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Flu, a viral infection caused by the influenza virus, is still a global public health concern with
potential to cause seasonal epidemics and pandemics. Vaccination is considered the
most effective protective strategy against the infection. However, given the high plasticity
of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists
are moving toward the development of universal vaccines. An important property of
universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune
response coverage toward different influenza subtypes. With the increasing number of
studies and mounting evidence on the safety and efficacy of recombinant influenza
vaccines (RIVs), they have been proposed as promising platforms for the development of
universal vaccines. This review highlights the current progress and advances in the
development of RIVs in the context of heterosubtypic immunity induction toward universal
vaccine production. In particular, this review discussed existing knowledge on influenza
and vaccine development, current hemagglutinin-based RIVs in the market and in the
pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2,
nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization
process. This review also provided discussion points and future perspectives in looking at
RIVs as potential universal vaccine candidates for influenza.

Keywords: heterosubtypic immunity, influenza, influenza antigen, recombinant vaccine, universal vaccine
INTRODUCTION

Flu is an acute respiratory infection caused by influenza viruses. Influenza viruses have extensive
genetic and antigenic diversity affecting pathogenicity, host range, and immune evasion, ultimately
causing seasonal epidemics and pandemics worldwide. The World Health Organization (WHO)
indicated that vaccination is the most effective prevention strategy against the infection (1).
However, conventional vaccination may induce suboptimal immunogenicity and narrow the
breadth of protection against the highly variable seasonal influenza strains. Therefore, influenza
vaccination programs require constant monitoring and characterization of circulating viral strains
for annual formulation. The emergence of COVID-19 pandemic in the early 2020 resulted in a
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decline in the overall reporting and positivity of influenza
infection (2). As the 2021 to 2022 influenza seasons co-
occurred with the pandemic, flu and COVID-19 co-infections
have been reported and may have increased hospitalizations with
significant mortality as reported in the United States of America
(USA) (3). Concurrently, the COVID-19 pandemic may have
affected the circulation of influenza virus in the community,
potentially resulting to populations with decreased natural
immunity against influenza viral strains or a decrease in viral
antigenic drift (4). Alarmingly, the US Centers for Disease
Control and Prevention (CDC) reported an increase in
influenza A(H2N2)—a strain associated with higher
hospitalization and deaths—in recent outbreaks in the USA,
highlighting that influenza season preparedness should not be
deprioritized (5). Several observational studies on patients, older
populations and healthcare workers associated influenza
vaccination with decreased COVID-19 infection rates,
hospitalizations, morbidities, and mortalities, suggesting
complementary protection by influenza vaccines against
COVID-19 (6–11). A recent systematic review revealed that
influenza vaccination increased in demand and acceptability
among vulnerable populations during the COVID-19
pandemic (12). Clinical trials involving concomitant
administration of trivalent and quadrivalent (including
recombinant) influenza vaccines and COVID-19 mRNA
vaccines have also showed no safety concerns or immune
interference (13, 14). These observations prompted the CDC to
recommend concurrent, sequential or in some cases,
simultaneous administration of influenza vaccine with
COVID-19 vaccine (15). Hence, despite the overall shift in the
epidemiology of influenza infections at the time of the pandemic,
research on influenza vaccination remains to be relevant.

Besides global monitoring programs for seasonal influenza,
the WHO also pushes for initiatives on pandemic influenza
preparedness, with vaccine development among its main
components (16). However, with the current widespread use of
egg-based methodologies in influenza vaccine production, recent
estimates indicate insufficient immunization preparedness
against another influenza pandemic (17). To circumvent these
limitations, researchers worldwide studied other vaccine
production strategies such as genetic recombination of
immunogenic target genes. Advancements in recombination
technologies and expression systems have facilitated the
development of improved recombinant influenza vaccines
(RIVs). RIVs are produced through expression of target
proteins, genetic material, or virions in cell-based platforms.
Unlike egg-based platforms, RIVs are considered safer, faster to
produce, and more efficient in immune induction (18). RIVs
have diversified into numerous types, including protein, DNA,
virus-like particles (VLPs), and vector-based, which are potential
universal vaccine candidates. Although there is no formal and
globally accepted definition for universal vaccines, they should
generally have at least 75% efficacy against symptomatic
infections, provide heterosubtypic protection against all viral
strains, induce durable and long-lasting immunity, and be safe
for all ages (19, 20). Current global research focuses on finding
Frontiers in Immunology | www.frontiersin.org 2
vaccine candidates that can induce heterosubtypic immunity and
protect individuals against different influenza subtypes (21).
RIVs are being explored to induce heterosubtypic immunity,
which points to their potential as universal vaccine candidates. A
recent review discussed updates on universal RIV development
based on targeting various influenza antigens (22). However,
detailed discussion on vaccine candidates in the clinical and
preclinical pipelines targeting both surface and internal antigens
(i.e., polymerase complex proteins) using different RIV platforms
to induce heterosubtypic immune response is still not available in
the current literature.

The objective of this review paper was to highlight current
progress and advancements in RIV development, focusing on the
properties of the different influenza targets, current production
platforms, and evidence of inducing heterosubtypic immunity.
Specifically, this review discussed important concepts on
influenza virus, infection, and vaccine development, and their
implications in RIVs. While the focus of most influenza vaccine
review articles is on HA-based vaccines, we highlighted in this
review the other potential influenza targets and RIV production
platforms to give a holistic overview on RIVs in the market and
in the research pipeline. This review contributed to the growing
knowledge on influenza vaccines through its detailed synthesis of
existing and currently investigated RIVs targeting different viral
proteins, including influenza mRNA vaccines.
INFLUENZA: THE VIRUS AND
THE INFECTION

The Influenza Virus: Diversity, Genetics,
and Proteins
Influenza viruses belong to Orthomyxoviridae, a family of
pleomorphic enveloped virions with segmented, linear, single-
stranded, negative-sense RNA genomes (23). There are currently
four known genera of influenza viruses (A, B, C, D) with different
host reservoirs and pathogenicity. Currently, influenza A is
classified based on surface glycoproteins with 18 hemagglutinin
(HA) and 11 neuraminidase (NA) subtypes, and influenza B with
Yamagata and Victoria lineages (20, 24). Influenza C and D are
classified into six (Taylor, Mississippi, Aichi, Yamagata,
Kanagawa and Sao Paulo) and three (OK, 660 and Japanese
lineages) lineages, respectively (25, 26). Although there are
numerous subtypes, only influenza A can cause pandemics
(e.g., H1N1 [“Spanish flu” of 1918], H2N2 [“Asian flu” of
1957], and H3N2 [“Hong Kong Flu” of 1968]) and annual
epidemics (23).

Influenza viruses have broad antigenic variations mainly due
to antigenic drift and shift. Antigenic drifts are minor but gradual
changes brought by error-prone RNA-dependent RNA
polymerase enzymes during genome replication which can
incur pathogenic advantages such as immune evasion and
decreased immunogenicity (20, 27). In contrast, antigenic shifts
are more sudden, involve reassortment of antigenic genes
producing novel influenza subtypes, and are often only
observed among influenza A viruses due to their broad host
May 2022 | Volume 13 | Article 878943
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distribution and co-occurrence with multiple strains (28–30).
The CDC characterizes thousands of influenza viruses yearly to
establish effective vaccine regimens against circulating strains
(31). Vaccine efficacy for influenza typically falls between 50% to
70%, but often wanes from mismatches due to wrong predictions
as well as antigenic drifts and shifts (32). Thus, developing
universal influenza vaccines remains challenging.

As shown in Figure 1, influenza A and B possess eight RNA
gene segments, while C and D possess only seven (33). In
influenza A, segments 1 and 2 encode polymerase basic
proteins 1 and 2 (PB1 and PB2) respectively, 3 for polymerase
acidic protein (PA), 4 for HA, 5 for nucleoprotein (NP), 6 for
NA, 7 for matrix proteins (M1 and M2), and 8 for nonstructural
proteins (NS1 and NS2) (34). Influenza B also has a similar
arrangement (35), although M2 is replaced by NB in segment 6
and BM2 in segment 7 (36). Alternate reading frames also allow
encoding of other proteins such as PB1-F2 of influenza A and
BM2 of influenza B (37, 38). Influenza C and D share similar
segments, except for HA and NA, which are replaced by
hemagglutinin-esterase fusion protein (HEF) in segment 4, and
M2 is found in segment 6 (39, 40). Influenza proteins differ in
synthesis site and localization. HA, NA, HEF, M2, and NB are
synthesized in membrane-bound ribosomes and become
embedded within viral envelopes as transmembrane proteins,
while PB1, PB2, PB1-F2, PA, NP, M1, NS1, and NS2 are
synthesized in cytosolic ribosomes and while most are destined
for nuclear localization, M1 and PB1-F2 localize underneath the
viral envelope and to the mitochondria, respectively (33, 41–44).

HA is a homotrimeric surface glycoprotein involved in viral
invasion, wherein each monomer consists of two subunits (HA1
and HA2) linked by disulfide bonds (45, 46). NA is a
homotetrameric surface glycoprotein important for viral release
and infection initiation (47). The glycosylation and stem length of
these antigens affect influenza pathogenicity, transmission,
emergence of new strains, and vaccine efficacy (39, 48, 49). M2 is
a tetrameric protein generally functioning as an ion channel with
differences across influenza genera (40). M1 is the most abundant
protein in influenza viruses and is capable of oligomerizing and
interact with NP-bound viral RNA segments or ribonucleoproteins
Frontiers in Immunology | www.frontiersin.org 3
(RNP) and cytoplasmic portions of HA and NA (50). PB1, PB2, and
PA constitute the heterotrimeric RNA polymerase complex that
associates with RNPs and forms nucleocapsids within virions that
are transported to the host nucleus for viral gene transcription,
synthesis, and expression (23, 28, 51). NP forms RNP complexes for
viral genome transcription and replication (52). It is capable of self-
oligomerization, which is crucial for its function (53) and is
generally conserved and thus a viable vaccine target (54). Finally,
NS1 is involved in viral genome expression and packaging, immune
deregulation, inhibition of host genome expression, and
pathogenesis (55), while NS2 exports viral RNPs to the
cytoplasm (23).

Influenza Infection: Pathogenesis and
Immune Response
Vaccine development requires understanding of viral pathogenesis
and host immune response. In humans, infection starts through
binding of viral glycoproteins to sialic acid residues on epithelial cell
surfaces of the upper and lower respiratory tracts (56) followed by
influenza replication, as shown in Figure 2. Replication involves
attachment of viruses to host cells, endocytosis, viral fusion, viral
genome expression, virion assembly, budding, and release.
Hutchinson (24) presented a detailed review of this process. Upon
successful viral infection and replication within two to five days,
patients can experience fever, colds, sore throat, congestion, chills,
fatigue, vomiting, diarrhea, and abdominal pain (57). Symptoms of
influenza infection are directly brought by the host’s immune
response to the virus. On one hand (innate response), sensing of
intracellular infection is accomplished by the detection of viral RNA
through the cell’s toll-like receptors (TLR3,7) and retinoic acid
inducible gene-I (RIG-I). This response causes the production of
type I interferons and proinflammatory cytokines (58). Meanwhile,
interaction of M2 with the NOD-like receptor family pyrin domain
containing 3 promotes production of interleukins that aid in the
adaptive immune response (59). Alveolar macrophages phagocytose
infected cells, while natural killer cells recognize and lyse infected
cells by interacting with cell-bound HA (60). Kreijtz et al.
summarized the innate immune responses to influenza (61). On
the other hand, the adaptive response involves production of
FIGURE 1 | Genome segments and gene arrangements of influenza virus subtypes. The A and B subtypes contain eight segments, while the C and D subtypes
contain only seven.
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antibodies specific to viral proteins on the virion or expressed on
infected cells. Krammer described this response in detail (62).
Antibody binding to HA globular heads on virions inhibits viral
attachment to host cells, while binding to HA on the infected host
cell surfaces mediates antibody-dependent cytotoxicity. Antibody
binding to NA on virions inhibits the protein’s enzymatic activity
limiting viral entry, while attachment to NA on infected cells
activates complement-mediated cell lysis pathways. Aside from
surface-expressed viral proteins, humoral immunity also targets
internal viral structures such as M1, M2, and NP, which may be
involved in different immune responses. Both cellular and humoral
immune responses contribute to influenza protection in humans.

To combat the host’s immune responses, influenza viruses
have escape mechanisms to innate and adaptive immunity, as
presented in Figure 2. For instance, antigenic changes to the HA
head help the virus escape humoral immunity or increases
affinity of the protein to its host cell receptor (63). As will be
Frontiers in Immunology | www.frontiersin.org 4
highlighted later in this review, this adaptation is also a major
hindrance to influenza vaccine development. Other viral proteins
like M2 bind to heat shock proteins (HSP) (e.g., HSP40) to
promote apoptosis of infected cells (64). Similarly, PB2 binds to
mitochondrial antiviral signaling proteins to inhibit type I
interferon production to promote cell apoptosis (65) or to
interferon promoter stimulators to inhibit cytokine production
(66). Lastly, binding of NS proteins to viral RNA and RNA-
dependent protein kinase masks TLR recognition and RIG-I
activity, limiting the innate immune response to the virus (67).

Influenza Infection Epidemiology
Determination of global influenza burden remains challenging due
to underreporting and lack of viral surveillance data worldwide.
Before the COVID-19 pandemic, estimates indicate morbidity of
about 50 million cases (68) and 650,000 deaths from influenza
infections annually (69). Seasonal influenza outbreaks occur during
FIGURE 2 | Life cycle, humoral immunity targets, and immune escape mechanisms of influenza viruses. The influenza infection starts with (A) the attachment of the
viral HA protein to terminal sialic acid residues of host cell receptors on mucosal membranes. The process is followed by (B) endocytosis of the virus, where an
endosome is formed inside host cells. The endosome is then acidified causing (C) fusion of the viral HA with the endosomal membrane and release of viral proteins
and genome into the host cytoplasm. The viral genome is transported to the host cell nucleus, where it is (D) transcribed to messenger RNAs and eventually
translated to viral proteins for progeny virions. (E) The viral proteins undergo post-translational modification at the host cell’s Golgi apparatus, eventually get
packaged into progeny virions, and are then (F) released by budding from the host cell membrane where viral surface proteins are expressed. Influenza proteins
expressed in different phases of the viral life cycle serve as targets for the humoral immune response (colored boxes). The most reported antibodies in influenza A are
those targeting the HA head and stalk and the NA expressed in the released virions. However, other antibodies targeting the host cell-bound HA head and stalk, NA,
M1, and M2 were also reported. The viral escape response from the host’s immune system was also described (white boxes), which include viral protein binding to
cellular enzymes, and modification of viral protein antigens.
May 2022 | Volume 13 | Article 878943
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winter in the Northern and Southern hemispheres (70). In the
tropics and subtropics, outbreaks occur variably all year round,
with significant rises during the second quarter (71). Most
outbreaks last up to three months, but viral persistence
mechanisms remain unknown. To circumvent the high incidence
of influenza infection and mortality, and to prevent occurrence of
another pandemic, the WHO created the Pandemic Influenza Risk
Management Guidance, which highlighted the need for continuous
development of vaccines and proper strategies for vaccine
procurement, deployment, and prioritization among the
population (16). As of 2019, researchers estimated production of
more than 1.4 billion doses of influenza vaccines, scaling up to 8
billion doses, should a pandemic happen (17). For surveillance, the
WHO created FluNet (https://www.who.int/tools/flunet/, accessed
on March 18, 2022), a database of influenza cases and subtypes
reported by national influenza centers and laboratories worldwide.
Pre-pandemic, the circulating strains of influenza virus include
influenza A(H1N1)pdm09, A (H3N2), B Victoria lineage and B
Yamagata lineage.

At the onset of the COVID-19 pandemic, the number of
specimens processed and reported worldwide for influenza
significantly decreased by more than 99% (72). Concurrently,
the positivity rate for influenza infection dropped from
approximately 29% in early February 2020, to less than 0.1% in
late May 2020. FromMay 2020 until June 2021, reports indicated
influenza B Victoria lineage and influenza A H3N2 as the
predominant global strains in circulation, and a potential
extinction of influenza B Yamagata lineage (73). Influenza A
(H1N1)pdm09 was sporadically reported. In late 2021 until early
2022, as the volume of specimens being tested for influenza virus
begins to go back to its pre-pandemic rate, the positivity remains
low at less than 6% (72). Influenza B Victoria lineage and
influenza A H3N2 remained to be the predominant strains.
These changes in the epidemiological dynamics of the
influenza virus during the pandemic may have direct impact in
the development of vaccines in the future. Some possibilities
include focusing on the vaccine production without influenza B
Yamagata lineage representation or increasing the influenza A
(H3N2) antigenic targets to two in quadrivalent vaccines (73).
EVOLUTION OF INFLUENZA VACCINES

History of Influenza Vaccines
Influenza epidemic outbreaks have been reported from the 1500s
until the 1900s worldwide. Among these outbreaks, historians
dubbed the Spanish influenza pandemic of 1918–1919 as the
worst medical holocaust in history (74). Influenza vaccine
development (Figure 3) began only after the pandemic (1932),
when scientists isolated influenza A from infected patients’ nasal
secretions (75). In subsequent years, scientists successfully
transmitted the virus to mice and embryonated chicken eggs. In
1936, independent researchers produced the first neutralizing
antibodies against the virus (76). In the same year, the first live
attenuated influenza A vaccine has been attempted in the Union of
Soviet Socialist Republics (USSR) using an egg-based production
Frontiers in Immunology | www.frontiersin.org 5
platform (77). Concurrently, scientists from the USA utilized
formalin-inactivated virus [Influenza A/PR8 (H1N1)] isolated and
purified from the allantoic fluid of chick embryos to produce the
first inactivated influenza virus vaccine (78). These milestones
highlight the development of monovalent vaccine against
influenza A. In 1940, an antigenically distinct influenza B virus
was discovered (79). In response to this discovery, the first bivalent
inactivated vaccine targeting both influenza A and B was produced
based on the previous production protocols, but using half of
allantoic fluids with influenza A/PR8 (H1N1) and half with
influenza B/Lee lineage (80). In 1945-1946, the vaccine was
licensed for public use. A few years later, influenza A(H2N2) was
discovered and resulted in a pandemic, replacing the previous
influenza A strain in the circulation. In response, a bivalent
inactivated vaccine targeting influenza A(H2N2) and B was
created. After another decade, the target strain for the
formulation was replaced with influenza A(H3N2) and B in
response to the new strain in circulation (80). In 1978, influenza
A(H1N1), an analog of the influenza A(H2N1), was discovered co-
circulating with A(H3N2). This situation paved the way for the
development of trivalent inactivated vaccines targeting the two co-
circulating influenza A and one influenza B (79). In 2009, a new
influenza A strain, A(H1N1)pdm09, replaced the circulating A
(H1N1) and caused another pandemic, leading to a change in the
influenza A(H1N1) target in vaccine formulation (80). From the
early 2000’s to 2010, different influenza B virus lineage
(predominantly B/Yamagata and B/Victoria) have been reported
from different parts of the world, with predominance of one lineage
among the other in certain regions. Since only one influenza B target
is included in the trivalent vaccine formulation, variabilities in
vaccine efficacies have been reported (80). Hence, in 2013, WHO
recommended a quadrivalent vaccine formulation for seasonal
influenza, to include two influenza A and B targets (81). For the
years 2021 to 2022, both US Food and Drug Administration (US
FDA) and the WHO recommended the formulation of trivalent
egg-based vaccines to include influenza A/Victoria/2570/2019
(H1N1) pdm09-, influenza A/Cambodia/e0826360/2020 (H3N2)-,
and influenza B/Washington/02/2019 (Victoria lineage)-like
viruses. For trivalent cell-based or recombinant vaccines, the
formulation should include influenza A/Wisconsin/588/2019
(H1N1) pdm09-, influenza A/Cambodia/e0826360/2020 (H3N2)-,
and influenza B/Washington/02/2019 (Victoria lineage)-like viruses
(82, 83). For both egg- and cell-based quadrivalent vaccines, the
influenza B/Phuket/3073/2013-like virus is recommended for
inclusion. In summary, the epidemiologic characteristics and
prevalence of influenza subtypes reported globally dictate the
direction of future vaccination strategies against the infection.

For most of its history, influenza vaccines were produced using
eggs, which are low-throughput and cannot be administered to
individuals with egg allergy. Advancement in vaccine production
led to the development of cell-based influenza vaccine platforms
and recombinant vaccines. Initially, in 1976, researchers introduced
genetic reassortment as a method for faster production of vaccines.
In this method, plasmids containing selected genes from different
influenza virus targets are expressed in cell lines (84). The resulting
reassortant is an attenuated, biologically active virus strongly
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expressing the viral antigen. From the initial reassortment method,
the principle of recombination has been considered to produce
RIVs that may target specific influenza antigens without the need to
produce biologically active virions. Ultimately, recombinant
vaccines can be used to overcome limitations of traditional
vaccine production and pave the way to target more conserved
and cross-reactive antigens toward heterosubtypic immunity (85).
RIVs are produced in egg-free environments and are faster to
manufacture, indicating ideal use in global emergencies such as
during pandemics (86). In 2012, a vaccine from a cell-cultured
influenza virus was introduced (79). Meanwhile, the first RIV was
approved by the US FDA in 2013 (87). In the recent years, two
additional RIVs have been approved in the global market for use in
seasonal flu immunization.
Types of Influenza Vaccines
Influenza vaccines are categorized based on their production
platforms (i.e., inactivated, live, recombinant) and expression
types (whole virus, split-virus, subunit). Table 1 summarizes the
characteristics of licensed influenza vaccines worldwide. The WHO
vaccine safety basics manual (88) and Sekiya et al. (89) thoroughly
discussed the properties and differences between the different
vaccine types. Inactivated WVVs use whole viruses in
immunization and may induce strong immune responses.
Meanwhile, inactivated SVVs and subunit vaccines are composed
of disrupted viruses or specific viral components, respectively, and
are less immunogenic. Repeated immunization and/or addition of
adjuvants to these vaccines are usually employed to improve their
immunogenicity. Live attenuated virus vaccines (LAVs) use
weakened, non-replicating viruses that may imitate an actual
influenza infection, thereby inducing more cellular and humoral
immune responses. Although the viruses used in these vaccines are
noninfectious, strong caution is still necessary when used in
immunocompromised populations or those with underdeveloped
immune systems. Lastly, RIVs are produced by recombination and
expression of viral proteins or virions in vectors propagated in cell
lines. The properties of RIVs are highlighted in the following
sections of this review.
Frontiers in Immunology | www.frontiersin.org 6
Most seasonal vaccines are multivalent, eliciting immune
responses against specific target variants of both influenza A and
B subtypes. Pandemic vaccines remain monovalent (with the
exception of the trivalent Adimflu-S®) and target specific viral
strains associated with previous pandemics (17). Despite
advancements in vaccine production, the development of
universal influenza vaccines remains slow (17). Recently, the CDC
described recombinant vaccine production as potentially faster,
more effective, and comparably safe (i.e., not induce allergic
reactions) (18). Supporting this, Buckland et al. described the
scale-up process for producing recombinant vaccines to be as
short as 38 days following current Good Manufacturing Practices,
compared with more than 20 weeks for other traditional vaccines
(90). In addition, a recently published clinical trial suggested that
recombinant vaccines induce a more robust humoral immune
response compared with other commercially available cell- and
egg-based vaccines (91). The next section highlights the current
progress in RIV development, with detailed focus on the existing
vaccines in the market and in the pipeline.
RECOMBINANT INFLUENZA VACCINES

Recombinant Vaccine Technology
Genetic recombination is the rearrangement of DNA sequences of
organisms often occurring naturally producing mutations and
subsequent population diversity across species or involved in
DNA repair mechanisms (92). Recombination can also be
introduced artificially as observed in 1972 when Paul Berg and
his team became the first to construct recombinant DNA by
inserting segments of lambda phage genes and the galactose
operon of Escherichia coli into simian virus 40 DNA (93).
Recombination provides solutions in food production,
pharmaceuticals, diagnostics, therapeutics, biofuel, bioremediation,
and, more recently, vaccine development (94). As seen in Figure 4,
recombinant vaccine development paved the way for the
production of subunit (e.g., protein, carbohydrate), conjugate, live
recombinant vector (bacterial, viral), DNA, VLP (95), and more
recently, mRNA vaccines (96).
FIGURE 3 | Historical timeline of influenza vaccine development.
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Recombinant subunit vaccines contain defined non-
replicating and noninfectious antigenic components of
pa thogens (97) . They can be based on pept ides ,
polysaccharides, nucleic acids, etc., which can elicit different
immune responses (95). Construction of protein-based RIVs
begins with sequences of target influenza antigens from various
subtypes (which can be modified during the recombination
process). These sequences are generated into complementary
DNA and inserted into plasmids containing an origin of
replication, promoter, and selection markers (98). Plasmids are
then placed in transfer vectors (e.g., baculovirus DNA) before
transfection in insect, mammalian, yeast, or bacterial cell cultures
to allow expression of protein antigens (97, 99–101). Antigens
expressed by eukaryotic cells can undergo post-translational
modifications and mimic natural infections but without disease
outcomes (98). Recombinant proteins produced are then purified
prior to immunization. DNA-based RIVs are also subunit
vaccines and are safer than LAVs (102). Construction of DNA-
based RIVs also requires plasmids containing influenza antigens,
which are propagated in cloning vectors or through PCR,
followed by purification prior to administration (103, 104).
Their delivery may require methods such as electroporation
(105), gene guns (98), microneedle arrays (106) and cell-
penetrating peptides (107). They are also vulnerable to
enzymatic attacks, which can be mitigated by liposome
encapsulation or dendrimer binding (95). VLP-based RIVs are
also subunit vaccines but mimic virion arrangements wherein
antigens are encased in structural viral proteins with or without
an envelope (95). They are most often produced using
Frontiers in Immunology | www.frontiersin.org 7
baculovirus vectors in insect-cell expression systems (108).
VLPs require the inclusion of influenza structural genes
together with the antigenic targets and self-assembly of VLP
structures prior to collection and purification (109). VLPs
require extensive downstream processing and purification to
ensure safety, stability, potency, and consistency, which are
potential production bottlenecks (110, 111). Finally, vector-
based RIVs are considered as the most immunogenic, eliciting
humoral, cellular, mucosal, or systemic immune responses (112).
While LAV risk reversion to wild-type and increase in virulence,
recombinant vectors are safer, but may undergo pre-host (during
manufacture) and within-host evolution, losing inserted
heterologous antigens and having decreased immunogenicity
(113). Construction of recombinant vectors requires
transfection of plasmids carrying influenza antigenic targets
into vectors (can be viral [e.g., modified vaccinia virus Ankara
[MVA], adenovirus, norovirus] or bacteria [e.g., Lactococcus,
Salmonella]), and expression in propagating cells before
purification (114–118).

With the advent of nucleic acid-based vaccine development
against COVID-19, major vaccine companies are now also
moving toward influenza mRNA vaccine production. In the
context of COVID-19, Yadav et al. classified mRNA vaccines
as recombinant (96). Hence, in this review, we will also tackle
some current advances in influenza mRNA vaccine development.
Generally, mRNA vaccine is produced by in vitro transcription of
mRNA from a DNA sequence corresponding to the target viral
protein. The resulting mRNA product typically resembles
mature eukaryotic mRNA (i.e., with 5’ cap, flanking
TABLE 1 | General characteristics and notable examples of influenza vaccines licensed for use against seasonal or pandemic influenza, categorized based on their type
and production platform.

Vaccine Type Production Platform (Notable Vaccines) Limitations1

Inactivated, whole virus Egg-based (e.g., Daronrix®, 3Fluart®) - May have strong immunogenicity, but may cause infection symptoms

- Not suitable for people with egg allergies (for the egg-based vaccines)Cell-based (e.g., Celvapan®, Vepacel®)

Inactivated, split virus Egg-based (e.g., AdimFlu®, Afluria®, Arepanrix®,
Fluarix®, FluLaval®, Fluzone®)

- May induce only moderate immune responses in previously vaccinated
or infected individuals

- Requires frequent updating of target strains due to the highly specific
nature of the immune response

- Not suitable for people with allergies to egg (for the egg-based
vaccines)

Cell-based (e.g., Preflucel®)

Inactivated, subunit virus Egg-based (e.g., Agrippal®, Fluvirin®, Influvac®) - May have low immunogenicity

- May require adjuvants to increase immunogenicity

- May not form immunological memory from the antigen

- Not suitable for people with allergies to egg (for the egg-based
vaccines)

Cell-based (e.g., Celtura®, Flucelvax®, Grippol®)

Live, attenuated virus Egg-based (e.g., CAIV-T®, Fluenz®, FluInsure®,
Flumist®, Nasovac®, Ultravac®)

- May induce harm to immunocompromised populations or those with
underdeveloped immune systems

- More susceptible to immunization errors, contamination, and reversion
to pathogenic form

- Not suitable for people with allergies to egg (for the egg-based
vaccines)

Recombinant Cell-based (e.g., Cadiflu-S®, FluBlok®, Supemtek®) - Production methods may be costly and still under investigation

- Not suitable for children and people not primed with previous infection
1Based on the WHO (88) and Sekiya et al. (89).
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untranslated regions, open reading frame for the protein, and
poly(A) tail) that can be readily translated by the host’s
translational machinery (119). Unlike other recombination
platforms that still rely on cell-based expression of the proteins
or nucleic acids, the entire process of manufacturing mRNA can
be done synthetically in production systems, making the process
easier, faster and with high fidelity (120). As with DNA-based
vaccines, mRNA vaccines typically require effective delivery
methods to induce immune reaction. These methods include
electroporation, complexation with cations (peptides,
nanoemulsions, polyethylene glycol-lipid, polyethylenimine
polymer, polysaccahrides), or delivery in lipid nanoparticles
(119, 121).
Frontiers in Immunology | www.frontiersin.org 8
HA-Based Recombinant Vaccines
HA Head-Based Recombinant Vaccines
Currently, only HA-based RIVs have been approved for use by
global regulatory bodies. Aside from being the most dominant
surface protein in influenza viruses, HA is also beneficial in
vaccine development because of its inherent immunogenicity
and bulky configuration, making it readily accessible to
neu t r a l i z i n g an t i b od i e s ( 1 22 ) . The HA head i s
immunodominant, conferring a strain-specific immune
response to vaccinated hosts (62). Antibodies produced against
the HA head have variable activity against different HA subtypes,
as summarized by Hashem (123). Typically, antibodies produced
from HA heads exhibit hemagglutination inhibition activity
FIGURE 4 | General construction process of recombinant protein, DNA, VLP, vector-based, and mRNA influenza vaccines.
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(124); this reaction has become a major technique in evaluating
vaccine efficacy. Other common antibody responses to the HA
head include prevention of viral attachment or receptor binding
(125, 126), repression of viral release (126, 127), and increased
avidity (128). However, a major downside of HA is its inherent
plasticity due to antigenic drift (129). This makes antibodies
produced from HA-based vaccines specific to only certain
subtypes of influenza.

Flublok® was the first HA-based RIV approved in the USA,
manufactured by Sanofi Pasteur (France). Flublok® is a
quadrivalent vaccine recommended for administration among
18–49-year-old populations (130). It is produced through the
insertion of HA genes into the Autographa californica nuclear
polyhedrosis virus, a baculovirus vector, which is used to infect
the expressSF+® insect cell line for mass production (131). Phase
II clinical trials indicated 135 µg as the vaccine’s ideal dose, with
generally accepted safety profiles among vaccinated populations
(132, 133). In a phase III placebo-controlled trial, Flublok® was
found to produce high levels of HA antibodies among vaccinated
individuals of 18–49 years of age (134). Meanwhile, in two phase
III trials with Fluzone® comparator, researchers found that
Flublok® produced non-inferior HA antibody titers among the
elderly (65 years old and above), with seroconversion favoring
HA proteins of influenza A over B (135, 136). A separate phase
III trial added that among 18–49-year-old vaccinated
populations, high seroconversion rates against recombinant
HA proteins from influenza A and B (Yamagata lineage), but
not influenza B (Victoria lineage), can be observed (137).
Researchers also found that Flublok® induced a superior CD4+

T-cell response compared with other commercial split-virus and
subunit vaccines, presenting initial evidence of cellular immune
response elicited by the RIV (138). With promising findings on
its immunogenicity and safety, Flublok® received its first
approval from the US FDA for its trivalent formulation in
January 2013 (139) and its quadrivalent form in October
2016 (140).

Sanofi Pasteur also manufactures Supemtek®, the only HA-
based RIV approved by the European Medicines Agency (EMA)
for administration to adult patients (141). Supemtek® has the
same formulation and production process as Flublok®; hence,
clinical trials supporting the efficacy and safety of Flublok® are
the same for Supemtek®. Both Flublok® and Supemtek® were
indicated as safe for populations with egg allergies (130, 141).
Meanwhile, in India, CPL Biologicals manufactured the
country’s first recombinant VLP influenza vaccine called
Cadiflu-S®, first approved by the Drugs Controller General of
India in November 2016 (142). Cadiflu-S® is produced through
expression of recombinant HA, NA, and M1 influenza proteins
using a non-specified baculovirus vector in Sf9 insect cell lines
(142, 143). Although there is no published literature on its
efficacy and safety, a documented phase III trial concluded that
it induced acceptable HA antibody titers in patients, with a more
than 70% seroconversion rate (143). Besides Flublok®,
Supemtek®, and Cadiflu-S®, other HA-based recombinant
vaccines are now in the global vaccine pipeline undergoing
clinical trials (Table 2).
Frontiers in Immunology | www.frontiersin.org 9
Panblok is a vaccine composed of full-length HA from
influenza A H7 manufactured by Vaxine Pty (Australia).
Similar to Flublok® and Supemtek®, Panblok is produced in
expressSF+® insect cell line infected with HA-expressing
Autographa californica nuclear polyhedrosis virus (144). In its
phase I/II clinical trial, vaccination with an oil-in-water
glucopyranosyl adjuvant induced acceptable seroconversion in
populations aged less than 65 years, with only mild adverse
effects (144). In a more recent phase II clinical trial
(NCT03283319), Panblok was adjuvanted with AS03 (a-
tocopherol-, polysorbate-80-, and squalene-based) or MF59
(squalene-based). No results have been published yet for this
vacc ine , but regu lar updates are be ing uploaded
(clinicaltrials.gov, accessed on November 10, 2021). The use of
adjuvants was considered to increase the immunogenicity of H7,
known to induce a weak response (145).

M-001 is a multimeric, recombinant, 50-kDa polypeptide
vaccine with nine conserved HA, NP, and M1 epitopes reactive
to B and T cells conferring both cellular and humoral immunity.
M-001 was primarily produced in E. coli via fermentation and
subsequent purification (146). In 2014, manufacturers claim that
M-001 production takes only 6–8 weeks, and thus it can meet
demands, especially in influenza pandemics (147). Developed by
BiondVax Pharmaceuticals (Israel) as a universal influenza
vaccine, it recently completed its phase III clinical trial. In its
initial clinical trial phases, researchers found M-001 to induce
acceptable immune response and safety profiles among the
elderly (147). Its recently concluded phase II clinical trial
(NCT03058692) showed significant differences in CD4+ and
CD8+ T-cell responses in the M-001 plus seasonal vaccine
group compared with the placebo plus seasonal vaccine group.
Meanwhile, its phase III clinical trial (NCT03450915) indicated
significant protection against influenza in two different seasons,
with an acceptable safety profile. No formal publications for the
phase II and III clinical trials are available yet, but their results
can be viewed in clinicaltrials.gov (clinicaltrials.gov, accessed on
November 10, 2021). The phase III clinical trial for M-001 was
declared unsuccessful due to its failure to meet the target
endpoints (https://www.biondvax.com/clinical-trials, accessed
on March 23, 2022).

VAX125 is an innovative recombinant protein fusing flagellin
type 2 from Salmonella and a TLR5 ligand to the globular HA
head of influenza A H1N1 (148). Similar to M-001, this vaccine
was produced through bacterial fermentation, which is more
efficient and inexpensive compared with traditional expression
systems (148). In its preliminary phase clinical trial, researchers
found that VAX125 is generally safe among populations aged
18–49 years old, producing high immunogenic reactions at 1–3-
µg doses (149). In a follow-up phase II trial, researchers indicated
that a 5-µg dose is also safe and effective in geriatric populations
(65 years old and above), inducing up to a 12-fold increase in HA
antibodies (148). Production and testing of VAX-125 has already
been discontinued (https://adisinsight.springer.com/drugs/
800029053, accessed on March 23, 2022) while there are
currently no insights on the status of other vaccine candidates,
such as VAX2012Q, VAX128, VAX161B, VAX161C, from its
May 2022 | Volume 13 | Article 878943
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TABLE 2 | Clinical trials for HA-based recombinant vaccines registered in clinicaltrials.gov for the last decade as of April 14, 2022.

Clinical Trial
Identifier

Vaccine Description Trial
Phase*

Trial Site, Status (Sponsor/
Manufacturer)

Recombinant HA
NCT03450915 Recombinant vaccine with nine multimeric conserved antigenic sites from influenza A and B (M-001) Phase III Poland, Completed- 2021

(BiondVax Pharmaceuticals)
NCT01767896 Recombinant cell culture-derived HA vaccine against seasonal influenza (ASP7374) Phase III Japan, Completed- 2013 (UMN

Pharma)
NCT01195038 Recombinant H5N1 vaccine, booster shot Phase II Japan, Completed- 2011 (UMN

Pharma)
NCT03283319 Recombinant HA vaccine based on full-length H7 (PanBlok H7) Phase II Australia, Completed- 2020 (Vaxine

Pty)
NCT00966238 Recombinant fusion protein with Salmonella typhimurium flagellin, TLR ligand fused to HA head based

on influenza A H1 Solomon Islands (VAX125)
Phase II USA, Completed- 2014 (VacInnate

Corp)
NCT01450579 Recombinant HA-based vaccine (ASP7373) Phase II Japan, Completed- 2017 (UMN

Pharma)
NCT03814720 Recombinant HA stem-based vaccine with ferritin protein from Helicobacter pylori (VRCFLUNPF099-

00-VP)
Phase I USA, Completed- 2021 (NIAID)1

NCT04451954 Adjuvanted and non-adjuvanted recombinant influenza vaccine with two strains of H3 and 2018–2019
NH H3 strain

Phase I USA, Completed- 2021 (Sanofi
Pasteur)

NCT02015494 Quadrivalent recombinant HA-based vaccine (VAX2012Q) Phase I USA, Unknown (VaxInnate Corp)
NCT02206464 Recombinant DNA plasmid based on H7 (VRC-FLUDNA071-00-VP) Phase I USA, Completed- 2019 (NIAID)
NCT02335164 Recombinant H5 vaccine (AdVax) Phase I Australia, Completed- 2019 (Vaxine

Pty)
NCT03789539 Recombinant vaccine with HBc-4M2eh (Uniflu) Phase I Russia, Unknown (VA Pharma)
NCT00776711 Recombinant DNA plasmid based on H5 (VRC-AViDNA036-00-VP) Phase I USA, Completed- 2017 (NIAID)
NCT01172054 Inactivated vaccine with recombinant H1N1 (VAX128) Phase I USA, Completed- 2012 (VaxInnate

Corp)
NCT01250795 Recombinant HA vaccine based on H5N1 (influenza A/Indonesia/05/2005) (HAI-05) Phase I USA, Completed- 2016 (Fraunhofer)
NCT01560793 Recombinant inactivated subunit vaccine based on H5N1 (VAX161B) Phase I USA, Completed- 2014 (VacInnate

Corp)
NCT01658800 Recombinant vaccine based on H5N1 (VAX161C) Phase I USA, Completed- 2015 (VacInnate

Corp)
NCT01177202 Recombinant fusion protein vaccine based on influenza A/California/04/09 (H1N1) (HAC1) Phase I USA, Completed- 2016 (Farunhofer)
NCT00858611 Recombinant DNA trivalent vaccine, prime-boost (VRC-FLUDNA047-00-VP) Phase I USA, Completed- 2017 (NIAID)

Recombinant VLP
NCT04120194 Recombinant quadrivalent nanoparticle influenza vaccine composed of four influenza strains from

2019–2020 Northern Hemisphere influenza season adjuvanted with Matrix-M (NanoFlu)
Phase III USA, Ongoing (Novavax)

NCT03301051 Quadrivalent, plant-derived virus-like particle vaccine composed of H1, H3, and two B HA proteins Phase III USA, Completed- 2020 (Medicago)
NCT04034290 Recombinant pseudo-adenoviral vaccine based on influenza A (GamFluVac) Phase II Russia, Completed- 2020 (GRIEM)2

NCT02918006 Recombinant adenovirus vector vaccine expressing HA adjuvanted with TLR3 (VXA-A1.1) Phase II USA, Completed- 2018 (Vaxart)
NCT04622592 Adjuvanted quadrivalent virus-like particle vaccine composed of H1, H3, and two B HA proteins Phase I/II USA, Ongoing (Medicago)

Reassortant LAV
NCT00853255 Live attenuated virus with avian influenza H7N3 (6–2) AA ca (A/chicken/British Columbia/CN-6/2004 ×

A/Ann Arbor/6/60 cold adapted)
Phase I USA, Completed- 2013 (NIAID)

NCT01175122 Live attenuated recombinant vaccine based on H2N3 (6–2) AA ca (A/Swine/Missouri/4296424/2006
(H2N3) × A/Ann Arbor/6/60 cold adapted)

Phase I USA, Completed- 2013 (NIAID)

NCT02957656 Live attenuated recombinant vaccine based on H7N9 (6–2) AA ca (A/Anhui/1/2013 (H7N9) × A/Ann
Arbor/6/60 cold adapted)

Phase I USA, Completed- 2018 (NIAID)

NCT00922259 Live attenuated recombinant vaccine based on H7N7 (6–2) AA ca (A/Netherlands/219/03 (H7N7) × A/
Ann Arbor/6/60 cold adapted)

Phase I USA, Completed- 2013 (NIAID)

NCT04650971 Recombinant attenuated vaccine (nasal/aerosol) based on influenza A/H1N1pdm09 virus (UniFluVec) Phase I Russia, Completed- 2020
(Pharmenterprises Biotech)

NCT01006798 Recombinant live, competent adenovirus type 4 with H5N1 influenza Vietnam 1194 HA (Ad4-H5-Vtn) Phase I USA, Completed- 2020 (Emergent
Biosolutions)

NCT03300050 Recombinant LAV with chimeric H8 head, H1 stalk and N1 (cH8/1N1 LAIV) Phase I USA, Completed- 2021 (The
Emmes Company/GlaxoSmithKlein)

NCT03553940 Live intranasal vaccine with H3N2 M2SR (A/H3N2/Bris 10) Phase I USA, Completed- 2021 (NIAID)

Recombinant mRNA
NCT04956575 mRNA-1010, quadrivalent, HA/NA-based (A/H1N1, H3N1, B/Yamagata and B/Victoria) Phase I/II USA, Ongoing (ModernaTX)
Unregistered mRNA-5400/5401, monovalent, HA-based (A/H3N2), complexed with lipid nanoparticles Phase I USA, Unknown (Sanofi/Translate

Bio)
NCT05052697 PF-07252220, bivalent, HA-based (A/H1N1, B/Yamagata) Phase I USA, Ongoing (Pfizer/BioNTech)

(Continued)
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manufacturer (VaxInnate Corp). Meanwhile, AS7374 and
AS7373 are recombinant HA vaccines in their late clinical trial
stages that target seasonal and pandemic influenza, respectively.
Unfortunately, their manufacturer, UMN Pharma, and its
partner company terminated their vaccination agreement,
resulting in the withdrawal of marketing approval application
(i.e. last step before releasing the vaccine to the market) for
AS7374 and discontinuation of AS7373 production (150).

Another promising recombinant HA-based vaccine is
Nanoflu, produced by Novavax Inc. (USA). Nanoflu is a
quadrivalent nanoparticle-based vaccine with a proprietary
Matrix-M™ adjuvant. It is produced by high-level expression
of HA in Spodoptera frugiperda insect cells (Sf9) using the A.
californica nuclear polyhedrosis virus as the expression vector
(151). The resulting purified vaccine is then combined with
Matrix-M™. Matrix M™ is derived from Quillaja plants and
composed of saponin with cholesterol and phosphatidylcholine
arranged into a cage-like nanoparticle. The combination was
previously shown to activate innate immune cells and enhance
antigen presentation and delivery (152). In the vaccine’s phase I/
II clinical trial (trivalent form), researchers found similar safety
and greater humoral immune response at a 60 µg dose of
Nanoflu compared with another high-dose commercial vaccine
(153). In their recently published phase II clinical trial, Shinde
et al. found a significant increase in humoral and cellular
homologous immune responses induced by Nanoflu compared
to another commercial high-dose inactivated vaccine. They also
found acceptable tolerance to adjuvanted and non-adjuvanted
forms of Nanoflu (154). A phase III clinical trial also reported
mild to moderate adverse reactions from the vaccine (155).
Portnoff et al. found that the vaccine induced production of
broadly neutralizing antibodies against conserved regions in the
HA head (specifically H3), indicating potential heterosubtypic
immunity (156). Overall, the vaccine trials are considered
successful and Nanoflu is expected to undergo late-stage
clinical trials (https://ir.novavax.com, accessed on March
23, 2022).

Another quadrivalent VLP RIV is the plant-derived MT-2271
produced by Medicago, Canada. MT-2271 contains HA of
influenza A H1 and H3, and two influenza B subtypes. Vaccine
production relies on the expression of influenza HA genes in
Agrobacterium tumefaciens infected with 2X35S/CPMV-HT
expression vector (157). The vaccine is then mass-produced in
vacuum-infiltrated Nicotiana benthamiana via transient
expression (158). Unlike traditional animal cell-based vaccine
production, D’Aoust and colleagues described this plant-based
Frontiers in Immunology | www.frontiersin.org 11
method to be more efficacious (producing high antigenic
property), high yield (up to 1,500 doses per kilogram of
infiltrated leaves), and highly scalable for pandemic response
(vaccine can be produced within three weeks after the release of
viral genetic sequences) (159). In a phase III clinical trial,
researchers reported that a 30 µg vaccine dose is safe, induced
homologous and heterologous humoral and cellular immune
responses in 18–49-year-old populations, and provided a lower
but consistent response in populations above 50 years old (160).
Its phase III clinical trial was completed in 2020; Ward et al.
described the vaccine to be safe and to induce significant
homologous humoral response with acceptable lot-to-lot
consistency for all viral strains used (161). Despite these
results, the trial was not able to achieve its primary endpoint
for adult population, and Medicago is still re-evaluating the
licensing of the vaccine (https://www.mt-pharma.co.jp/e/news/
assets/pdf/e_MTPC200428.pdf, accessed on March 23, 2022).

GamFluVac is a pseudo-adenoviral RIV produced via a
method patented by NT Pharma (China). Non-replicating
nanoparticles are created using the human adenovirus type 5
vector expressing HA from both influenza A and B and mixed
with an immunostimulating acidic peptidoglycan (162). The
vaccine is then administered intranasally. Adenovirus was used
given its strong immunogenicity, ability to penetrate the human
mucosal epithelia (intranasal route), high propagation yield,
stability (can be lyophilized and refrigerated), noninfectivity,
and manipulability in order to create recombinant forms (163).
One phase I and phase II clinical trials related to this vaccine are
completed (NCT03651544, NCT04034290; clinicaltrials.gov,
accessed on November 10, 2021). Unfortunately, no published
results have been released yet. The current status of production
and licensing of GamFluVac is not declared in the literature.

VXA-A1.1 is an oral flu vaccine developed by Vaxart, USA. It
is produced by expressing the viral proteins in HEK293 cells
through a BJ5183-AD1 bacterial vector (164). The resulting
recombinant protein is adjuvanted with a TLR3 agonist (165).
In a phase I clinical trial, the vaccine was generally tolerable to
immunized participants, with significant increase in
hemagglutination inhibition and microneutralization titers
(166). These findings were corroborated by a phase II viral
challenge trial, highlighting that the vaccine is effective in
inducing mucosal and humoral responses, with comparable
efficacy to a commercially available quadrivalent vaccine
against influenza A H1N1 (165). The study also highlighted
the advantages of oral vaccination, including induction of
mucosal immune response, maximal immunogenicity within
TABLE 2 | Continued

Clinical Trial
Identifier

Vaccine Description Trial
Phase*

Trial Site, Status (Sponsor/
Manufacturer)

NCT03076385 VAL-506440, monovalent, HA-based (A/H10N8) Phase I USA, Completed- 2018
(ModernaTX)

NCT03345043 VAL-339851, monovalent, HA-based (A/H7N9) Phase I USA, Completed- 2021
(ModernaTX)
May
*For vaccines with multiple trials, only the latest phase trials are presented.
1National Institute of Allergy and Infectious Diseases, USA.
2Gamaleya Research Institute of Epidemiology and Microbiology, Russian Federation.
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the intestines, high uptake, and less invasive administration. An
extended analysis of the trial showed that the oral vaccine also
induced significant cellular immune responses, indicating
potential protection from influenza viral shedding (167).
Overall, the results of the trials were considered a success and
more studies are expected to be done (https://investors.vaxart.
com/, accessed on March 23, 2022). A vaccine similar to VXA-
A1.1 is Ad4-H5-Vtn, another oral vaccine composed of an
adenoviral vector expressing a recombinant HA. Unlike VXA-
A1.1, Ad4-H5-Vtn uses an adenovirus type 4 vector, is non-
adjuvanted, and is replication competent. The vaccine is
produced by expressing H5 proteins in A549 cells through a
BJ5183 bacterial vector (168). In a phase I trial, researchers found
that after boosting with an inactivated H5N1 vaccine, the vaccine
induced significant hemagglutination inhibition and
seroconversion without severe adverse reactions (169). In
another trial, researchers found that intranasal vaccine
administration resulted in more robust cellular and humoral
immunities with longer potency than oral administration (170).
A more recent follow-up study indicated increased T-cell
response and neutralizing antibodies against H5 persisting for
26 weeks post-immunization (171). Immunity was further
increased after boosting with other commercially available
RIVs and SVVs. The vaccine is sponsored by the National
Institutes of Health and there are still no insights on
future licensing.

Finally, a number of HA-based influenza mRNA vaccines are
currently in their early phase clinical trials. Among the early
candidates are VAL-506440 (mRNA-1440) and VAL-339851
(mRNA-1851) (Moderna, USA) which target influenza A/H10N8
and A/H7N9, respectively. Both vaccines are nucleoside-modified
mRNAs in lipid nanoparticles (121). In their independent phase 1,
randomized, double-blind, placebo-controlled trials, both vaccines
had favorable safety profiles and induced robust humoral immune
response but did not induce significant cellular response (172).
Currently, both vaccines are not in the official product pipeline of
Moderna (https://www.modernatx.com/research/product-pipeline,
accessed 14 April 2022). Among the frontrunner influenza
mRNA vaccines of Moderna is mRNA-1010, which is currently
undergoing its phase I/II clinical trial. Unlike the previously
described monovalent mRNA vaccines, mRNA-1010 is
quadrivalent, targeting influenza A/H1N1, H3N1, B/Yamagata
and B/Victoria (173). In the interim analysis of its clinical trial,
the vaccine was found to induce non-superior humoral immune
response and apparently higher reactogenicity compared to
currently available influenza vaccines (174). More data is still
needed before accurate insights about the vaccine can be made.
Meanwhile, three other mRNA vaccines, MRT-5400, MRT-5401
(Sanofi, France/ Translate Bio, USA), and PF-07252220 (Pfizer,
USA/ BioNTech, Germany), are currently undergoing phase I
clinical trials. Unfortunately, the statuses of the first two are not
readily accessible due to non-registration in clinicaltrials.gov. Both
MRT-5400 and MRT-5401 vaccines are monovalent, targets
influenza A/H3N2 (120), and are based on complexation with
lipid nanoparticles (https://www.genengnews.com/news/sanofi-
pivots-mrna-vaccine-program-from-covid-19-to-flu-pathogens/,
Frontiers in Immunology | www.frontiersin.org 12
accessed on April 14, 2022). PF-07252220 is based on modified
RNA targeting influenza A/H1N1 and B/Yamagata in monovalent,
bivalent and quadrivalent formulations (120). Among the primary
outcomes of its ongoing trial include safety, reactogenicity, and HAI
seroconversion rates. Other HA-based influenza mRNA vaccines
are undergoing pre-clinical assessment; hence we expect more
candidates under this vaccine type in the next few years.

HA Stalk-Based Recombinant Vaccines
Although the HA head is still the current standard target in
influenza vaccine development, the HA stalk remains a
promising option in designing universal vaccines. This is
because the HA stalk is more conserved (inducing
heterosubtypic immune response) and evolves slower than the
HA head (reducing the need for regular updating of strain
targets) (175). Supporting these notions are reports of broadly
neutralizing antibodies toward the HA stalk, as summarized by
Nath Neerukonda et al. (176). Interestingly, Nachbagauer et al.
found that a recombinant HA stalk vaccine produced higher
titers of broadly neutralizing antibodies in an age-dependent
fashion (177). They hypothesized that recombinant HA vaccines
produced in non-mammalian or avian cells have smaller glycans
and a more accessible stalk domain since the steric hindrance in
HA is minimized. Earlier studies also indicated that less
glycosylated HA induces the production of cross-reactive HA
stalk antibodies with increased receptor binding (178). Several
studies have proposed different ways to develop HA stalk-based
RIVs, as summarized by Bullard and Weaver (175).

A widely studied strategy in developing HA stalk-based RIVs is
the creation of a chimeric HA (cHA). This is done by grafting HA
head domains from different influenza subtypes to a conserved HA
stalk. Immunization with a cHA vaccine requires a prime-boost
approach, wherein each administration uses cHA with a different
HA head but the same HA stalk (179). This approach works by
allowing the immune system to produce HA head-specific
antibodies (focus of the humoral response) and minute levels of
conserved stalk antibodies during the primary dose. In the booster
dose, researchers hypothesized that the immune system will refocus
antibody production toward the conserved HA stalk since the HA
head is antigenically different from that in the primary dose (175).
cH8/1N1 is a recombinant cHA vaccine that recently concluded its
phase I clinical trial. For the trial, the primary dose is composed of a
LAV expressing an H8 head grafted to an H1 stalk and an N1
subunit from influenza A. The booster dose is composed of an
inactivated SVV expressing an H5 head with the same H1 stalk and
N1 subunit (180). The recombinant proteins were produced using
baculovirus in High Five™ cells, while the SVV was produced in
EB66 cells (181). The vaccine is administered either in a non-
adjuvanted form, or adjuvanted with AS03, with the primary dose
routed intranasally and the booster intramuscularly after 85 days
(180). Results indicated that the adjuvanted form of the vaccine
induced heterologous humoral response, with significant antibodies
produced against H2, H9, H18, and H3 after the booster dose (181).
The humoral immune response lasted 420 days after the primary
dose. The antibodies produced against the vaccine also induced a
strong and functional activity against the HA stalk, and detectable
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activity against conserved regions of the HA head. Finally, the
vaccine also had acceptable safety, encouraging phase II
clinical trials.

Another strategy to develop HA stalk-based vaccines is
through production of a headless HA (hHA). The goal is to
overcome HA head immunodominance and redirect the
immune response toward the more conserved HA stalk (179).
Traditionally, hHA is produced by treating HA with acidic and
highly reducing agents to remove the HA1 subunit (comprising
the whole globular head and some stalk domains) and expose the
HA2 subunit (comprising most of the stalk domain) (182).
Unfortunately, chemical treatment causes destabilization of the
HA2 subunit, leading to conformational changes in its epitope
(175). This can reduce the production of HA stalk antibodies,
which is not ideal for vaccine development. Recent
advancements involve expression of HA2 fragments in bacteria
(183, 184), insect (185), and mammalian cells (186, 187) but cell-
free protein synthesis has also been proposed (188). Among
promising hHA-based vaccines, only VRCFLUNPF099-00-VP
underwent a phase I clinical trial (NCT03814720).
VRCFLUNPF099-00-VP is composed of an HA stalk from
influenza A fused with H. pylori ferritin (clinicaltrials.gov,
accessed November 10, 2021). Production was achieved using a
structure-based strategy consisting of the removal of the HA
head, thereby preventing any conformational change in the
epitopes. The incorporation of bacterial ferritin allowed the
production of a self-assembling HA stalk nanoparticle without
inducing additional or autologous immune response (187). The
purified vaccine contains eight HA trimers resembling HA stalk
with typical epitope configuration. The recombinant proteins are
expressed using lentiviral vectors in 293F human embryonal cells
(189). Although its phase I clinical has been completed in 2021,
no results have been officially published.

Other strategies for HA stalk-based recombinant vaccine
production are currently being explored pre-clinically. These
strategies include the following (1): creation of mosaic HA
targeting both the HA stalk and conserved domains of the HA
head for either influenza A (190) or B (191) (2); expression of a
specific long alpha helix from the stalk regions of H3 (46) and H5
(192); and (3) hyperglycosylation of the HA head to mask its
immunodominant epitopes and redirect the immune response
toward the HA stalk (193). More studies on their efficacy to
induce in vivo immune response are needed before clinical trials
can be done on their safety and immunogenicity in humans.

NA-Based Recombinant Vaccines
NA is the second major surface antigen of influenza, distributed
at a ratio of 1:4 with HA (28). It undergoes slower antigenic
evolution than HA (194), is thermostable (195), and broadly
immunogenic depending on the delivery platforms (194, 196).
These characteristics show the promise of NA in universal
influenza vaccine development. Unfortunately, current seasonal
vaccines lack standardization and regulations on NA dosage due
to unestablished vaccine endpoints and activity markers (109,
151). Quantification of NA concentrations across the
commercial inactivated vaccines Fluzone® , Fluvirin®,
Frontiers in Immunology | www.frontiersin.org 13
FluLaval®, and Flucelvax® showed drastic differences ranging
from 0.02 µg to 10.5 µg per dose (100). Nonetheless, Desheva
et al. showed the presence of NA-inhibiting antibodies in human
sera after vaccination with seasonal LAVs in clinical trials,
suggesting their contribution to immunogenicity (197). The
independence of NA immunity from HA has been
demonstrated with influenza A pandemic strain H3N2,
wherein past influenza infection with H2N2 contributed to
NA-specific serological protection and infection reduction
among individuals (198). In another example, researchers
showed greater and continuous antigenic drifts in H1 and H3
influenza HAs, while N1 and N2 NAs were observed to undergo
arrested drifts (199). NA antibodies are often not correlated with
neutralizing activity and protection from primary infection, but
instead disrupt NA activity, preventing the release of viral
progeny and consequently reducing viral replication and
disease severity (200).

NA immunogenicity depends on several factors such as the
presence of other antigens, protein amount, structure and form,
enzyme stability and activity, and vaccine delivery platforms. The
association of HA and NA, as seen in seasonal vaccines, can
cause low immune response toward NA due to antigenic
competition and HA immunodominance (190). This problem
can be circumvented through lengthening of the NA stalk (194)
or exchanging the 5’ and 3’ terminals of the HA and NA gene
segments (201). The number of NA tetramers determines the
ability of vaccines to induce NA antibody production and
corresponding immunogenicity (202). Immunization with
purified recombinant N1 or N2 in their tetrameric forms
protected mice from lethal challenge with the homologous
influenza strains H1N1 and H5N1 or H3N2, respectively (203–
205). Crucial to the formation of tetrameric structures are
cysteine residues along the NA stalk. The introduction of
cysteines along the NA stalk were found to generate
recombinant NAs with enhanced enzymatic activities,
protection of mice from weight loss and mortality, and higher
NA-inhibiting antibody titers in mice (206). NA dose
dependency in recombinant protein, DNA, or VLP vaccines
has also been demonstrated, wherein higher concentrations
relate to increased NA inhibition titers, antibody-secreting B
cells, IgG titers, and survival rates (109, 207). Menne et al.
observed that 10 and 15 µg of the subtype N2 in VLPs elicited
similar antibody titers (109). The NA administration pathway
can also affect vaccine immunogenicity depending on the
delivery platform. For recombinant NA proteins, intranasal
administration has been observed to elicit better cellular and
humoral immunity than the intramuscular route, probably due
to IgA antibodies produced, that can recognize more antigenic
epitopes than NA-specific IgGs (204, 208). In VLPs,
intramuscular administration of N2 has been shown to
completely protect mice from heterologous viral challenge over
intranasal delivery (109). Live vector vaccines, such as NA-
expressing lactic acid bacteria, can also induce humoral and
mucosal responses upon oral administration in chickens (116).

In terms of stability, Sultana et al. evaluated the enzyme
activities of NA components in inactivated influenza vaccines
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produced for the 2011/2012 influenza seasons, after treatment
with heat, detergent, and freeze–thawing (209). They found that
the strain, composition, and shelf-life affected enzyme stability
and immunogenicity. Similarly, the presence of cations, such as
calcium and magnesium, preserved recombinant NA vaccine
activity under low temperatures, but did not affect
immunogenicity and protection in mice (195). The study also
demonstrated that vaccine stability and activity were similar
when stored at 4°C and −80°C for at least eight months,
indicating flexibility in vaccine storage.

Different NA-based recombinant vaccine platforms can offer
their own advantages and drawbacks. Recombinant NA proteins are
well regarded for their safety but have limited immunogenicity.
While mice vaccinated with recombinant N1 or N2 NA proteins
were protected against homologous and partially against
heterologous viral challenges, the combination of recombinant
N3–9 NA proteins failed to protect against H1N1 and H3N2
lethal challenges, suggesting the absence of heterosubtypic
protection (100). However, in the same study, NAs from
influenza B (Yamagata lineage) were found to provide protection
against two influenza B Victoria lineages with antigenically distinct
HAs. Similarly, Deng et al. also observed this subtype-specific
immunity wherein immunization with recombinant NA protein
from the subtype H7N9 provided heterosubtypic protection against
H1N1 in mice, while homologous H1N1 and heterologous H5N1
NA immunizations did not (203). Both H1N1 and H5N1
recombinant NA proteins also failed to provide protection against
heterosubtypic H7N9 regardless of dosage (207). Despite these
limitations, cluster-based consensus approach, combining NA
amino acid sequences of various influenza strains, can also be
used to broaden protection of recombinant NA protein vaccines
(205). NA-based DNA vaccines have also shown immunogenicity
comparable, or in some cases better than, HA-based platforms. In a
single-dose set-up, plasmid DNA encoding NA from H1N1
administered through electroporation in mice led to 100%
survival against homologous challenge and protection for
neonatal mice, while HA DNA immunizations led to little to no
survival (210). Immunizing twice with HA or NA DNA from avian
influenza H9N2 showed homologous protection with 100%
survivability even at just a 3-µg dosage. NA DNA vaccines can
also be co-expressed with other antigens such as HA, NP, M1, and
M2 to expand immunity against homologous and heterologous
infections as an alternative to purified recombinant protein-based
combinations, as observed in mice, pig, and ferret models (211–
213). However, heterosubtypic immunity for recombinant NA
protein and DNA-based vaccines remain lacking. In contrast,
VLP-based NA-recombinant vaccines have shown to induce a
heterosubtypic level of protection. Mice vaccinated with H1N1
NA in M1 VLPs were protected against lethal challenges of
homologous H1N1 and heterosubtypic H3N2 influenza, and
induced Th2-based IgG1 antibody production (196). In another
study, H1N1 NA VLPs induced predominantly IgG2a antibodies
and provided cross-protection against heterologous H5N1 and
heterosubtypic H3N2 following intranasal challenge in mice
(194). Some subtypes of NA such as N2 failed to induce
heterosubtypic immunity in VLP platforms (109, 151). However,
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multivalent VLPs containing NA from H1N1 and H3N2 subtypes
can be used to induce a substantial IgG response and protect against
both influenza subtypes without antigenic competition (109).

Another option to increase NA immunogenicity are vector-
based vaccines. Recombinant Lactococcus lactis expressing NA
from H5N1 provided complete protection against homologous
challenge in chickens via humoral and mucosal responses with
high levels of NA-specific IgG and IgA antibodies, even without
adjuvants (116). NA in live viral vectors also showed comparable
immunogenicity to HA. In nonhuman primate models,
attenuated Newcastle disease virus vector carrying HA or NA
from H5N1 administered through intranasal and intratracheal
routes induced high levels of neutralizing antibodies upon a
second dose. This may be due to affinity maturation and
facilitated protection against homologous and heterologous
H5N1 influenza strains (214). Similarly, MVA vectors carrying
the avian influenza H7N3 or H7N9 HA or NA genes in mice
induced NA-specific antibodies with some level of cross-
protection (215). Co-expression of both antigens in this vector
did not show inhibition of immune reactions. Hence, NA shows
great potential in eliciting homologous to heterosubtypic
immunity depending on the recombinant platforms. However,
there is still a need to standardize and regulate its dosage as well
as determine endpoints prior to developing vaccines for
clinical trials.

M1- and NP-Based Recombinant Vaccines
Expanding the antigenic repertoire is key to combat emerging
influenza pandemics. Internal influenza proteins such as M1 and
NP can also induce cross-reactive immunity (216). In an in silico
study of influenza A strains, several highly conserved regions
were detected in the PB1, PB2, PA, NP, M, and NS genes (217).
They also induced strong CD4+ and CD8+ T-cell responses,
which enhanced antibody production for heterosubtypic
immunity (218, 219). Their conservation, immunogenicity, and
complementary protection make them attractive targets for
universal influenza vaccine production. However, like NA,
these antigens remain to be standardized. Three licensed
trivalent inactivated influenza vaccines from 2007–2008 in the
USA (Fluzone®, Flulaval®, and Fluvirin®) induced different M1-
and NP-specific cytotoxic T-cell responses in vitro and
accordingly different M1 and NP protein levels detected (220).
Although M and NP antibodies are often not correlated with
neutralizing activity (219, 221), they bind to highly conserved
antigenic epitopes, reduce viral propagation and disease, and
involve antibody-dependent phagocytosis and cytotoxicity (222–
224). They can also activate natural killer cells (225).

In mice, intranasal administration of purified recombinant
M1 protein from avian influenza H9N2 showed dose-dependent
complete protection against lethal H9N2 and to some extent,
against heterologous challenges of H1N1(70%) and H5N1 (30%)
(226). Protection was further improved by adding chitosan
adjuvants inducing both systemic IgGs and secretory IgAs.
Oral administration of M1-based DNA vaccines enclosed in
cationic liposomes induced M1-specific IgGs, IgAs, cytotoxic T
cells, and cytokine production upon homologous challenge
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(227). Prime-boost approach with these components extended
immunogenicity. Intranasal priming of mice with recombinant
M1 DNA and boost with M1 protein from H9N2 elicited dose-
dependent immune responses with complete protection against
homologous H9N2 and partially against heterosubtypic H1N1
challenges (228). M1 alone may not be sufficiently immunogenic,
so it is often used to generate VLPs with other antigens such as
HA, NA, and M2 to provide better homologous to
heterosubtypic immunity against influenza A and B (196, 229–
234). Similarly, vaccines from recombinant DNA and vaccinia
vector, or prime-boost using these platforms with M1 from
H3N2, induced low humoral (IgG) and cellular (IFN-g)
immune responses and low protection against heterologous
H1N1 challenge. M1 combination with other internal antigens
such as NP and PB1 showed higher immune response and full
protection (117). The fusion of M1 and HA2 (HA monomer
subunit) in the L. lactis vector for oral vaccination in chickens
induced antibodies, cytokines, and T-cell mediated immune
response with comparable protective efficacy to that of H9N2
WVVs (235). However, M1 VLPs using adenoviral
dodecahedron structures were able to efficiently enter and
activate myeloid dendritic cells, facilitate antigen presentation,
and induce CD8+ T cells (236). Hence, these studies suggest that
M1 mostly serves as a complement to other antigens to enhance
vaccine uptake and conferred protection.

In contrast with M1, NP showed extensive immunogenicity
across different platforms. NP recombinant DNA, vaccinia vector,
and prime-boost of both NP recombinant DNA and vaccinia
vector from H3N2 induced the strongest humoral and cellular
responses, with full protection against H1N1 (117). In another
study, a single dose of NP DNA alone or with M1 DNA from
H5N1 provided partial protection against homologous challenge
in H1N1 pre-exposed mice (237). NP heterosubtypic protection
can also depend on antibodies (222, 238) and can last for a period
of one year or more (239). Boosting of NP-reactive antibodies
using NP protein or IgGs has been shown to enhance
heterosubtypic immunity and accelerate viral clearance and
protection against lethal H1N1 and H3N2 challenges (240).
Intranasal immunization of mice with NP recombinant protein
from H1N1 and compound 48/80 adjuvant provided complete
protection against lethal homologous H1N1 and decent protection
against heterologous (H5N1) and heterosubtypic (H9N2)
challenges (99, 101) Similarly, intramuscular immunization with
NP from H1N1 with SLA-SE or alhydrogel adjuvants protected
young mice against homologous lethal challenge (241).

NP immunogenicity can also be enhanced through VLPs and
protein oligomerization. Savard et al. developed papaya mosaic
virus capsid VLPs with innate adjuvant properties to carry the
NP from H1N1 that induced improved immune responses, viral
clearance, and recovery against homologous challenge in mice
(242). NPs from influenza B Yamagata and Victoria lineages
placed in adenoviral vectors were also able to induce similar NP-
specific IgG and CD8+ responses, and complete cross-protection
to challenges of both lineages in mice (243), which suggest
expansive immunity conferred by recombinant NP-based
vaccines. OVX386, a novel recombinant vaccine based on
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oligomerized NP proteins developed by Del Campo et al. has
been shown to induce improved IgG, CD4+ and CD8+ T-cell
responses, uptake of NP antigens into dendritic cells, broad
protection against H1N1 and H3N2 lethal challenges in mice
and can be used with inactivated influenza vaccines to increase
protection (244). OVX836 vaccination also showed strong long-
lasting cross-protection against lethal influenza challenges for a
minimum of 90 days in mice (245). Recently, a phase I clinical
trial of OVX836 in adults showed no adverse events across
administrations or dosage levels. The study also showed
increased NP-specific IFN-g T cells and IgG titers at first dose,
however, immune response was not further increased at the
second dose (246). Overall, NP-based recombinant vaccines
showed potential as a main or component antigen in inducing
CD8+ T-cell responses crucial for heterosubtypic immunity in
universal influenza vaccine development.

Combinations of M1 and NP are also promising candidates.
In DNA vaccines, combination of both from H5N1 conferred
improved protection against lethal homologous and
heterologous (H1N1) challenges (247). Several animal studies
and human clinical trials (phase I/II) have also demonstrated
that MVA or adenoviral vectors containing recombinant M1 and
NP induce strong and long-last ing homologous to
heterosubtypic immunity against influenza, with little adverse
events even in elderly populations (218, 248–253). Replication-
deficient chimpanzee adenoviral vectors (ChAdOx) such as
ChAdOx1 serotype carrying NP and M1 have also been shown
in phase I clinical trials to be safe and immunogenic, with long-
term broad protection when coupled with MVA vectors carrying
the same antigens in heterologous prime/boost regimens (254,
255). More recently, using another ChAdOx serotype
(ChAdOx2) containing NP, M1 and NA, T-cell and antibody
immune responses increased upon aerosol delivery in H1N1 pre-
exposed pigs (256). Meanwhile, Flu-v, developed by PepTcell
(SEEK), contain synthetic NP, M1 and M2 influenza protein
antigens. While its phase I and II clinical trials showed safety,
dose-dependent immune response, and protection against H1N1
and H3N2 challenges, additional studies are needed to evaluate
induction of cellular immunity (257–259). M1 and NP in MVA
combined with the HA stem, PB1 and M2 from H5N1, H7N1,
H9N2, and H1N1 subtypes were shown to protect against a wide
range of influenza strains and induced specific antibodies and
CD4+ and CD8+ T-cell responses (260). Similarly, addition of NP
in VLPs with antigens such as HA, NA, and M1 enhanced
humoral and cellular responses, and induced broad protection
against heterologous viral challenges in chickens (261). Yang
et al. constructed recombinant H1N1 NP and M1 proteins with
HSP60, and then immunized mice with an oil-in-water adjuvant
through the intranasal route. This combination induced
balanced IgG1 and IgG2a levels, high mucosal and cellular
responses, and complete protection against lethal H7N9
challenge (262). In a pre-print article, prime immunization
with recombinant H1N1 NP and M1 DNA vaccine containing
calreticulin, another HSP, followed by boosting with live
attenuated influenza vaccine in mice was shown to confer
better protection than commercial SVV against lethal H1N1
May 2022 | Volume 13 | Article 878943
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challenge (263). A novel delivery system using self-amplifying
mRNA carrying M1 and NP also demonstrated robust IgG,
CD4+ and CD8+ T-cell responses for NP, and protection
against homologous H1N1 and heterosubtypic H3N2 infection
in mice (264). Taken together, M1 and NP formulations are safe
and immunogenic, and can be coupled with other antigens or co-
administered with other vaccines for a broader range
of protection.

M2-Based Recombinant Vaccines
Influenza matrix proteins have been shown to evolve
independently (265). M2 can induce antibodies independently
of natural killer-mediated response and bind to specific M2
epitopes (266). The ectodomain (M2e) of M2 provides some
immunogenicity depending on the platform used (267). M2 or
M2e alone often has poor immunogenicity. Low and short-lived
M2e-specific antibody responses were observed in influenza-
infected mice, and suboptimal or absent in naturally-infected
humans (268). Nonetheless, several strategies can be employed to
improve recombinant M2e immunogenicity and broaden
protection up to heterosubtypic levels. These include fusion
with antigenic proteins such as tetrameric rotavirus protein
fragments (269), Mycobacterium tuberculosis HSP70 protein
(270), cholera toxin subunit or Staphylococcus aureus protein
A (271), and conjugation with hemocyanin or outer membrane
protein complex of Neisseria meningitidis (272). In mice and
rabbits, fusion of M2e with Salmonella flagellin proteins which
are TLR5 ligands, induced superior IgG responses despite low
dosage than conventional M2e with an alum adjuvant, as well as
protection against lethal homologous challenge, regardless of the
administration route, suggesting diverse immune response
mechanisms (273). Double-blinded, randomized, placebo-
controlled phase I and II clinical trials with this formulation
also showed high safety and induced high M2e-specific
antibodies, especially when combined with trivalent inactivated
vaccines (274, 275). In DNA vaccine platforms, M2 can be
generated with other antigens to enhance the potency and
immunogenicity spectrum. M2 with HA stems or HA
consensus genes and cytotoxic T-cell epitopes demonstrated
efficient immune induction, with some level of cross-protection
against lethal challenges (276, 277). Park et al. demonstrated
complete heterosubtypic protection in mice against H5N2 after
administration of a DNA vaccine containing M2e and H1 (104).
These studies suggest that recombinant M2-based protein and
DNA vaccines should be administered with other antigens to
evoke sufficient immune responses.

M2 or M2e in VLPs are also viable vaccine candidates.
Intranasal or intramuscular prime-boost administration of
VLPs containing M2e tandem repeats of influenza from
different host species conferred heterosubtypic immunity with
effective IgG2a (Th1 cells response), CD4+ and CD8+ T-cell
responses, and superiority over commercial influenza SVVs and
HA-based VLPs (278–281). Conversely, supplementation of
commercial influenza SVVs with M2e repeats in VLPs can
extend specific immunity to long-lasting cross-protection
against heterosubtypic viral challenges (282). VLPs containing
Frontiers in Immunology | www.frontiersin.org 16
M2e tandem repeats coated in microneedle patches, a minimally
invasive and painless delivery system, showed epitope stability
and remained immunogenic at room temperature for eight
weeks (283). The vaccine also induced IgG2a, M2e-specific
antibodies, and IFN-g T-cell responses with protection against
heterosubtypic viral challenges comparable or better than
intramuscular delivery in mice (283). Combinations of M2e
with other antigens in VLPs have also been explored. M2e
with flagellin in VLPs or co-administration of M2e and
flagellin VLPs in mice elicited higher levels of IgGs and IgAs,
activated M2e-specific T-cell responses, and provided better
protection against homologous and heterosubtypic challenges
than M2e alone, in VLPs or with adjuvants (284, 285). M2e can
also be carried in hepatitis B core (HBc) VLPs with NP and oil-
in-water adjuvant to stimulate IgG1 (Th1) and IgG2a (Th2)
antibodies, IFN-g, and cross-protection against lethal H1N1 and
H5N1 challenges in mice (286). Thus, there is flexibility in M2-
based VLP platforms for enhancement of immune response
despite the natural low immunogenicity of the antigen alone.
Various vectors can be used to deliver M2-based antigens or
VLPs. Ameiss et al. used HBc VLPs containing M2e common to
avian influenza and transformed attenuated Salmonella
Typhimurium with delayed lysis phenotype for oral
administration in mice (114). Their study showed increased
IgG2a and IgA levels and moderate protection against avian
influenza than for non-lysis Salmonella phenotype. In contrast,
ACAM FLU-A by Sanofi Pasteur is a recombinant M2e-based
vaccine produced using HBc. Its phase 1 clinical trial indicated
considerable safety and immunogenicity. However, no further
updates from the manufacturer have been published since 2012,
most probably due to waning antibody titers of the vaccine even
with adjuvants (NCT00819013; clinicaltrials.gov, accessed on
March 31, 2022). Several studies have demonstrated the utility
of different viral vectors, including MVA, adenovirus, tobacco
mosaic virus, human papillomavirus, and norovirus, in
presenting M2e. They induced significant, long-lasting, and
broad humoral cellular and mucosal responses, which can be
further improved when M2e is co-expressed with other antigens
such as NP (115, 282, 287–289). Therefore, despite its overall
lower immunogenicity, M2 has the potential to play antigenic
roles in recombinant vaccine development if administered as
tandem repeats in VLP platforms. M2 can also be utilized in
combination with other antigens or vaccine formulations and in
different administration routes to enhance immune efficacy
and duration.
PA-, PB1-, and PB2-Based
Recombinant Vaccines
Few studies on polymerase complex subunit-based RIVs have
been conducted. Nonetheless, these internal antigens have
several indirect utilities in vaccine development. Through
plasmid-based reverse genetics, the proteins are used to
regenerate RNA genomes from plasmid complementary DNA
(viral rescue) during construction of RIVs in transfected cell lines
(290, 291). They also contribute to temperature sensitivity caused
May 2022 | Volume 13 | Article 878943

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Carascal et al. Progress in Recombinant Influenza Vaccine
by mutations in PA, PB1, or PB2 in recombinant live attenuated
avian influenza vaccine strains, which conferred protection in
chickens (292, 293). Addition of an HA epitope tag to the PB1 C-
terminal of these mutants further attenuated vaccine strains and
provided immunity against homologous and heterologous
challenges in mice (294). In influenza B, PA, and PB2 can also
independently contribute to temperature sensitivity (295). PB1
gene sources have been shown to affect HA yield and growth of
influenza vaccine strains (296). In addition, PB1 mutation can be
used to generate high fidelity and genetically stable recombinant
live LAVs (297, 298).

Differences in immune induction have also been documented
across influenza polymerase antigens. Vaccination in mice with
PA protein through peptide-pulsed dendritic cells showed poor
and delayed viral clearance in contrast with NP, but still induced
CD8+ and cytotoxic T-cell responses (299). In a DNA vaccine
platform, while both PB1 and PB2 plasmids from H1N1 and
H3N2 induced Th1-biased immune responses, only PB1
conferred protection against homologous and heterologous
challenges (300). However, in another study, PB1 from H3N2
delivered through DNA, recombinant vaccinia virus vector, or
prime-boost of both provided weak protection against H1N1
challenge in mice, but conferred complete protection when
combined with NP and M1 (117). PB1 immunogenicity can be
improved by linking it to a murine invariant chain protein which
is involved in antigen presentation and functions as a chaperone
to major histocompatibility complex class II. The improved
antigen showed increased CD8+ T-cell responses and long-
lasting partial protection in mice when encoded in an
adenoviral vector administered locally and systemically (118).
Unfortunately, the induced immune response is still inferior to
NP vaccination, probably due to the less stable expression of PB1
on cell surfaces.

Combinations with other antigens have also been explored. A
synthetic long peptide vaccine comprised of influenza epitopes
for B- (HA2 and M2e) and/or T cells (NP, PB1, and M1)
stimulated IgG and IFN-g production in mice and ferrets
(301). However, despite some reduction in viral titers and
disease severity, the vaccines provided little to no protection
against sublethal challenges. In contrast, Ichihashi et al. showed
that vaccination of mice with single influenza epitopes (e.g., from
PA, PB1, PB2, and M2) targeting cytotoxic T-cell response
provided limited protection with varying immunogenicity
(302). Combining specific epitopes with intranasal
administration offered complete protection against lethal
H5N1, H1N1, and H3N2 challenges. Xie et al. described that
consensus internal antigen (PA+PB1+M1 and NP+PB2+M2)
vaccines administered intramuscularly via prime immunization
with DNA and boosting with adenoviral vector carrying
consensus antigens showed higher IFN-g production to specific
antigens than DNA priming and vaccinia vector boosting, which
showed a low but broader cellular response to different
antigens (303). In viral challenge studies, DNA and vaccinia
vector vaccines also conferred better protection than adenoviral
vectors against H1N1, although neither protected against H7N9
lethal challenges. However, intranasal administration provided
Frontiers in Immunology | www.frontiersin.org 17
cross-protection against these challenges, especially with
DNA priming and adenoviral vector boosting. Collectively,
polymerase-based RIVs may induce an immune response in
combination with other antigens. However, they require further
research to evaluate immunogenicity, efficacy, and safety
as vaccines.

Deantigenized Recombinant Vaccine
With constant antigenic evolution among influenza viruses,
researchers proposed deantigenization as a novel strategy
to enhance vaccine activity. Deantigenization involves
explicit manipulation of targets’ antigenic properties.
Specifically, amino acid sequences of immunodominant sites
of a target molecule (e.g., HA head) are modified to lower their
antigenicity without changing the overall protein configuration
(304). By “deantigenizing” the immunodominant sites,
researchers hypothesized that the immune system will divert
antibody production toward other antigenic sites of the protein,
such as conserved regions of the molecule that may be masked
by the immunodominant epitope (Figure 5; 305). This strategy
may result in a longer-lasting immune activity against influenza
viruses, regardless of the strain (306). Deantigenization is
synonymous to the previously described deceptive imprinting
and immune refocusing processes in vaccine design (307, 308).

Previous immunomodulating strategies for antigens include
immunodominant epitope excision, glycosylation, and direct
amino acid replacement. In deantigenization process described
herein, amino acid replacement considers the native
configuration of the antigen together with purposeful focusing
of antigenicity toward other antigenic sites (305). The overall
steps of deantigenization of target epitopes involve the (1)
identification of the target protein (i.e., preferably one that
elicits a strong immune response) and its active sites; (2)
mapping of the three-dimensional structure of the protein and
all its epitopes; (3) identification of accessible antigenic sites of
the protein aside from active sites and known epitopes; and (4)
replacement of amino acid residues of the accessible antigenic
sites using strict guidelines to reduce the immunogenicity of the
target while maintaining its three-dimensional configuration and
at least one Th-cell epitope (305). Mikita and Padlan successfully
used this process to produce, in silico, a deantigenized HA
antigen with increased antigenicity toward a putative HA
cleavage site that is usually shielded by the HA head (309).
The researchers proposed the use of the deantigenized amino
acid sequence to develop a recombinant, cell-expressed subunit
vaccine against seasonal influenza. Their extended analysis
indicated that deantigenization also worked when targeting
influenza B viruses, making the deantigenized HA effective to
the B subtype, much like a multivalent vaccine with
heterosubtypic activities (309). Despite the potential of
deantigenization for producing universal vaccine candidates,
no in vivo experimental research nor clinical trials have been
conducted to confirm their hypothesized activities. However, in
combination with more advanced protein analysis and
fast recombination and protein expression systems, it is
not impossible to see a rise in interest in the use of
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deantigenization for development of RIVs that may induce
heterosubtypic immune responses.
FUTURE DIRECTIONS

Several influenza antigens and strategies for developing RIVs
have been discussed in this review, each offering different levels
of immunogenicity and potential utility. While recombinant HA
remains the most studied, with numerous candidates undergoing
clinical trials, the antigen may exhibit high variability across
influenza strains and immunodominance of its globular head.
Hence, research is being conducted involving more conserved
regions such as the HA stalk, combinations of HAs from different
influenza subtypes, or formulations with more conserved
influenza antigens and epitopes. Alternatively, NA, which
evolves independently and slower than HA, has also been
explored. However, NA remains to be standardized in terms of
dosage and clinical endpoints in vaccine production, and clinical
trials have yet to be conducted to evaluate their safety and
efficacy. In summary, production of recombinant vaccines
(based on either surface or internal influenza antigens) is a
relevant approach to explore in influenza immunization.
However, as more researchers propose advanced techniques in
Frontiers in Immunology | www.frontiersin.org 18
vaccine production, we can expect a shift in paradigm in vaccine
development, from using whole viral particles, protein subunits,
up to using viral genetic material. This shift can be seen in the
current vaccine development for COVID-19, where mRNA
vaccines are significant candidates in providing immunization
against the infection (310). Recent progress using mRNA
platforms has also been made for influenza vaccines, with a
few HA-based candidates in early phases of clinical trials. While
some influenza mRNA vaccines (VAL-506440 and VAL-339851
by Moderna, USA) stopped in early trials due to lack of immune
response induction (121, 172), other candidates such as mRNA-
1010 (Moderna, USA) showed significant potential but still
requires further clinical trials to obtain more data about their
safety and efficacy (174). In addition, there are also some
candidates in pre-clinical stages (120, 172). In prospect,
recombinant nucleic acid-based platforms can be viewed as a
faster and safer production technique for influenza vaccines.

While surface antigens remain the most attractive vaccine
targets, internal antigens have also shown promise due to their
highly conserved epitopes. NP showed strong induction of the
immune response, including heterosubtypic protection, across
different recombinant platforms. Immunity can also be
enhanced through addition of adjuvants or combination with
other antigens such as PB1, PB2, and M1. Meanwhile, influenza
matrix proteins are not as immunogenic alone and have been
FIGURE 5 | Theoretical representation of the deantigenization of the influenza H1 protein with potential application in vaccine development. Deantigenization can be
done on specific sites of the target protein that exhibit high solvent accessibility and antigenicity (based on calculated values), in this case an area near the receptor-
binding site of the H1 protein. Amino acid substitution was introduced in this region following the replacement rule described by Padlan (305), particularly the change
of Ks, Ns, and Qs to mostly Ts given the sheet configuration of the peptide in the area. The strict ruling on amino acid replacement renders the site less antigenic
(within the broken line box in the antigenicity plot) without changing the overall three-dimensional configuration of the protein. By deantigenizing highly antigenic
epitopes of the protein, other antigenic sites can be exposed or targeted by antigen-recognizing cells, potentially leading to the production of antibodies targeting
other more conserved epitopes of the H1.
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shown to require other influenza antigens, epitopes from other
organisms, and different vaccine platforms to elicit a viable
immune response. Internal antigens within the polymerase
complex (PA, PB1, and PB2) have other utilities such as reverse
genetics in recombinant vaccine production as well as in
enhancing temperature sensitivity and genetic stability of
recombinant LAVs. Other unique recombinant vaccine
techniques have also been explored as with the case of DeltaFlu
(Vivaldi Biosciences Inc., USA), an intranasal vaccine based on
replication-deficient influenza virus with deleted NS1 gene. Phase
I and II clinical trials of the vaccine showed heterosubtypic
protection, inducing significant seroconversion with mild
adverse events (311, 312). Finally, deantigenization of variable and
immunodominant influenza epitopes to modulate the immune
response toward more conserved sites can, theoretically, provide
long-lasting and heterosubtypic protection. Further studies on this
concept are recommended to improve universal vaccine candidates.

Aside from improving immunogenicity and the production
process, RIV development should also consider cost-effectiveness
and vaccination program implementation (313). Thus,
assessment of vaccine development, manufacturing, and
distribution capabilities, and increased vaccine research and
clinical trials should be conducted to facilitate vaccine
production and implementation in low- and middle-income
countries. Finally, influenza has recently been reported to co-
infect with SARS-CoV-2 with increased severity and mortality
(314, 315). Therefore, vaccination strategies considering other
viruses with pandemic potential should be pursued, expanding
Frontiers in Immunology | www.frontiersin.org 19
the concept of universal influenza vaccines to cover other
infectious diseases. The COVID-19 pandemic also paved the
way for other RIV development platforms such as mRNA-
based vaccines.

In summary, the progress in RIVs provides a glimpse of the
future of universal vaccine production, banking on the improved
immunogenicity, production timeline, and novelty of RIV
development. Therefore, efforts to enhance and fast-track the
research in this field of vaccine production could potentially help
in accelerating our goal toward universal influenza vaccination.
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288. Matić S, Rinaldi R, Masenga V, Noris E. Efficient Production of Chimeric
Human Papillomavirus 16 L1 Protein Bearing the M2e Influenza Epitope in
Nicotiana Benthamiana Plants. BMC Biotechnol (2011) 11:106. doi: 10.1186/
1472-6750-11-106

289. Mytle N, Leyrer S, Inglefield JR, Harris AM, Hickey TE, Minang J, et al.
Influenza Antigens NP and M2 Confer Cross Protection to BALB/c Mice
Against Lethal Challenge With H1N1, Pandemic H1N1 or H5N1 Influenza
A Viruses. Viruses (2021) 13:9. doi: 10.3390/v13091708

290. Jung YJ, Lee YN, Kim KH, Lee Y, Jeeva S, Park BR, et al. Recombinant Live
Attenuated Influenza Virus Expressing Conserved G-Protein Domain in a
Chimeric Hemagglutinin Molecule Induces G-Specific Antibodies and
Confers Protection Against Respiratory Syncytial Virus. Vaccines (Basel)
2020 (2020) 8(4):716. doi: 10.3390/vaccines8040716

291. Medina J, Boukhebza H, De Saint Jean A, Sodoyer R, Legastelois I, Moste C.
Optimization of Influenza A Vaccine Virus by Reverse Genetic Using
Chimeric HA and NA Genes With an Extended PR8 Backbone. Vaccine
(2015) 33(35):4221–7. doi: 10.1016/j.vaccine.2015.06.112

292. Song H, Nieto GR, Perez DRA. New Generation of Modified Live-
Attenuated Avian Influenza Viruses Using a Two-Strategy Combination as
Potential Vaccine Candidates. J Virol (2007) 81:17:9238–48. doi: 10.1128/
JVI.00893-07

293. Zhang W, Tu J, Zhao Z, Chen H, Jin M. The New Temperature-Sensitive
Mutation PA-F35S for Developing Recombinant Avian Live Attenuated
H5N1 Influenza Vaccine. Virol J (2012) 9:97. doi: 10.1186/1743-
422X-9-97
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