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Cancer is a major disease endangering human health. More and more studies

have shown that microorganisms play an extremely important role in the

occurrence, development and treatment of tumors. As a very promising

tumor treatment strategy, immunotherapy has also been proved to have a

great relationship with microorganisms. Here, the authors review the

contribution of the microbiota to cancer and the research on its impact on

cancer immunotherapy. We also highlight the possible mechanism of their

interaction and outlined the potential application of microbiota in

tumor immunotherapy.

KEYWORDS
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Introduction

The microbiota lives on all the epithelial surfaces of the human body, including the

skin, respiratory tract, digestive tract, and urogenital tract, and their presence can be

detected even within tumors (1, 2). Hundreds of millions of years of evolution have

established a lasting relationship between the microbiome and the human body (3). Past

studies have shown that the composition of the microbiota in the epithelial barrier affects

systemic functions, including metabolism, nervous system, inflammation, and immunity

(4–6). The intestine is the largest digestive organ in the human body. It is constantly

exposed to foreign antigens and other environmental factors (7). Microorganisms are
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.877939/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.877939/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.877939/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.877939/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.877939&domain=pdf&date_stamp=2022-08-08
mailto:lijionghh@scu.edu.cn
https://doi.org/10.3389/fimmu.2022.877939
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.877939
https://www.frontiersin.org/journals/immunology


Zhou et al. 10.3389/fimmu.2022.877939
distributed along the intestine, and the number of

microorganisms in the colon is the largest (8). Studies have

found that the imbalance in the intestinal flora is related to the

occurrence of many diseases, such as obesity, inflammatory

bowel disease, autism and cancers (9). In addition to being

closely related to cancer, the microbiome is closely related to the

immune system, including innate and acquired immunity (10).

Furthermore, many research results show that interventions

targeting microbiota, especially intestinal microbes, have

achieved gratifying results in cancer immunotherapy (11, 12).

It is worth noting that the relationship between

microorganisms and cancer is complex, and there is also an

intricate network of factors causing tumor immunotherapy effect

by microorganisms (13). Here we review the relationship

between carcinogenic microbial infections, microbial disorders,

and carcinogenesis. The mechanism of the interaction between

microorganisms and immune cells is discussed. We also review

the latest reports on the impact of microorganisms on cancer

immunotherapy, and finally outlined a new direction for

improving the effect of tumor immunotherapy; that is an

application of microorganisms.
Carcinogenic microorganism
infections, microbial disorders,
and carcinogenesis

Bacterial and viral infections

Although many microorganisms reside in the human

epithelial barrier, only 12 (1 bacteria, 8 viruses and 3 parasites)

are currently considered human carcinogens by the

International Agency for Research on Cancer (IACR) (14).

The most well-known microorganisms associated with cancer

is Helicobacter pylori (H. pylori), which is considered the most

common pathogen of infection-related cancers (15). H. pylori is

a gram-negative bacterium that can selectively colonize the

gastric epithelium (16). About half of the world’s population is

infected by H. pylori (17). Colonization with it causes no

symptoms in humans; however, long-term colonization with

H. pylori significantly increases the risk of gastric cancer (18, 19).

The carcinogenic virulence factors of gastric cancer are closely

related to H. pylori virulence proteins such as CagA, VacA, and

CagPAI (20, 21). Besides the virulence factors, H. pylori-induced

oxidative stress, DNA damage, up-regulation of pro-

inflammatory cytokines, and activation of multiple signaling

pathways are all responsible for H. pylori-induced gastric cancer

(22). These have been discussed in several articles (22–24).

Notably, while H. pylori is the only bacterium currently

considered to be a human carcinogen, many other bacteria

have also been reported to be closely linked with cancer

development. Studies have shown that pks+ strains of
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Escherichia coli (E. coli) can synthesize colibactin to induce

DNA double-strand breaks (25). Besides, colibactin can not

only induce the emergence of senescent cells, which promote

tumor growth by the secretion of growth factors, but also change

the immune microenvironment through impairment of

antitumor T-cell response, leading to tumoral resistance to

immunotherapy (26, 27). With the development of organoid

technology, the mutation characteristics of colon cancer caused

by colibactin are being gradually clarified (25, 28, 29).

Enterotoxigenic Bacteroides fragilis toxin cleaves E-cadherin,

resulting in Wnt/b-catenin signaling and alter the gene

expression in colonic epithelial cells (14, 25, 30). These factors

are all potential factors leading to colorectal cancer (CRC) (31).

In addition, Propionibacterium acnes (P. acnes) stimulate

prostate cells to secrete interleukin (IL)-6 and IL-8, which may

be related to the occurrence and development of prostate

cancer (32).

The mechanisms by which tumor viruses promote

carcinogenesis are more diverse. For example, human

papillomavirus (HPV), Epstein-Barr virus (EBV), and Merkel

cell polyomavirus (MCPyV) cause tumors by encoding

oncogenic proteins that can regulate cell proliferation,

apoptosis, or blood vessels generated to promote the

occurrence of cancer (33). Other human tumor viruses, such

as hepatitis B virus (HBV) and hepatitis C virus (HCV), do not

express definitive oncogenic proteins, but cause tumorigenesis

primarily by inducing a chronic inflammatory state (34, 35).

Simultaneously, sustained inflammatory and immune responses

can lead to increased production of reactive oxygen species

(ROS) and reactive nitrogen species (RNS); thus inducing gene

mutations (36). The promotion of genomic instability by these

factors is one of the mechanisms by which viral infection

promotes cancer development.
Microbiota dysbiosis

Improvement in socioeconomic factors is often associated with

detrimental lifestyle changes and environmental exposures that are

major determinants of cancer (37). An interesting study shows that

for all cancers and a large number of cancer types, there is a strong

and positive correlation between cancer incidence and national

socioeconomic level in both men and women (37). There is a

growing recognition of another gene pool, the microbiome, that

needs to be considered when assessing the impact of environmental

factors on human health (38). Environmental and host-related

factors can drive dysbiosis, which is defined as changes in the

composition and function of the microbiota (39). There is

increasing evidence that dysbiosis of the microbiota is associated

with cancer development, and this relationship is particularly

evident with the gut microbiota. Human studies have shown that

compared with healthy individuals, patients with CRC have a less

diverse gut microbiome (40). Furthermore, at different CRC stages,
frontiersin.org

https://doi.org/10.3389/fimmu.2022.877939
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.877939
ranging from adenomatous polyps to early-stage cancer to

metastatic disease, the microbiome undergoes specific changes,

including a marked increase in the DNA and RNA levels of

Fusobacterium nucleatum (F. nucleatum) in human CRC (40–42).

In addition, the gut microbiota also affects normal intestinal stem

cells (ISCs). Dysbiosis induces aberrant programming of ISCs

through multiple mechanisms, leading to the transformation of

ISCs into cancer stem cells, which are thought to initiate CRC (43).

Dysregulation of gut microbes not only affects the occurrence and

development of CRC locally, but also affects the occurrence of

distant organ cancers. Themajority of liver cancers occur in patients

with cirrhosis, and these patients often exhibit leaky gut and

dysbiosis, which are thought to be the main cause of liver cancer

in patients with cirrhosis (44). Patients with hepatocellular

carcinoma (HCC) have been reported to have higher levels of E.

coli and other Gram-negative bacteria in the gut microbiota

compared with healthy individuals (45). On the other hand, gut

microbes in patients with HCC have reduced levels

of Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp

(46).. A new study shows that gut microbes can even influence the

production of male hormones to interfere with the development of

prostate cancer in castrated mice (47). In addition to the gut

microbiota, dysbiosis of other epithelium-distributed microbes is

also closely linked to carcinogenesis at their colonization sites.

Lactobacillus is the dominant genus of human vaginal

microbiota at reproductive age (48). The cervicovaginal

microbiota is dominated by Lactobacillus crispatus, Lactobacillus

iners, Lactobacillus gasseri, or Lactobacillus jensenii, which help to

maintain the pH of the vagina (49). Studies have reported that

women with or at risk of developing ovarian cancer have an

imbalance in the cervicovaginal microbiota, as manifested by a

reduced ratio of Lactobacillus to total vaginal microbes (50).

The causes of microbe disorders in the human body are

diverse, including diet, antibiotics, genetics, family transmission,

and other factors (39). Here, we mainly discuss the impact of

infection and inflammation on dysbiosis. As mentioned earlier,

H. pylori is the strongest risk factor identified for gastric cancer,

and studies have shown that H. pylori-negative individuals have

a highly diverse gastric microbiome (51). When 1833 bacterial

clones from 23 gastric biopsy samples were analyzed, sequencing

identified 128 phylotypes within 8 bacterial phyla. In contrast,

only 33 phylotypes were detected in three H. pylori-infected

populations (52). These data suggest that H. pylori colonization

greatly reduces the overall diversity of the gastric microbiota.

However, in many studies, the composition of microorganisms

varies greatly between individuals, and the mechanism of howH.

pylori colonization affects other microorganisms in the stomach

still needs to be further explored. F. nucleatum, an invasive and

pro-inflammatory bacterium known to cause oral and

gastrointestinal infections, has also been detected in tumors

from CRC patients (53–56). F. nucleatum is a potent

stimulator of the inflammatory cytokines, IL-6, IL-8, and

TNF-a, and regarding dysbiosis, F. nucleatum induces
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increased inflammation, becoming a pathogen (57). In CRC, F.

nucleatum not only activates the inflammatory response but also

promotes colorectal carcinogenesis through its FadA adhesin

regulation of E-cadherin/b-catenin signaling (58). Its regulation

of autophagy also promotes chemoresistance in CRC (59).
Intratumoral and local tumor microbes

With advances in sequencing technology, the presence of

microbes within tumors has been identified. Studies show that

each cancer subtype has a unique microbiome with specific

metabolic functions, and the intratumor bacteria are mostly

present in both cancer and immune cells (2, 60). Therefore, the

intratumoral microbiome plays a crucial role in tumor

development and treatment. Above, we mentioned various

microorganisms that are in direct contact with gastrointestinal

tumors, such as H. pylori, pks+ E. coli, and F. nucleatum, which

are involved in the occurrence and development of gastric or

CRC. Therefore, here we mainly focus on intratumoral and local

tumor microbes in other tumors. In a spontaneous murine

mammary tumor model, Fu et al. (61) found that the

depletion of intratumoral bacteria via tail vein injection of

mixed antibiotics that had no effect on the gut microbiota,

significantly reduced lung metastasis without affecting primary

tumor growth. Shi et al. (62) found that Bifidobacterium in the

gut can accumulate in the tumor microenvironment, and

intratumoral injection of very low doses of mixed antibiotics

reduced the efficacy of anti-CD47 immunotherapy in tumor-

bearing mice. Boesch et al. (63) found compared to healthy lung

tissue that the lung tissue of patients with non-small cell lung

cancer had a higher abundance of Gammaproteobacteria, which

correlates with low programmed death-ligand 1 (PD-L1)

expression and worse overall survival (OS) under immune

checkpoint inhibitor (ICI) therapy. Ma et al. (64) analyzed

microbial compositions of intratumor bacteria in prostate

cancer to determine the influence of the microbiome on

metastatic growth. They identified specific microbes that can

significantly deter the development of prostate cancer (Listeria

monocytogenes and Methylobacterium radiotolerans JCM 2831)

or contribute to cancer aggressiveness (Stackebrandtia

nassauensis DSM 44728 and Mycoplasma hyorhinis HUB-1). In

terms of the mechanisms by which intratumoral microorganisms

affect tumorprogression,DNAdamage, immunosuppression,drug

metabolism, andactivationofoncogenic pathwaysare still themain

mechanisms (65). Recently, an interesting study showed that fungi

within mouse pancreatic ductal adenocarcinoma (PDAC) tissue

can drive IL-33 secretion, further recruit and activate TH2 cells and

innate lymphoid cells 2 (ILC2) in tumor issue, ultimately leading to

the inhibition of anti-tumor immune response and promotion of

tumorprogression (66).Accordingly, intratumoral and local tumor

microbes remain a promising research direction for

tumor progression.
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In general, carcinogenic microbial infection and dysbiosis of

microbiota are closely related to tumorigenesis (Figure 1), and

intratumoral and local tumor microbes also have a significant

contribution to tumor progression. However, the causal

relationship among them still needs to be further studied.
Microbiota and cancer
immunotherapy

Cancer immunotherapy is an approach that harnesses the

immune system to fight cancer (67). Current immunotherapy

can be roughly divided into oncolytic virus therapies, cancer

vaccines, cytokine therapies, adoptive cell transfer (ACT),

and ICIs (68). Their common features are enhanced

immune responses, including innate immunity and/or

adaptive immunity to clear cancer cells. The microbiota and

its metabolites provide key signals for the induction,

development, and function of the host immune system (69,

70). Growing evidence suggests that the microbiome plays a key

role in cancer immunotherapy, and here we link the microbiome

and immunotherapy from three perspectives: adaptive

immunity, innate immunity, and metabolism.
Linking microbiota and cancer
immunotherapy from adaptive
immunity perspective

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4),

programmed cell death protein 1 (PD-1) and its ligand (PD-

L1) are important immune checkpoints and are also important
Frontiers in Immunology 04
factors in regulating T cell immune function (71). Inhibition of

these targets reactivates T cells more effectively, provides novel

treatments for a variety of cancers including melanoma, non-

small cell lung cancer (NSCLC), and significantly improves

patients survival (72). However, these therapies targeting

immune checkpoints are not effective in all patients.

Pembrolizumab, an anti-PD-1 monoclonal antibody, has been

shown in clinical studies to respond better in patients with lung

metastases compared to patients with liver metastases (62% vs.

22%) (73). Anti-CTLA-4 blockade using ipilimumab is the first

treatment to prolong OS in patients with advanced melanoma in

a randomized setting (74). In a study of 30 patients with

melanoma treated with ipilimumab, only 11 (37%) had their

disease under control (75). Therefore, how to improve the

patient’s response to monoclonal antibodies has become an

important issue. In recent years, increasing number of studies

have shown a significant impact of intestinal microbiota on

treatment with ICIs.

Gopalakrishnan et al. (76) divided 112 melanoma

patients receiving PD-1 immunotherapy into responder and

non-responder groups to determine significant differences in

the diversity and composition of the gut microbiome between

them. Faecalibacterium was more abundant in fecal microbiome

responders, while fecal microbiome non-responders had higher

abundance of Bacteroides thetaiotaomicron, E. coli, and

Anaerotruncus colihominis. More CD8+ T cells infiltration and

stronger systemic antitumor immune responses were observed

in the tumors of responders (76). Similar studies revealed that

antibiotics inhibited the beneficial effects of ICIs in patients with

advanced cancer and that patient response to ICIs was associated

with a relative abundance of Akkermansia muciniphila (Akk)

(12). Oral Akk supplementation restores the response to PD-1
FIGURE 1

Carcinogenic microorganism infections, microbial disorders, and carcinogenesis.Viruses, oncogenic microorganisms infections, and dysbiosis of
the microbiota have been implicated in the development of multiorgan cancers. H. pylori promotes gastric carcinogenesis through virulence
factors (CagPAI, CagA, and VacA etc.). F. nucleatum and pks+ E. coli can promote the development of colorectal cancer. Lactobacillus, a vagina-
dominant genus that helps regulate pH, is reduced in abundance in ovarian cancer patients. P. acnes induces prostate cancer by stimulating the
production of IL-6 and IL-8 in prostate cells, and hormones derived from microorganisms promote the development of prostate cancer.
Hepatitis virus induces hepatitis, and persistent inflammation and dysbiosis can affect the occurrence of liver cancer.
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blockade in an IL-12-dependent manner by increasing

the recruitment of CCR9+ CXCR3+ CD4+ T lymphocytes in

mouse tumor beds (12). Oral administration of Bifidobacterium

modulates the activation of mouse DC cells, improves the

effector function of CD8+ T cells, and enhances the efficacy of

PD-L1 (77). In studies of CTLA-4, similar results were observed

with PD-1. A study found that germ-free mice did not respond

to CTLA-4 blockade, the efficacy of CTIA-4 blockade was

affected by B. fragilis, B. thetaiotaomicron, and Burkholderiales,

and these microorganisms also affected IL-12-dependent Th1

immune responses (78).

A large proportion of cancer patients do not benefit from

ICIs therapy, and of those who do, some responders still relapse

after a period of response (79). Absence of a relevant number of

immunogenic tumor antigens, defects in the antigen processing

and presenting machinery, and insufficient T cell infiltration are

all mechanisms of the resistance (80). Interestingly, ICIs therapy

seems to be more effective in tumors with a high tumor

mutational burden (TMB), and the reason may be related to

the neoantigens produced by the tumor (81).The cross-reactivity

of T cells allows each T cell to recognize multiple antigens (82).

The human microbiome is a huge gene pool, and neoantigens

produced by tumors may be mimicked by peptides encoded by

the microbiota. When tumor neoantigens appear, memory T

cells can quickly provide protection (80, 83). Bessell et al. (84)

found that T cells targeting an epitope called SVYRYYGL (SVY),

expressed in the commensal bacterium, Bifidobacterium breve

(B. breve), cross-react with a model neoantigen, SIYRYYGL

(SIY). Moreover, B. Breve colonization can shape SVY-

reactive T cell receptor library, influence T cell response, and

then affect the growth of tumor that expresses neoantigens (84).

Balachandran et al. (85) found that neoantigen-specific

immunity gained during primary tumor outgrowth could be

associated with decreased relapse and prolonged survival. Taken

together, tumor antigen mimicry generated by the microbiota

and cross-reactivity of T cells may be beneficial for tumor

immunotherapy, and these are possible explanations for the

large differences in response to checkpoint inhibitors in cancer

patients (86).
Linking microbiota and cancer
immunotherapy from innate
immunity perspective

Cytotoxic T lymphocytes (CTL), especially CD8+ T

lymphocytes, are the main anti-tumor effector cells and the

main target cells for tumor immunotherapy (87). However,

innate immune cells also play an important role in cancer

immunotherapy. Current research shows that innate immunity

not only indirectly affects anti-tumor immune responses by

controlling T cells, but also directly and critically shapes the

tumor microenvironment (85), which is an important part of
Frontiers in Immunology 05
tumor immunity (88). Crosstalk between the microbiota and

innate immunity affects multiple aspects of body homeostasis,

and this complex bilateral interaction is critical for human health

(89). Therefore, some tumor immunotherapies targeting innate

immune cells have been developed, and the influence of the

microbiota on innate immune cells has also been confirmed to

be relevant to a variety of cancer immunotherapies.

Pattern recognition receptors (PRRs) are an important part

of innate immune defense, and they are expressed on a variety of

immune cells such as leukocytes and macrophages (90). PRRs

respond to a variety of bacterial and viral ligands, also known as

pattern-associated molecular pattern (PAMP), including

peptidoglycan (PGN), lipopolysaccharide (LPS), double-

stranded RNA, and CpG DNA (90, 91). PRRs genes, including

NOD1/2, NLRP3, and various toll-like receptor (TLR) genes,

recognize PAMPs as non-self-entities and trigger intracellular

signaling pathways that induce a variety of cytokines and

chemokines that help maintain host response against infection

(91, 92). Gram-negative bacterial cell wall component, LPS, is

recognized by TLR4, and activation of TLR4 promotes prostate

cancer development and induces nitric oxide and IL-6

production in CRC (93). TLR3 agonist, poly(I:C), was

developed to mimic infection by pathogens and boost immune

system activation to promote anti-cancer therapy (94). NOD2

receptor is an inflammatory pathway and microbiota modulator,

and studies demonstrate that loss of NOD2 activity led to more

severe colitis and a higher risk of adenoma and CRC in mouse

models (95). In conclusion, the rich innate immune

signaling pathways initiated by the microbiota through PRRs

are important in infection, inflammation, and cancer

development (96).

TME is a complex system that includes many different types

of cells, abnormal vasculature, and immunosuppressive

cytokines, and it is one of the important reasons why tumors

evade immune surveillance (88, 97). Mononuclear phagocytes

(MPs) (i.e., monocytes [Mo], macrophages [Macs], and

dendritic cells [DCs]) are the major innate immune cells and

important components of the TME (98). A recent study sheds

light on the effect of the microbiota on MPs in TME and

innovatively proposed that MPs in TME can be remodeled by

microorganisms to improve ICIs efficacy. Lam et al. (98)

demonstrated that microbiota-derived stimulator of interferon

gene (STING) agonists such as c-di-AMP induce type I

interferon (IFN-I) production by intratumoral Mo, which

regulates their skewing and natural killer (NK)-DC crosstalk.

The triggering of this mechanism can be achieved by a high-fiber

diet, which enriches Akkermansia muciniphila, further produces

c-di-AMP, and enhances the therapeutic effect of ICIs in

melanoma patients. Monocytes are more inclined to

differentiate into tumor-promoting Macs when the microbiota

is adversely disrupted (98). Another study also found that

Bifidobacterium colonized in the tumor microenvironment can

effectively stimulate STING signaling and increase cross-
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priming of DCs after anti-CD47 treatment (62). Overall, these

studies revealed possible mechanisms of the interaction between

the microbiota and innate immune cells, and we believe that

more specific mechanisms will be explored in the future.

ACT therapy is an immunotherapy method in which

autoimmune cells, especially T and NK cells, are isolated,

modified, amplified, and re-injected into a patient to eliminate

cancer cells (68, 99). Chimeric antigen receptor-T (CAR-T) cell

therapy is used to treat different malignant tumors including

lymphoma and leukemia, and it is one of the promising ACT

therapies (100). Like ICIs, CAR-T therapy is not effective in all

patients. The complete response rate in patients with aggressive

lymphoma is from 40% to 60%, and a large proportion of

patients will relapse (101). Recent studies have shown that oral

administration of vancomycin, an antibiotic mainly targeting

Gram-positive bacteria, can improve the efficacy of CAR-T

therapy in mice with cervical cancer. Mechanistically,

vancomycin treatment induces an increase in systemic

CD8a+ DCs, which sustains systemic adoptively transferred

antitumor T cells in an IL-12–dependent manner (102). NK

cells, as the name suggests, are non-specific tumor-killing cells in

innate immunity. They do not need any antigenic priming

before attacking the target, and can quickly kill tumor cells

through a variety of mechanisms (103, 104). Therefore, CAR-

NK has some significant advantages over CAR-T, such as

multiple mechanisms of activating cytotoxic activity and better

safety (103). Although there is no clear report on the association

between CAR-NK and the microbiome, existing studies have

shown that high-salt diet (HSD) increases the abundance of

Bifidobacteria and leads to increased intestinal permeability,

which further leads to Bifidobacteria colonization within

tumors, enhancing NK cell function and promoting tumor

regression (104). The use of mixed antibiotics has also been

found to promote glioma growth in mice, which is associated

with disruption of the gut microbiota and reduction of cytotoxic

NK cell subsets (105). These evidence give us reason to believe

that the microbiota may contribute to CAR-NK therapy.
Linking microbiota and cancer
immunotherapy from metabolism
perspective

The gut microbiota can ferment undigested food in the colon

and can also utilize endogenous compounds produced by the

host (70). Some of the diverse metabolites produced by

microorganisms can enter and interact with host cells, thereby

affecting immunity and disease risk (106). Multiple metabolites

produced by the microbiota have also been shown to be relevant

for tumor immunotherapy.

Short-chain fatty acids (SCFAs) are the main end-products

of indigestible carbohydrates fermented by gut microbiota,

mainly including formate, acetate, propionate, and butyrate
Frontiers in Immunology 06
(107). Among them, butyrate has been shown to have a

potential role in immune regulation, inhibiting nuclear factor

activation in macrophages and also inhibiting histone

deacetylation in acute myeloid leukemia, while exerting an

inhibitory effect on CRC (107, 108). Butyrate and propionate

inhibit LPS-induced expression of cytokines such as IL-6 and IL-

12p40, exhibiting strong anti-inflammatory effects (109). SCFAs

have been recognized to maintain intestinal homeostasis by

regulating different cells. SCFAs can enhance mucus

production by goblet cells, while promoting the production of

IL-22 by CD4+ T cells to maintain intestinal epithelial barrier

function (110, 111). A growing number of studies have shown

that the gut microbiota can influence tumor immunotherapy

through SCFAs. A new study shows that valeric acid and butyric

acid enhance the antitumor activity of CTL and CAR-T cells

through metabolic and epigenetic reprogramming. The

mechanism lies in the increased production of effector

molecules such as CD25, IFN-g, and TNF-a (112). Through

oral administration of pectin, inulin, and other polysaccharide

dietary fibers in mice, researchers have found that they can

significantly improve the therapeutic effect of PD-1 mAb.

All can increase the relative abundance of key symbiotic

microorganisms (such as Akkermansia and Lactobacillus) and

SCFAs, further promoting the invasion of CD8 + T cells into the

tumor (113, 114). In addition, SCFAs were found to increase the

memory potential of antigen-primed CD8+ T cells and trigger

their differentiation into stem cell-like Tcf1+PD-1+CD8+ T cells,

resulting in potent and long-term antitumor effects (113, 115). It

is worth mentioning that in addition to SCFAs, other lipid

metabolisms also have an impact on cancer immunotherapy,

such as glycerophospholipid metabolism and sphingolipid

metabolism (116). However, studies on the impact of lipid

metabolism on tumor immunotherapy still focus on effector T

cells (117).

Amino acid metabolism is also an important aspect of host

and microbial metabolism, which also plays an important role in

cancer immunity. Reacquiring durable immune memory is

challenging in the setting of severe T cell exhaustion, and

exhausted T cells exhibit distinct histone profiles and limit

tumor immunotherapy (118, 119). Studies have found that

tumor cells compete with CD8+T for methionine through the

high expression of methionine transporter, which reduces the

levels of methionine and methyl donor s-adenosylmethionine

(SAM) in T cells, and inhibition of transporters enhances

immune checkpoint-induced tumor immunity (118). Elevating

L-arginine levels induces global metabolic changes including a

shift from glycolysis to oxidative phosphorylation in activated

T cells, promoting the production of central memory-like cells

with antitumor activity in mice model (120). Moreover, blocking

glutamine metabolism not only inhibits tumor growth, but also

enhances the efficacy of ACT and PD-1 mAb. The mechanism

involves the blocking of glutamine metabolism, which inhibits

glucose metabolism through the tricarboxylic acid cycle and
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glycolysis-related pathways (121). L-tryptophan contributes

much to maintaining the balance between the gut microbiota

(122). Changes in the microbiota can also modulate tryptophan

and its metabolites (including kynurenine) and thus affect the

host immune system (123). Researchers found that ginseng

polysaccharides (GPs, a polysaccharide extracted from

ginseng) could significantly improve the therapeutic effect of

PD-1 mAb in tumor-bearing mice. Mechanically, oral

administration of GPs increases valeric acid produced by

microbial metabolism and decreases L-kynurenine and Kyn/

Trp ratios (124).

Notably, in addition to lipid metabolism and amino acid

metabolism, other metabolic pathways of the microorganism and

host also appear to have an impact on cancer immunotherapy. B.

pseudolongum, an intestinal Lactobacillus bacterium, enhances

immunotherapeutic responses by producing the metabolite,

inosine. Specifically, inosine promotes Th1 cell activation in a

context-dependent manner through T cell-specific A2A receptor

signaling for immune enhancement (125). Purine metabolism, a

downstreammetabolic pathway of inosine, has also been shown to

be involved in host immunity. A recent study demonstrated that

priming of the purine nuclease FAMI in DC inhibits CD4+ and

CD8+ T cell priming. DCs lacking FAMIN activity enhance

antigen-specific cytotoxicity, IFN-g secretion, and T cell

expansion (126). Rhein can increase Lactobacillus levels, alter

purine metabolism, and reduce uric acid levels in the gut and

further alleviate dextran sulfate sodium (DSS)-induced enteritis in

mice (127). These evidence suggest that microbe-mediated purine

metabolismseems tohavegreat researchprospects in inflammatory

to cancer transformation.
Applications of microorganisms:
A new strategy to improve
cancer immunotherapy

The impact of microorganisms on immunity is multi-

faceted, and microorganisms are increasingly being applied to

various immunotherapy to improve immunotherapy. Even the

microbes themselves are being used as new targets

for immunotherapy.
Efficacy improvement: Diet, probiotic
use, and fecal microbiota transplantation

Diet is a key factor in altering gut microbiota composition

and function (128). Appropriate intake of dietary fiber and

prebiotics has been recognized as a positive contribution to

human health, including weight control, cardiovascular

protection, blood sugar control, and brain health (129, 130).

Based on the profound impact of the microbiota on tumor
Frontiers in Immunology 07
immunotherapy, an increasing number of preclinical studies

have attempted to improve immunotherapy through dietary

interventions. Previous studies have found that oral

administration of inulin and pectin can enhance the efficacy of

ICIs, which is related to the change in intestinal flora and

metabolism (113, 114). We have described a specific

mechanism in the last section. Messaoudene et al. (131)

gavaged mice with polyphenol-rich berry camu-camu and

found that the berry significantly enhanced the efficacy of ICIs.

The main active component of this berry, castalagin, alters bile

acid metabolism in mice and binds to the surface of

Ruminococcus bromii, resulting in better antitumor activity of

PD-1 antibody. Spencer et al. (132) conducted a high-fiber

dietary intervention in patients receiving ICIs and found that

higher dietary fiber was associated with significantly improved

progression-free survival in patients on ICIs.

Probiotics are defined as live microorganisms that, when

ingested in sufficient amounts, confer a health benefit to the host

(133). Colonization with probiotics is beneficial to the host in the

long run. However, it is a long and arduous process from oral

probiotics to colonization of probiotics in the intestine, which is

affectedbyvariousaspects suchas colonization resistance, intestinal

mucosa, and mucus layer (134). van Zyl et al. provide a detailed

review of the in vivo kinetics of multiple probiotics following oral

administration. By comparing the number of cells in feces before

and after ingesting a particular strain, they found differences in

survival and persistence between genera and even between strains

(135). However, previous research has focused on the role of

probiotics in intestinal diseases, especially intestinal inflammation

and diarrhea (135, 136).With the rise in immunotherapy, in recent

years, improving immunotherapy through probiotic

supplementation has also become an emerging research

direction. A new study found that microbial exopolysaccharide

produced by Lactobacillus delbrueckii subsp. bulgaricus

OLL1073R-1 (EPS-R1) induced CCR6+ CD8+ T cells in mice and

humans. In mouse models of colon adenocarcinoma and breast

cancer, ingestion of EPS-R1 augmented the antitumor effects of

anti-CTLA-4 or anti-PD-1 mAb (137). Another study also found

that Clostridioides butyricum MIYAIRI 588 strain significantly

improved OS in patients with NSCLC treated with ICI therapy

(138). Colonization of Bifidobacterium pseudolongum,

Lactobacillus johnsonii, and Olsenella species in the gut enhances

the efficacy of CTLA-4, which is associated with CD4+ andCD8+ T

cell activation (125). High abundance of AKK appears to correlate

with better efficacy of ICIs in both humans and mice (12). As a

potential star probiotic, AKK has been proven to improve tumor

immunotherapy, as well as improve obesity, anti-diabetes, and

inhibit inflammation in mice (139). Interestingly, both live and

inactivated AKK had positive health implications (140, 141). The

adverse reactions of ICIs involve skin, gastrointestinal tract,

thyroid, heart, and other organ systems (142). Some microbiota

can also reduce the adverse reactions caused by ICIs. For example,

Bifidobacterium can alleviate colitis induced by ipilimumab
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(CTLA-4 inhibitor) treatment by inhibiting the release of pro-

inflammatory cytokines (143). However, it is worth mentioning

that the focus on a certain immunotherapy-enhancing probiotic

often occur after the use of ICIs, and precise probiotic

supplementation (such as bulgaricus OLL1073R-1) is still an

aspect that requires attention in basic research and preclinical

trials, as well as areas that need to be expanded.

Fecal microbiota transplantation (FMT) is defined as the

transplantation of gut microbiota from healthy donors to

diseased patients via an upper or lower gastrointestinal route to

restore gutmicrobial diversity (144). In humanmedicine, FMTwas

originally used to treat microbial-induced gastrointestinal diseases

such as Clostridioides difficile infection and ulcerative colitis (145–

147). FMT is now being used more widely, including for the

treatment of metabolic syndrome, diabetes, Crohn’s disease,

Parkinson’s disease, multiple sclerosis, psoriasis, anorexia

nervosa, or Alzheimer’s disease (148). The impact of FMT on the

microbiome has led researchers to see its potential in tumor

immunotherapy. Baruch et al. found that combining FMT (from

complete response donors) with reinduction anti-PD-1 therapy is

safe, feasible, and potentially effective in patients with refractory

metastatic melanoma (149).

In addition to ICIs, microbes have a facilitating role in other

immunotherapies. Combination of oral Wilms’ tumor 1 (WT1)

cancer vaccine and anti-PD-1 antibody treatment using a

Bifidobacterium vector has been shown to eliminate tumor

growth in a syngeneic mouse model of bladder cancer (150).

Vaccine delivery based on the antigenic action of the microbiota

may significantly inhibit tumor-associated microorganisms, such

as H. pylori, which possesses a variety of bacterial toxins and

proteins, and can serve as key candidates for H. pylori vaccine

construction (151). Following radiation therapy, intratumoral

injection of genetically attenuated Salmonella strains coated with

antigen-adsorbing cationic polymer nanoparticles resulted in

tumor antigen accumulation around the tumor (152). This

enhances crosstalk between antigens and DCs, and the use of

flagellated bacteria to transport tumor antigens around tumors to

enhance DC activation may open up new strategies for in situ

cancer vaccination (152). In cytokine therapy, beneficial

commensal microorganisms, AKK, combined with IL-2, can

enhance the antitumor efficacy of IL-2 and enhance immune

surveillance. Mechanistically, the antitumor immune response

elicited by AKK is partially mediated by Amuc, derived from the

outer membrane protein of AKK, through activating TLR2

signaling pathway (153).
A new target for immunotherapy: The
microbiome itself

Microbiota itself holds great promise as a new target for

immunotherapy. Montalban-Arques et al. (154) found that four

butyrate-producing Clostridioides species: Roseburia gutis,
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Eubacterium hallii, Faecalibacterium prausnitzii , and

Anaerostipes caccae (CC4) can prevent tumor development,

including CRC, melanoma, breast, and lung cancers. Specifically,

CC4 supplementation increases the frequency and activity of

tumor-infiltrating IFN-g+ CD8+ T cells (154). In addition, some

studies have found that Lactobacillus gallinarum can promote the

apoptosis of CRC cells by secreting a protective metabolite indole-

3-lactic acid, thereby preventing the occurrence of CRC (155).

Lactobacillus reuteri metabolizes to produce reuterin, which

inhibits CRC growth by inducing oxidative stress and inhibiting

protein translation (156). Surgical castration is one of the main

methods for the treatment of prostate cancer (157). However,

castration resistance after castration is an important reason for

the development of prostate cancer (158). Pernigoni et al. (47)

found that treatment with a combination of broad-spectrum

antibiotics slowed the development of prostate cancer in mice.

Ruminococci enriched in the gut microbiota of castration-resistant

mice have the abil ity to convert pregnenolone and

hydroxypregnenolone to downstream androgenic steroids

(dehydroepiandrosterone [DHEA] and testosterone).

In general , the modification and application of

microorganisms have great contribution to tumor

immunotherapy, including improving efficacy and reducing side

effects (Figure 2). At the same time, the microbiota, as a therapeutic

target, also plays an important role in tumor treatment and

prevention. However, microbial-targeted measures have largely

focused on gut microbes, while applications to colonization of

other epithelial barrier microbes remain to be expanded.
Conclusion

The microbiota directly or indirectly activates and regulates

the host’s immune system. Cancer immunotherapy, as a strategy

that relies on the autoimmune system to fight tumors, has been

proved to be related to the microbiota by several studies. In this

review, we summarize the relationship between oncogenic

microbial infection, microbiota dysbiosis, and carcinogenesis,

and describe the relevant mechanisms. We also link the

microbiota and tumor immunity from three perspectives

(innate immunity, adaptive immunity, and metabolism).

The impact of crosstalk between the microbiota and its

metabolites on innate immune cells (NK, macrophages,

and DCs) and effector T cells (especially CD8+T) on

immunotherapy is described. Finally, we summarize the role of

microbial modification and application in various tumor

immunotherapies (ICIs, ACT, cytokine therapy, and tumor

vaccines), including the use of microorganisms themselves as

targets to treat and prevent cancer.

It is worth noting that the interaction of microbiota,

immune system, and immunotherapy is complex; therefore,

some problems still persist regarding the participation of

microbiota in immunotherapy (4, 146). As discussed in a
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previous section, precise probiotic supplementation requires

expanded basic research and preclinical trials. Besides, existing

studies have shown that the use of probiotics in cancer

immunotherapy is not necessarily positive, and some

probiotics may hinder the effect of immunotherapy and may

even promote cancer progression (132, 159). Therefore, better

preparation should be done before conducting human trials to

study the effect of commercially available probiotics on cancer

immunotherapy. Although FMT may have an effect on ICIs,

the effect of FMT on the reinduction of anti–PD-1

immunotherapy in patients with refractory metastatic

melanoma is suboptimal, with only 30% of patients

benefiting from it in one clinical trial (149). Furthermore,

there are many side effects of FMT, such as abdominal

discomfort, cramping, bloating, diarrhea, or constipation,

which emphasizes higher FMT donor requirements (160). In

addition, the composition of the microbiota varies in different

individuals, and this is affected by multiple factors such as age,

diet, circadian rhythm, as well as medication exposure (161).

The uncertainty brought about by these factors also brings

challenges for microorganisms in tumor immunotherapy.

Therefore, future research may be able to combine multi-

omics analysis, such as carefully characterizing the biological

characteristics of microorganisms through genome sequencing

and biochemical/microbiological analyses, to develop

combinations of specific bacterial strains to treat various

diseases including tumors (162).

Collectively, our review elucidates some of the mechanisms

by which the microbiome contributes to cancer and cancer

immunotherapy. These mechanisms also provide novel

strategies for microbe-based cancer immunotherapy.
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FIGURE 2

Microbiome, immune system and cancer immunotherapy.Diet, probiotic use and FMT can alter gut microbiota. The microbiota can directly
influence innate and adaptive immunity or indirectly influence immune system through metabolism, which in turn affects the efficacy of
immunosuppressive checkpoint inhibitors, cytokine therapy, tumor vaccines, and adoptive cell transfer therapy.
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