed to protect against tuberculosis. BCG is known for its
interference potential against viral infections, including ECTV,
encephalomyocarditis virus, HSV-1, HSV-2, human
papillomavirus, IAV, Japanese encephalitis virus, RSV, and
vaccinia virus (41). Epidemiological studies have shown that
all-cause mortality, including non-tuberculous infections, is
reduced by BCG vaccination in early life (58–60). BCG also
has antifungal effects against Candida albicans and Cryptococcus
neoformans (61, 62). Most of the antifungal effects were assessed
using immune-disrupted SCID or IFN-g knock-out mice. Thus,
further validation is required.

Similarly, interference against influenza infection by attenuated
bacteria is achieved by oral and nasal administration of Salmonella
LAV (56). As Salmonella LAV has been widely studied as a
mucosal vaccine platform that expresses foreign antigen and is
usually introduced orally (14), the potential of interference against
May 2022 | Volume 13 | Article 877845
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infections in different mucosal sites need further study. In other
attempts for LAV development, live attenuated Bordetella pertussis
vaccine showed protection against influenza and RSV infections
(51, 52). Of note, most interference induced by bacterial LAVs was
against viral infections.
Frontiers in Immunology | www.frontiersin.org 4
4.2 Viral LAVs
4.2.1 LAIV
A reverse genetic approach has been frequently used to generate
LAIV strains (63, 64), but currently licensed LAIVs were
generated by cold-adaptation. Three individual cold-adapted
TABLE 1 | Beneficial non-specific effects against unrelated pathogens induced by live attenuated vaccine (LAV) administration in vivo.

LAV Target
pathogen

Study
model

Vaccination
route

Interval* Outcome of vaccination Suggested mechanism Reference

BCG ECTV Mouse IP 3 weeks Reduced viral burden Enhanced of interferon response (40)
EMCV Mouse IP, IV 5 weeks Increased survival rate Macrophage-mediated innate immunity (41)
HSV-1 Mouse IV 21-49

days
Increased survival rate Stimulation of phagocytes (41)

HSV-2 Mouse IV 15-31
days

Increased survival rate Stimulation of phagocytes (41)

HSV-2 Mouse ID, IP 6 days Increased survival rate ND (41)
HPV Human Topical

application
NA Complete or partial resolution of warts ND (41)

HPV Human ID NA Complete or partial resolution of warts ND (41)
IAV Human ID NA Increased and accelerated IAV-specific

antibody response
ND (41)

IAV Mouse IN, IP 4-12
weeks

Increased survival rate ND (41)

IAV Mouse IN, SC 2 days IN BCG vaccination increased survival
rate

Enhanced efferocytic ability of alveolar
phagocytes

(41)

IAV Mouse IV, IN 14-31
days

IV BCG vaccination increased survival
rate

Stimulation of phagocytes (41)

IAV Mouse,
hamster

IV 4-6
weeks

Increased survival rate, reduced weight
loss

Trained immunity (42)

JEV Mouse SC 15 days Delayed onset of clinical symptoms and
death

Anti-inflammatory effect (41)

Malaria Human ID 5 weeks Decreased parasitemia Trained immunity (43)
RSV Human ID NA Reduced risk of acute lower respiratory

tract infection
ND (41)

SARS-CoV-
2

Human ID NA Decreased anti-SARS-CoV-2
seroprevalence

ND (44)

SARS-CoV-
2

Human ID NA Lower mortality rate ND (45)

SARS-CoV-
2

Human ID NA Reduced incidence of new infection Epigenetic reprogramming and increase
cytokine production

(46)

SARS-CoV-
2

Mouse SC 3 weeks Reduced weight loss ND (47)

SARS-CoV-
2

Mouse IV 6-16
days

Increased survival rate, reduced weight
loss

Nonspecific stimulation of the pulmonary
immune response

(48)

Vaccinia
virus

Mouse SC > 4
weeks

Reduced viral burden T cell-mediated heterologous immunity (49)

Yellow fever
virus

Human ID 4 weeks Reduced viral burden Epigenetic reprogramming in monocytes (50)

Bordetella
pertussis

IAV Mouse IN 3-12
weeks

Increased survival rate, reduced
histopathology

Anti-inflammatory effect (51)

RSV Mouse IN 7-9
weeks

Reduced viral burden Enhanced IL-17 response and immune cell
recruitment

(52)

LAIV IBV Mouse IN 0-4 days Increased survival rate Enhanced pro-inflammatory cytokine and
interferon responses

(29)

RSV Mouse IN 2-28
days

Reduced viral burden Enhanced pro-inflammatory cytokine and
interferon responses

(53)

SARS-CoV-
2

Ferret IN 0-3 days Reduced viral burden ND (54)

OPV SARS-CoV-
2

Human Oral NA Reduced symptomatic infection ND (55)

Salmonella IAV Mouse IN, Oral 1 day Increased survival rate Stimulation of innate immune responses (56)
May 2022 | Volume 13 | Art
*Interval between vaccination and experimental challenge.
BCG, Bacillus Calmette-Guérin; ECTV, ectromelia virus; EMCV, encephalomyocarditis virus; HPV, human papillomavirus; HSV, herpes simplex virus; IAV, influenza A virus; IBV, influenza B
virus; ID, intradermal; IN, intranasal; IP, intraperitoneal; IV, intravenous; JEV, Japanese encephalitis virus; LAIV, live attenuated influenza vaccine; NA, not applicable; ND, not determined;
OPV, oral poliovirus vaccine; RSV, respiratory syncytial virus; SC, subcutaneous; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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(ca) LAIV backbone strains were prepared by passaging virulent
strains at progressively lower temperatures (65–67). These ca
backbone strains were used to generate a vaccine strain that
contains surface glycoprotein gene segments of circulating virus.
For example, hemagglutinin (HA) and neuraminidase (NA)
genes of the ca-backbone strain, A/Ann Arbor/6/60 ca (H2N2),
were replaced by those of A/Korea/1/82 wt (H3N2) to yield the
A/Korea/1/82 ca vaccine strain. As many temperature-sensitive
mutant viruses showed homologous interference against parental
wt viruses, A/Korea/1/82 ca genes were dominantly synthesized
compared with wt genes when these two viruses coinfected
MDCK cells (68). The interference of ca LAIV in vivo was
confirmed by mixed infection of ferrets (69). Ferrets coinfected
with wt and ca vaccine strains produced antibodies to both
strains, indicating these two viruses were propagated. While wt
virus-infected ferrets showed fever and coryza for 3 days, those
symptoms were not observed in wt and ca coinfected ferrets.
Interestingly, the interference by ca vaccine (H3N2) was effective
for both homosubtypic (H3N2) and heterosubtypic (H1N1) wt
challenge. In a double-blind human coinfection study, volunteers
who received both wt and ca virus had lower symptom scores
than those given only wt virus, although the difference was not
statistically significant (70). The series of studies based on A/Ann
Arbor/6/60 ca strain extended the use of LAIV from
conventional homologous protection to a broader range of
influenza virus infections.

4.2.2 Other Viral LAVs
Based on recommended immunization schedules, children
receive various vaccines against viral pathogens early in life.
Measles vaccine has long been used in low-income countries and
children get their first vaccinations at age 9 months. Analysis of
10 cohort studies showed 30% to 85% protective efficacy against
all-cause mortality in developing countries (71). NSEs on
mortality were particularly effective in children who did not
receive neonatal vitamin A (72). Another randomized trial
showed that measles vaccine protects against hospital
admissions, indicating that NSEs reduce both morbidity and
mortality in low-income countries (73). A lower risk of hospital
admission was also reported in Danish children vaccinated with
measles-mumps-rubella (MMR) vaccine (74). These findings
indicate that NSEs conferred by measles vaccine are beneficial
regardless of an area’s economic status.

Live enterovirus vaccines (LEVs), including oral polio vaccine
(OPV), use nonpathogenic viruses to prevent various enterovirus
diseases. While the LEVs successfully control pathogenic
enterovirus infection as intended, they also exert prophylactic
effects against seasonal influenza (75). OPV is currently
recommended for administration at birth and thus can produce
NSEs even earlier than measles vaccine. In a randomized trial,
OPV showed protection against infant mortality associated with
infectious diseases (76). As withMMR vaccinations, OPV was also
associated with a lower risk of hospitalization in Denmark (77).

Live attenuated rotavirus vaccine has been proposed as a
mechanism to protect against non-rotavirus gastroenteritis (78).
However, this concept needs further evaluation because of a
conflicting report (79). Overall, accumulated evidence suggests
Frontiers in Immunology | www.frontiersin.org 5
that other viral LAVs may also provide protection against
unrelated pathogenic infections.
5 MECHANISMS OF LAV-INDUCED NSEs

Beneficial effects of LAV-induced interference suggest its
potential use for the control of unrelated infectious diseases
that lack efficient prophylactic and therapeutic measures.
Although licensed LAVs are confirmed for their safety by
clinical trials, new concerns may arise when vaccines are
applied for different uses. Superinfection of LAVs and virulent
pathogens is unavoidable for interference and may advertently
enhance the pathology of secondary infections (80, 81).
Therefore, to assure the safety of non-conventional LAV use, it
is essential to determine the underlying mechanisms of vaccine-
induced NSEs (Figure 1).

5.1 Genetic Interference
Genetic interference to based on the replication dominance of
attenuated virus. For this reason, genetic interference by LAV is
observed in interrelated pathogens. In addition to genetic
dominance studies using A/Ann Arbor/6/60 ca LAIV,
mechanistic analysis of genetic interference was performed
with another LAIV backbone strain, X-31 ca (H3N2). When
X-31 ca was administered to mice 1 to 4 days before virulent
challenge with heterosubtypic A/New Caledonia/20/99 (H1N1),
these mice showed reduced weight loss and mortality compared
to non-vaccinated control mice (29). Even simultaneous
introduction of X-31 ca with virulent virus showed protective
effects. As this early protection was achieved without specific
antibody responses, which started to increase 5 days after
vaccination, interference was analyzed at the genetic level. IAV
has eight segmented genomes and coinfection of two viruses
enables them to interchange their genes to generate various
combinations of reassortant progenies. Attenuated,
temperature-sensitive, and ca phenotypes are the consequence
of accumulated mutations dispersed in the segmented RNA
genome (65, 82). Thus, an increased ratio of reassortant
progenies that contain ca-originated gene(s) contributes
toward overall attenuation of virulence. The ratio of
reassortant virus was 10% to 46% in mice that received both
wt and ca viruses at different intervals, indicating active genetic
exchanges occur in vivo. Clearly, LAIV can maximize the genetic
interference based on the advantage of segmented gene structure.

As shown in interference between virulent IAV and IBV (30),
X-31 ca induced protection against heterotypic IBV challenge in
mice (29). Basically, genetic interference can be best achieved
when genes of two viruses are compatible. Although IBV
contains segmented genomes with similarity in terms of
protein functions they encode, natural reassortment between
influenza A and B viruses has not yet been reported. However,
the polymerase complex of IAV and IBV recognize the non-
coding terminal sequence of heterotypic genes and the
polymerase complex that contains heterotypic subunits are still
functional albeit at a low level (83–85). Genetic interference
seems clearly to contribute interference between homotypic IAV
May 2022 | Volume 13 | Article 877845
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A

B

FIGURE 1 | Live attenuated vaccine (LAV)-induced non-specific effects (NSEs). (A) LAIV can induce three different types of interference (1, genetic interference; 2,
innate immune-mediated interference; and 3, trained and heterologous immunity) with each protective effect elicited at different time points after vaccination.
(B) When virulent strain and LAIV are coinfected, both viruses can infect the same cell and produce progenies with diverse genomic combinations. Generation of
suboptimal progenies induces ‘genetic interference’ during early infection (shown in red). At the same time, LAIV vaccination triggers innate immune-mediated
interference (shown in blue) via stimulation of pattern recognition receptors (PRRs). Many immune cells, including alveolar macrophage (AM), monocyte (Mo),
monocyte-derived macrophage (MDM), elicit antiviral type I interferon (IFN-I) response and provide broad-spectrum protection to homotypic influenza A virus (IAV),
heterotypic influenza B virus (IBV), and other heterologous unrelated pathogens. Whereas the innate immune-mediated interference subsides after LAIV clearance,
LAIV can induce long-lasting interference (shown in green). LAIV administration triggers epigenetic alteration in innate immune cells including innate lymphoid cells
(ILCs) and Mo (trained immunity) and prolonged bystander effects by LAIV-specific T and B cells (heterologous immunity); both contribute to boost host resistance
against unrelated pathogens in an antigen-independent manner. In some cases, LAIV-specific antibodies may cross-react with unrelated pathogens. Genetic
interference is an LAIV-specific event, but innate immune-mediated interference and long-term interference can be induced by other LAVs. Certain LAVs, such as
Bacillus Calmette–Guérin (BCG), can elicit longer trained and heterologous immunity. DC, dendritic cells.
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infections. Although the possibility of heterotypic genetic
interference between IAV and IBV were suggested by other
studies, it seems other mechanisms, including immediate
induction of innate immune response, play a major role.

5.2 Innate Immunity
Innate immunity provides general barrier function because it is
designed to respond to a wide range of microbial infections.
Therefore, innate immunity induced by certain microorganisms
can elicit broad protection against other pathogens. Vaccination
with LAIV induces innate immunity similar to natural infection
as the vaccine contains every element required for self-
replication and actually ‘infects’ the host (86). Although LAIV
administration is generally asymptomatic, it elicits sufficient
innate immune response (87).

As a prototype LAIV, X-31 ca induced the production of
multiple inflammatory cytokines and IFN-I (29, 53). Such
inflammatory and IFN responses are initiated via pattern
recognition receptors (PRRs). Toll-like receptor (TLR) 3 and 7
are major intracellular sensors for viral RNA genomes and
recognize influenza virus infections (88, 89). Mice with defects
in TLR signaling were highly susceptible to infection, confirming
the crucial role of TLR-mediated innate immunity in protection
against IAV (90). When TLR3 and 7 agonists were administered,
they elicited immediate protection against IAV challenge as seen
with LAIV vaccination (29). Other studies also proved that
agonists for TLRs, including TLR2, 3, 4, and 7, induced
therapeutic effects on influenza infection (91). When tested for
prophylactic effects, TLR agonists protected mice against different
strains including H5 avian influenza and 2009 pandemic strains
within several days (92–96). Agonists targeting other PRRs,
including RIG-I and NOD2, also induced antiviral innate
immune responses and protected mice from IAV infection (97,
98). Based on extensive studies that proved the protective innate
immune response via PRR stimulation, LAIVs are expected to be
sufficiently immunogenic to mitigate subsequent viral infection,
even antigenically unrelated pathogens. Indeed, when X-31 ca was
administered 2 days before RSV challenge, it significantly
suppressed RSV propagation in a TLR3- and TLR7-dependent
manner (53).

IFN-I triggers the expression of multiple IFN-stimulated
genes (ISGs) that cooperate to inhibit the virus replication
cycle in infected cells (99). For example, IFN-induced
transmembrane (IFITM) family proteins restrict entry (100),
Mx GTPases block early replication of viral genomes (101), and
2’-5’-oligoadenylate synthetase (OAS) family proteins degrade
viral genomes by activating the ribonuclease (RNase) L (102).
Virus infection is the main stimulator that potentiates cells to
produce IFN-I via PRR signaling (88, 103, 104). Likewise, LAIV
induces IFN-I in the lung shortly after vaccination (29, 53). Even
non-viral stimulation can increase the host’s antiviral status by
inducing IFN-I production (105). IFN-I induced by host DNA in
a mouse lung fibrosis model attenuated IAV infection (106). It is
important to note that ISGs, which can be produced by LAIV
and other LAVs, also induce antiviral effects to unrelated viral
infections. Furthermore, IFN-I not only provides direct
protection to infected cells but also increases the antiviral
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status of non-infected cells, which together mitigate overall
virus propagation in infected hosts.

IFN-g, another subtype of IFN, is involved in both innate and
adaptive immune responses. Vaccination with BCG allows the
host to induce prolonged IFN-g responses that contribute non-
specific protection against ECTV and vaccinia virus (40, 49).

5.3 Long-Lasting Immunity
5.3.1 Trained Immunity
Vaccination with BCG maintains a prolonged NSE, and even
acute IAV infection maintained NSEs over 1 month (34, 107). The
immune mechanism that drives prolonged immune response by
LAV seems to differ from those of immediate or short-lived
interference. The concept of ‘trained immunity,’ also known as
‘innate immune memory,’ was established based on the
observation that innate immune cells of recently challenged
hosts retain the elevated responsiveness to subsequent microbial
stimulation (108). When a host experiences an initial challenge,
innate immune cells, including monocytes, macrophages, and
natural killer cells, undergo epigenetic changes and this genetic
reprogramming affects how immune cells respond to secondary
infection. Bone marrow and spleen are hematopoietic organs
where immune cells are differentiated and educated. BCG can
directly access the bone marrow upon vaccination and induces
epigenetic modification of hematopoietic stem cells (HSCs) in
mice (42). These reprogrammed monocytes are protective against
M. tuberculosis infection; however, heterologous protection
against unrelated pathogens was not tested.

A human study showed that BCG administration trained
monocytes to produce more pro-inflammatory cytokines upon
unrelated microbial stimulation in a NOD2-dependent manner
(61). Macrophages are an important source of immune
modulators for pro-inflammatory and anti-inflammatory
responses. As monocytes are recruited to the site of infection
and can differentiate into monocyte-derived macrophages,
alteration of the transcriptomic profile by epigenetic change
will significantly affect the pathologic outcome. In consecutive
human studies, nonspecific protection by BCG vaccination was
proved by experimental infection with attenuated yellow fever
virus or malaria (43, 50). Genome-wide epigenetic changes were
observed in monocytes and early activation of innate immune
cells, including neutrophils, NK cells, and monocytes was
observed in BCG-vaccinated adult volunteers. These subjects
developed earlier symptoms of malaria infection, but it
eventually was associated with lower parasitemia (43). BCG
vaccination did not alter the composition of immune cells and
their progenitors but reprogrammed gene transcription to draw
functional alteration in CD14+ peripheral monocytes (109).
Trained immunity lasted more than 90 days. Thus, BCG
vaccination may induce prolonged NSEs against pathogenic
infections. Because these experimental human studies were in
adults, trained immunity induced by early BCG vaccination
needs further study.

Of note, BCG vaccination induces immediate interference.
Neonatal BCG vaccination induced granulocyte colony-
stimulating factor and activated emergency granulopoiesis
(110). Elevated neutrophil numbers were associated with
May 2022 | Volume 13 | Article 877845

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Seo and Seong Live Vaccination Against Unrelated Infections
reduced mortality by polymicrobial sepsis in vaccinated neonates
and the protection was achieved within 3 days. The study
indicates that long-lasting NSEs can be achieved quickly
after vaccination.

5.3.2 Heterologous Immunity
Heterologous immunity is another term that is used to explain
prolonged NSEs, but this phenomenon mainly focuses on
lymphocyte responses rather than on innate immune cells.
Heterologous immunity may have been induced based on cross-
reactive T cell antigens between unrelated pathogens (111–113).
While heterologous immunity can provide protection against
experimental infections (111, 114), in some cases, heterologous
immunity can adversely increase disease severity through cross-
reactive CD8+ T cells. Two studies reported that the degree of
acute infectious mononucleosis caused by Epstein-Barr virus
infection correlated with development of IAV-specific cross-
reactive memory T cells (115, 116). Therefore, heterologous
immunity induced by LAVs can be beneficial but also can be
detrimental during subsequent pathogenic infections through the
activation of cross-reactive lymphocytes.

Alternatively, heterologous immunity can interfere with
heterologous infection through the antigen-independent
bystander effects of lymphocytes. When peripheral blood
mononuclear cells were isolated from BCG-vaccinated
individuals and stimulated ex vivo with unrelated microbial
stimulants, increased production of Th1- and Th17-related
cytokines were detected. When mice were infected LCMV, it
generated LCMV-specific CD8+ T cells that produced IFN-g in
lungs and draining lymph nodes. Subsequent systemic vaccinia
virus infection re-activated these cells to produce increased
serum IFN-g compared with mock-infected control mice (117).
Influenza infection also induces similar long-lasting IFN-g
producing CD8+ T cells and suppresses Th2 responses induced
by RSV infection (34). These results suggest that LAV
administration, in general, boosts Th1 and Th17 responses in
the early phase of secondary infection and contributes to
attenuation of overall pathology by secondary infection.

Long-lasting NSEs are mediated by mixed contributions of
innate and adaptive cell populations. Both mechanisms may
induce cellular reprogramming in hematopoietic organs, such as
bone marrow and spleen, after primary infection (118). Further
studies are required to define the detailed mechanism of how
LAV administration communicates with hematopoietic organs
to educate immune cells.
6 USE OF LAVs FOR CONTROL OF
NEWLY EMERGING VIRUSES

6.1 NSEs Induced by LAVs Against
SARS-CoV-2
New viral infectious diseases, including highly pathogenic avian
influenza, 2009 pandemic influenza, SARS, and Middle East
respiratory syndrome, have evolved during the last two
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decades. More recently, COVID-19 spread rapidly and yielded
more than 481 million confirmed cases as of 29 March 2022.
SARS-CoV-2 vaccines were developed in an exceptionally short
time period and applied to human use under provisional
approval beginning December 2020. COVID-19 caused
significant social and health disruptions worldwide in the early
stages of the pandemic and options to minimize the disease
burden were discussed.

Because of the well-known heterologous protection of BCG
vaccination, its potential use for control of COVID-19 was
suggested (119, 120). Multiple clinical studies have assessed the
impact of BCG vaccination against COVID-19. These fall into
two categories (1): the effect of childhood BCG vaccination on
COVID-19 and (2) the effect of re-vaccination on COVID-19 in
adults. BCG vaccination in childhood was associated with
decreased SARS-CoV-2 prevalence or mortality among health
care workers (44, 45); however, in clinical studies, the protective
effect of re-vaccination with BCG in adults was controversial.
One randomized clinical trial showed that BCG vaccination in
the elderly was correlated with lower incidence of SARS-CoV-2
infection (46). Yet other studies found no significant protective
effect with BCG vaccination (121–123). Similarly, studies of
COVID-19 in animal models also produced contradictory
results. In studies using mice expressing the human SARS-
CoV-2 receptor, administration of BCG vaccine reduced
morbidity and mortality upon SARS-CoV-2 infection (47, 48).
But in studies with mice, hamsters, and rhesus macaques, BCG
vaccination did not protect animals from SARS-CoV-2 infection
(124, 125). The results need to be compared in terms of animals
used, study methods and administration routes, and BCG strains.
Despite the disparate findings, the positive results support the
possible use of BCG vaccine for NSE-mediated control of the
current pandemic. In addition, one study reported that peptides
derived from BCG vaccine induced SARS-CoV-2-specific T cells
based on antigen homology (126). That study showed that
heterologous immunity can be induced by BCG vaccination.

OPV may also induce heterologous protection (119). Mothers
who were passively exposed to OPV by their children had a
decreased incidence of COVID-19 infection (55). This suggests
that OPV exposure may be one means of lowering the viral load
of unrelated viruses in a population. Another attempt to induce
heterologous protection using DI poliovirus particles showed
promising prophylactic and therapeutic effects against various
RNA virus infections including SARS-CoV-2 (127). When mice
received the defective poliovirus genome intranasally, DI
particles were generated to induce systemic IFN-I–dependent
antiviral responses. This successful example of IFN-I–mediated
protection suggests LAV-mediated IFN-I production, which is
also induced by LAIV, will similarly protect hosts from SARS-
CoV-2 infection.

During the influenza season, there were concerns that people
infected with COVID-19 might experience comorbidity.
Although coinfection with SARS-CoV-2 and influenza did not
affect the overall mortality rate, some studies suggested
significant increases in morbidity and mortality (128, 129). In
a mouse model, coinfection with SARS-CoV-2 and IAV resulted
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A
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FIGURE 2 | Strategic use of live attenuated vaccines (LAVs) for unrelated pathogen outbreaks. (A) LAVs that elicit beneficial non-specific effects (NSEs) can be
transferred from a vaccinated person to passively immunized contacts. Persons exposed to LAV may develop NSEs that attenuate the infection of unrelated
pathogens. With higher vaccination rates, community-wide NSEs mitigate the spread of pathogens and limit the impact of an outbreak. (B) LAVs with short-lived
NSEs need to be administered during the outbreak. This approach can be effective in the early stage of newly emerging infectious diseases when no effective
vaccines and drugs are available. The optimal timing of vaccination must be determined through epidemic pattern analysis. Also, for targeted vaccination, it is
important to identify groups at highest risk for fatality. For example, most fatalities were elderly people during the COVID-19 outbreak. A minimal dose of live
attenuated influenza vaccine (LAIV) can be selectively administered to an at-risk population to reduce the fatality rate. Stockpiled LAIVs such as pre-pandemic or
seasonal vaccines can be considered for alternative use during unexpected new respiratory virus outbreaks.
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in increased mortality and severe histopathology (130). However,
coinfection with SARS-CoV-2 and LAIV did not enhance the
histological pathology in the ferret model (54). In the latter study,
prior administration of LAIV 3 days before challenge reduced the
replication of SARS-CoV-2 from throat swabs, indicating the
potential of LAIV as an immediate prophylactic measure for
highly pathogenic coronavirus infection.

6.2 Control of Unrelated Pathogens in
Future Pandemics
BCG vaccine has been used for more than 100 years and
administered to billions of children (131). As planned, BCG
vaccination significantly lowered the incidence of tuberculosis
while simultaneously providing unintended beneficial effects.
The COVID-19 outbreak provided an opportunity to study the
NSEs of BCG and other vaccines. Although the effectiveness of
LAV-induced NSEs against SARS-CoV-2 needs further study,
the evidence of BCG and OPV vaccination-induced interference
suggests promising potential therapeutic use of LAV in future
pandemics, especially during early stages when vaccines and
drug therapies have not been developed.

Results of animal and human studies found that NSE
duration differs by type of LAV (Figure 2). For example, BCG
vaccines led to long-lasting NSEs while LAIVs typically were
associated with short-lived effects. Therefore, two distinct types
of NSE-based vaccine programs need to be considered. Long-
lasting NSEs induced by BGC and OPV vaccination can be
considered as passive outcomes. Epidemiological studies showed
that effectiveness of vaccination correlates with population-wide
coverage (132). Thus, NSE-based protection will be more
effective in communities with higher LAV coverage (133). The
beneficial effects associated with long-lasting NSEs will be most
striking when sufficient vaccines are provided to countries with
poor medical infrastructures (Figure 2A). Pending the
distribution of vaccines, we suggest that LAIVs might be a
solution for immediate protection against newly emerging
infectious pathogens. However, this approach has been proven
mostly at the research level and studies are urgently needed to
address safety issues related to NSEs resulting from
superinfection of the LAIV and the pathogen. There needs to
be an assessment of the risk from superinfection and the
expected benefits from NSEs. For example, before the
Frontiers in Immunology | www.frontiersin.org 10
availability of vaccines, most COVID-19 fatalities occurred in
the elderly. Assuming this scenario is likely in future pandemics,
it seems reasonable to selectively administer LAIV to the elderly
in communities in which the infection is actively spreading.
Another hurdle for immediate use of an NSE strategy is vaccine
supply. To solve this problem, planning might focus on
alternative uses of stockpiled pre-pandemic and seasonal
LAIV (Figure 2B).
7 CONCLUSION

Although a strategic use of LAV-inducedNSEs appears promising,
the immediate concern is safety and effectiveness in humans.
However, new infectious diseases will continue to emerge in the
post-COVID-19 era for which no effective therapeutic or
prophylactic means are available. Based on extensive research
and clinical analysis, we suggest that the use of LAVs not only
strengthens the preparedness for future pandemics but also
provides a beneficial option for controlling infectious diseases in
the absence of licensed vaccines. A balanced view of the pros and
cons of use of LAVs must be developed as a basis for a judicious
choice of LAV candidates for immediate mitigation and control of
unexpected pandemic outbreaks.
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