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Chimeric antigen receptor (CAR)-T cell therapy is an emerging staple in the

treatment of certain hematological malignancies. While CAR-T cells have

produced robust responses in certain hematological malignancies, toxicities

associated with the therapy have limited their use. Immune Effector Cell

Associated Neurotoxicity Syndrome (ICANS) is a potentially life-threatening

neurotoxicity that commonly occurs with CAR-T cell therapy. Here we will

discuss ICANS, its treatment, possible mechanisms, and potential solutions to

this critical limitation of CAR-T cell therapy. As the field of CAR-T cell therapy

evolves, improved treatments and methods to circumvent or overcome ICANS

are necessary to improve morbidity, mortality, and decrease the cost of CAR-T

cell therapy. This serious, life-threatening side effect needs to be studied to

better understand its mechanisms and develop treatments and

alternative strategies.
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Introduction

Chimeric antigen receptor (CAR)-T cell therapy is a critical staple therapy for

certain hematological malignancies (1–6). T cells are the body’s natural defense

against abnormal cells including cancer cells. Typically, this requires the T cell

receptor to recognize the peptide antigen of interest in the context of the appropriate

major histocompatibility complex. CARs are synthetically engineered receptors

expressed in T cells that allow the T cells to recognize independent antigen on the

surface of cells. Thus, CAR T cells can recognize antigen and become activated

independent of MHC, resulting in robust activation and tumor destruction (7). Since

2017, multiple CAR-T cells have been approved by the US Food and Drug
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Administration (FDA) due to their clinical success (3–6, 8, 9).

However, major limitations to CAR-T cell therapy remain

including severe, life-threatening CAR-T cell associated

toxicities. One of these toxicities is Immune Effector Cell

Associated Neurotoxicity Syndrome (ICANS). This

neurotoxicity commonly occurs with CAR-T cell therapy

and is the cause of significant morbidity, mortality, and cost

associated with the therapy. In patients treated with CAR-T

cell therapy, 20-70% develop ICANSs (3–5, 10–14). This is a

phenomenon relatively unique to CAR-T cell therapy

compared to regular effector T cell neurologic immune-

related adverse events seen with checkpoint inhibitor

therapies where approximately 4-12% of patients on

checkpoint inhibitors experience neurologic immune-

related adverse events and less than 1% of patients develop

severe neurologic immune-related adverse events (15).

Interest ingly , there is no prel iminary evidence of

neurotoxicity or CRS with CAR-NK cell therapy, possibly

suggesting a T cell unique pathophysiology (16). Here we will

discuss ICANS, its treatment, possible mechanisms, and

potential solutions to this critical limitation of CAR-T cell

therapy. As the field of CAR-T cell therapy evolves, improved

treatments and methods to circumvent or overcome ICANS

are necessary to improve morbidity, mortality, and decrease

the cost of CAR-T cell therapy (2, 17).
CAR-T cell associated toxicities

While CAR-T cell therapies have had impressive success,

life threatening toxicities have prevented them from

becoming a first line therapy. CAR-T cells have caused

significant morbidity and mortality via these three main

toxicity syndromes (8, 9, 18, 19). The three main types of

toxicities include: (a) cytokine release syndrome (CRS), which

is caused by massive cytokine levels and T cell expansion; (b)

hemophagocytic lymphohistiocytosis and/or macrophage

activation syndrome (HLH/MAS), which is characterized as

a hyperinflammatory state of CRS plus elevated serum ferritin

and hemophagocytosis, renal failure, elevated liver enzymes,

splenomegaly, pulmonary edema, and/or absence of NK cell

activity; and (c) immune effector cell-associated neurotoxicity

syndrome (ICANS), which is associated with increased

cerebrospinal fluid cytokine levels and disruption of the

blood-brain barrier (20). In patients treated with CAR-T

cell therapy 20-70% develop ICANSs (3–5, 10–14). All FDA

approved CAR-T cell products have had incidents of ICANS,

thus ICANS is not a phenomena specific to anti-CD19

antigenicity (3–6). Interestingly, CD22 targeting CAR-T

cells have not been associated with worse ICANS even

though CD22 is expressed by human microglia (21–23).
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Grading and treatment of ICANS

Patients at greater risk for ICANs include those with

younger age, pre-existing neurological/medical conditions,

high tumor burden, high intensity lymphodepleting therapy,

cytopenias, and early/severe CRS (14, 20, 24–28). Clinically,

ICANS can present from confusion, headache, attention deficits,

word finding difficulties, focal neurological deficits, or

encephalopathy to life threatening cerebral edema, transient

coma, or seizures (29). Classically, ICANS develops in 3 to 10

days following CAR-T cells being given (14, 20, 27). Frequently,

ICANS occurs 2 to 4 days after onset of CRS, although ICANS is

not required to occur in the context of CRS (14, 20, 27).

Symptoms typically begin as inattention and language deficits

and deterioration can rapidly progress over the course of hours

to days. Usually, symptoms resolve within 7 to 10 days with

appropriate treatment, but some patients will require prolonged

ICU stays, and fatalities have been attributed to significant

cerebral edema (14, 24, 30–33). Patients exhibit increased

lactate dehydrogenase, thrombocytopenia, increased

inflammatory markers, and increased cytokine levels (14, 25).

Electroencephalography is often abnormal with frontal or diffuse

theta-delta slowing being the most commonly observed pattern

(34). In severe ICANS with increased ICP, white matter changes

and sulcal effacement due to diffuse cerebral edema can be

observed on imaging studies (30, 35, 36).

The American Society for Transplantation and Cellular

Therapy (ASTCT) has worked to integrate various grading

scales of ICANS (29, 33, 37). Grade 1 patients (mild) exhibit

inattentiveness, mild disorientation, as well as mild expressive

and/or receptive language dysfunction (patients can still

communicate). Grade 2 patients (moderate) have moderately

impaired levels of consciousness but respond to voice. Grade 3/4

patients (severe) have significant language dysfunction, respond

only to tactile or noxious stimulation, and may have seizures.

While the diagnose of ICANS can consistently be diagnosed

using a variety of grading systems (91% of the time in one

grading study), there is significant variable in grade of ICANS

based on the grading scale used with only 54% of ICANS

patients remaining in the same grade when using different

grading scales, thus, consistent use of grading scales is critical

for future trials (38). Severe ICANS (grade 3 or above) ranges

from approximately 10-28% in pivotal trials in the most

classically studied LBCL anti-CD19 CAR-T cells studies (39).

Treatment for ICANS remains challenging, focusing mainly on

supportive care and close monitoring. Steroids are the mainstay

of management and are typically started with grades 2 or greater

ICANS. Unfortunately, the optimal timing, dose, and duration

of corticosteroids remains unclear (14, 40, 41). Furthermore,

there are no targeted or prophylactic therapies to prevent any

CAR-T associated toxicities, in part due to limited knowledge of
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ICANS pathophysiology. IL-6 blockade with tocilizumab, while

an excellent treatment for CRS, has demonstrated limited utility

in ICANS to date (3, 8, 9, 21, 22). Alternative cytokine-directed

therapies remain under active investigation.
Mechanisms of ICANS and
possible solutions

The mechanisms behind ICANS are not well understood.

Patients with severe ICANS can develop endothelial activation,

disseminated intravascular coagulation, capillary leak, and

blood-brain barrier permeability including increased protein

and T cells in the CSF with this permeability leaving the CSF

open to cytokine infiltration (23, 42). Astrocyte injury has been

observed through elevated S100b and glial fibrillary acidic

protein in the CSF (43, 44). The CSF has shown increased

white blood cell counts, proteins, IFNg, IL-6, IL-10, and

granzyme B with serum increases in IFNg, IL-10, granzyme B,

GM-CSF, MIP-1a, and TNF (43, 44). High grade ICANS has

been associated with serum elevations of GM-CSF, IL-2, and

ferritin, with GM-CSF being the most associated with high grade

ICANS (3, 44). There has also been a significant increase of

CD14+ cells observed in patients with high grade ICANS (44,

45). Thus, it appears that a compilation of cytokines, myeloid

cells, T cells, and disruption of the blood brain barrier play a role

in ICANS (2, 44). A summary of ICANS markers in human

patients is provided in Table 1.
Frontiers in Immunology
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One of the difficulties of studying ICANS is the limited number

of animal models. In a rhesus macaque model of ICANS using

CD-20-specific CAR-T cells, CRS and neurotoxicity were

induced in 7-8 days (44, 46). IL6, IL8, IL1RA, MIG, and I-

TAC were increased in the serum, and IL6, IL2, GM-CSF, and

VEGF were disproportionately increased in the CSF (44, 46). T

cells and CAR-T cells were found in the brain (44, 46). In a

humanized ALL-CM leukemic cell line mouse model, mice

developed a CRS like illness at around one week that lasted 2-

3 weeks and increased IL-6 (44, 47). In mice that developed the

CRS like illness, regardless of treatment status with the IL-6

receptor blocker tocilizumab or vehicle control, a lethal

neurological syndrome developed at 30 days (44, 47).

Interestingly, those mice treated with the IL-1R blocker

anakinra did not develop this neurological syndrome (44, 47).

The neurological syndrome was characterized by meningeal

thickening without CNS infiltration of leukemic cells but

infiltration of macrophages into the subarachnoid space (44,

47). In another model, a primary patient derived xenograft

model of ALL was used to generate a neurotoxicity model that

showed upregulation of genes responsible for controlling the T-

cell receptor, cytokine receptors, T-cell immune activation, T-

cell trafficking, and T-cell and myeloid cell differentiation (44,

48). Five days after anti-CD19 CAR-T cell treatment, mice

exhibited T1 enhancement on MRI, which is a marker of

increased blood-brain barrier permeability as well as possible

edema (44, 48). These mice also exhibited neurological

symptoms (44, 48). Interestingly, mice treated with GM-CSF

neutralizing antibodies exhibited reduced blood-brain barrier

permeability, similar to controls that did not receive anti-CD19

CAR-T cells (44, 48). T cells and macrophages were observed in

the brains of mice with neurotoxicity and a decrease in raw

averages was observed in mice treated with GM-CSF

neutralizing antibodies (although it did not reach statistical

significance) (44, 48). Thus, the timing, MRI findings,

symptoms, cytokine profile, and cellular infiltration was

similar in this model to what is observed in humans, and the

study showed GM-CSF with neutralizing antibodies reduced

neurotoxicity (44, 48). Furthermore, a CRISPR-Cas9 knockout

of GM-CSF CAR-T cell was developed in these studies, which

may also reduce neurotoxicity (44, 48, 49). Thus, selective

control of specific cytokines may aid in the control of ICANS.

In an immunocompetent mouse model of anti-CD19 CAR-T

cell associated neurotoxity using escalating doses of anti-murine

CD19 directed CAR-T cells (mice were pre-treated with

cyclophosphamide), mice developed CRS and abnormal

neurological exams 3-5 days after infusion with CAR-T cells

(50). Histology showed brain hemorrhage, diffuse extravascular

immunoglobulin deposition, loss of capillary pericyte coverage,

and increased prevalence of string capillaries (50). Via in vivo

two-photon imaging 6 days post CAR-T cell infusion, cortical

capillary plugging and patchy hypoxia were observed in mice

treated with CAR-T cells compared to mock transduced T cell
TABLE 1 Markers of ICANS in Human Patients.

Type of Marker Markers

Serum Markers Lactate dehydrogenase
Thrombocytopenia
Ferritin
IFNg
IL-10
Granzyme B
GM-CSF
MIP-1a
TNF
IL-2

CSF/Blood Brain Barrier Disruption
Markers

White blood cells
T cells
CD14+ cells
Astrocyte injury (S100b and glial
fibrillary acidic protein)
Increased protein permeability
IFNg
IL-6
IL-10
Granzyme B

Circulatory Changes Endothelial activation markers
DIC markers

EEG Changes Frontal or diffuse theta-delta slowin

Imaging Changes White matter changes
Sulcal effacement
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treated controls (50). The capillary plugs contained CD45+

leukocytes, some of which were CD3+ T cells (50). Increased

levels of soluble ICAM-1 and VCM-1 are consistent with a

possible mechanism of increased leukocyte adhesion (50). This

suggests a role for brain capillary obstruction impairing

microvascular circulation to contribute to neurotoxicity (50).
CAR structure and manipulation to
reduce toxicities

CARs are synthetically engineered receptors that are

composed of an antigen-binding domain, hinge region,

transmembrane domain, and at least one intracellular

signaling domain. For CAR-T cells to work effectively, the

antigen binding domain must engage with the target antigen

to achieve activation and cytokine production but without

reaching toxic levels. The antigen expressed on malignant

cells, tumor burden, antigen binding domain’s affinity to its

target epitope, and the CAR’s costimulatory elements all

contribute to the level of CAR activation and risk of toxicity

(51, 52). These elements can be modulated through altering CAR

structure in order to tune activation level and minimize the risk

of toxicity.

The antigen binding domain is the portion of the CAR

that confers target antigen specificity. Classically, the antigen

binding domains are made from the variable heavy (VH) and

light (VL) chains of monoclonal antibodies, and are

connected with a linker to produce the single-chain variable

fragment (scFv), which typically target extracellular surface

cancer antigens resulting in major histocompatibility

complex (MHC)-independent T cell activation (42, 53). The

scFV also determines the affinity and specificity of the CAR

for its target epitope, which ideally should be high enough to

recognize antigens on tumor cells, induce CAR signaling, and

activate T cells but not so high as to result in activation

induced death of the CAR-T cell or trigger toxicities (54–56).

Theoretically, reducing the affinity of the antigen binding

domain will require the higher antigen levels in order for

activation to occur. Thus, a requirement for higher levels of

antigen could help reduce the targeting of healthy tissue and

lessen undesired activation. Antigen binding domains with

micromolar affinity have been shown to be more selective for

tumors with higher antigen levels compared to those with low

nanomola r / sub-nanomola r a ffini ty (55 ) . Ano ther

contributing factor to toxicity includes the immunogenicity

of the of the antibody fragments, which can be reduced by

using human or humanized antibody fragments instead of

murine fragments (57).

The hinge or spacer region is the extracellular structural

region that extends the binding units from the transmembrane

domain. The hinge region allows flexibility to overcome steric
Frontiers in Immunology 04
hindrance and provides length to let the antigen-binding

domain access the targeted epitope. The hinge region can

affect flexibility, CAR expression, signaling, epitope

recognition, strength of activation outputs, epitope

recognition, and synapse formation (58–60).

The transmembrane domain anchors the CAR to the cell

membrane. Importantly, the transmembrane domain may also

be relevant for CAR-T cell functions such as CAR expression

level, stability, dimerization with endogenous signaling

molecules, and appears to play an active role in signaling or

synapse formation (61–63). CAR transmembrane domains are

typically derived from CD3z, CD4, CD8a, or CD28. Together,
the impact of the transmembrane domain and the hinge region

also appear to influence CAR-T cell cytokine production and

activation induced cell death (AICD) (64). In addition, the hinge

and transmembrane domains can play a role in modulating

cytokine secretion. Modifying the CD8-a derived hinge and

transmembrane sequences of an anti-CD19 CAR resulted in

reduced proliferation and cytokine release (65). In a phase I

study, 6/11 patients (54.5%) had complete remission of their B

cell lymphoma and there were no CRS or ICANS events greater

than grade 1 (65). The hinge and transmembrane domains may

also confer immunogenicity that can contribute to toxicity (57,

66). Modification of the CAR hinge and transmembrane

domains has been shown to reduce immunogenicity and

enhance persistence (57, 66).

Much attention has been paid to CAR co-stimulation with

the goal of generating CAR constructs with the optimal

endodomain. First generation CARs contained a CD3z or

FcRg signaling domain, but this first generation did not

generate robust durability and persistence (67–70). IL-2

production and proliferation was improved by adding a co-

stimulatory domain (71). In second generation CARs, one co-

stimulatory domain is placed in series with the CD3z
intracellular signaling domain (71, 72). Among co-stimulatory

domains used in second generation CARs, CD28 and 4-1BB

(CD137) are the two most common and both are associated with

high patient response rates (71, 72). The co-stimulatory domains

differ in their functional and metabolic profiles. CARS with

CD28 domains differentiate into effector memory T cells and

mainly use aerobic glycolysis. CARs with the 4-1BB domain

differentiate into central memory T cells and have increased

mitochondrial biogenesis and oxidative metabolism (73). The 4-

1BB co-stimulatory domain has been associated with lower

toxicities, longer T cell endurance, and lower T cell expansion.

On the other hand, the CD28 domain are linked with more rapid

onset and exhaustion. Thus, the 4-1BB domain may produce less

toxicity in cases of high antigen burden whereas the CD28

domain may be needed to achieve activation in low antigen

density situations (74). Clinically, second generation CAR-T

cells have produced strong therapeutic responses in several

hematological malignancies (52). It has been hypothesized that

co-stimulation through only one domain produces incomplete
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activation, resulting in the production of third generation CARs,

which incorporate two costimulatory domains in series with

CD3z (75). Preclinical studies of third generation CARs have

produced mixed results (76–78).

“Off switches” or suicide genes are another strategy to stop

toxicity. A secondary inducing agent can be used to selectively

inhibit CAR-T cells during toxicity (79). An example of this

strategy is engineering CARs to express CD20 to allow for their

depletion with rituximab (80–82). A similar strategy is suggested

for Cetuximab therapy for a non-signaling truncated version of

EGFR to deplete CAR-T cells (83). Antibody-mediated depletion

can be slow in patients who need immediate intervention during

toxicities, which potentially limits this strategy. In light of this,

inducible cas9 switches have been attempted, which have been

shown to successfully eliminate greater than 90% of CAR-T cells

in 30 minutes (84). Protease based small molecule-assisted

shutoff CAR-T cells (SMASh-CARs) or switch-off (SWIFF-

CARs) have also been developed (85). The main problem with

these strategies, however, are that they quickly halt therapy,

which could be a problem in rapidly progressing disease. Thus,

suicide gene engagement could serve as a last resort for safety. A

summary of basic CAR-T cell structure and possible edits to alter

efficacy is provided in Figure 1.
Frontiers in Immunology 05
Discussion

Immune Effector Cell Associated Neurotoxicity Syndrome

(ICANS) is a potentially life-threatening neurotoxicity that

commonly occurs with CAR-T cell therapy. Clinically, ICANS

can present with clinical symptoms ranging from confusion,

headache, attention deficits, word finding difficulties, focal

neurological deficits or encephalopathy, to life threatening

cerebral edema, transient coma, or seizures (29). Supportive

care and corticosteroids are the mainstays of treatment, but the

optimal timing, dose, and duration of corticosteroids has not

been determined (14, 40, 41). Although the precise mechanisms

of ICANS are not known, disruption of the blood-brain barrier,

cytokines, myeloid cells, and T cells have all been suggested to

play a role. In the future, blocking some of these cytokines

networks or designing CAR-T cells structurally to be less toxic

are strategies to potentially one day overcome ICANS. In this

review we discussed ICANS, its treatment, possible mechanisms,

and potential solutions to this critical limitation of CAR-T cell

therapy. As the field of CAR-T cell therapy evolves, improved

treatments and methods to circumvent or overcome ICANS are

necessary to improve morbidity, mortality, and decrease the cost

of CAR-T cell therapy. This serious, life-threatening side effect
FIGURE 1

CAR-T cell structure and alterations. A summary of basic CAR-T cell structure and possible edits to alter efficacy is provided. Basic CAR-T cell
structure includes an antigen binding domain, hinge region, transmembrane domain, and at least one intracellular signaling domain. These basic
structures can be manipulated to alter the behavior of CAR-T cells. A few types of “off switches” or suicide genes are described in the figure. A
target antigen can be expressed to allow for antibody-mediated depletion of CAR-T cells. Small molecule-assisted shutoff CAR-T cells (SMASH-
CARs) or switch-Off (SWIFF-CARs) can be used to control whether CAR-T cell receptors are degraded or are able to be expressed. Cas-9 can
also be inducibly expressed in some CAR-T cells.
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requires further investigation in the future in order to better

understand its mechanisms and develop treatments and

alternative strategies.
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