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The currently devastating pandemic of severe acute respiratory syndrome known as
coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both
the virus and the disease have been extensively studied worldwide. A trimeric spike (S)
protein expressed on the virus outer bilayer leaflet has been identified as a ligand that
allows the virus to penetrate human host cells and cause infection. Its receptor-binding
domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell
viral receptor, and is, therefore, the subject of intense research for the development of
virus control means, particularly vaccines. In this work, we search for smaller fragments of
the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide
synthesis technology. Based on the analysis of available data, we selected a 72 aa long
receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody
response to each of the three antigens (S protein, its RBD domain and the RBM436-507

synthetic peptide) in humans exposed to the infection and in immunized mice. The
seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19
patients and immunized mice and may exert neutralizing function, although with a
frequency lower than anti-S and -RBD. These results provide a basis for further studies
towards the development of vaccines or treatments focused on specific regions of the S
virus protein, which can benefit from the absence of folding problems, conformational
constraints and other advantages of the peptide synthesis production.
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INTRODUCTION

The current SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) pandemic has resulted in devastating social and
economic consequences worldwide, in addition to an enormous
public health burden. Coronaviruses are single-stranded RNA-
enveloped viruses (1). Although this type of viruses is frequently
associated with a common cold with mild symptoms in humans,
some of them can cause severe respiratory infection and death,
mainly in elderly patients and in individuals with several
comorbidities, primarily diabetes, obesity, hypertension and
other cardiovascular disorders (2–4).

The ongoing coronavirus disease 2019 (COVID-19) is
considered one of the world's worst pandemics, with more
than 400 million cases and 5.8 million human deaths reported
as of February 2022 (5). Since the beginning of the COVID-19
pandemic, the scientific community has focused intense efforts
on studying the virus biology, the disease manifestations and
management and its prevention (6, 7). In a short time, the SARS-
CoV-2 genome, the specificity of its overall structural
organization and the atomic 3D structure of the most
significant proteins were revealed (8, 9).

One of the critical proteins is a trimeric spike (S) protein that
allows this virus to penetrate host cells and cause infection. The S
protein trimers protrude from the outer bilayer leaflet and form a
characteristic crown-like halo surrounding the viral particle
(hence, "corona"). The importance of the SARS-CoV2 S-
protein is that it is a large self-assembled homo-trimer protein
of about 1,250 aa (8, 9), expressed on the virus membrane and
responsible for the virus-cell invasion. The protein is composed
of two functional subunits, S1 and S2. The S1 subunit, which
forms the globular head of the S protein trimer, contains the
receptor-binding domain (RBD) that specifically interacts with
the host receptor angiotensin-converting enzyme 2 (ACE2).

The S2 subunits form the stalk of the trimer embedded into
the viral envelope. When the S protein binds to the ACE2
receptor, proteases located on the host cell membrane trigger
the dissociation of S1 fragments and induce an irreversible
refolding of the S2 trimer. The structural rearrangement of S2
brings together the viral and cellular membranes, leading to the
fusion of the two bilayers. The atomic 3D structure of the S
trimer in the prefusion conformation, the S2 trimer in the post-
fusion conformation, and the RBD-ACE2 complex have been
determined (10–12) and all have contributed to developing
means to control virus spreading. Specifically, these features of
the S protein led vaccine companies to choose it for vaccine
development (13, 14).

The RBD is a monomeric domain of a smaller size (220 aa)
that folds in the same stable 3D structure as part of the complete
S protein and as a separate domain (15). Antiviral antibodies and
cell mediated responses of multiple specificities are produced
during SARS-CoV-2 infection and appear to contribute to
protection (16). RBD is not only essential for virus invasion of
host cells, but also targets neutralizing antibodies generated
during SARS-CoV-2 infection; therefore, RBD represents
another promising vaccine candidate (8, 17, 18).
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While the rate of infections and deaths rapidly increased
worldwide, significant efforts were invested in developing
effective tools to promptly confirm diagnosis of the infection
i.e., highly sensitive and specific molecular diagnostic methods
(19). Likewise, given that vaccines are the primary medical
option and most cost-effective means for global control of the
pandemic, an unprecedented effort to develop anti-COVID-19
vaccines led to the production, clinical evaluation and approval
by regulatory agencies of multiple vaccines. Along this line, given
the critical functions of the S protein, the viral surface location,
and the availability of detailed structural information, this
protein was chosen for vaccine development (9, 20, 22).

As of February 2022, more than ten billion vaccine doses had
been delivered globally, and ~60% of the world population had
received at least one vaccine dose (5). Moreover, despite specific
antiviral drugs having been elusive until recently, two novel
antiviral medicines have already been approved by the United
States Food and Drug Administration (FDA). Molnupiravir
produced by Merck (23), and Nirmatrelvir/Ritonavir
(Paxlovid) produced by Pfizer (24) are medicines for oral
administration, with high effectiveness to reduce disease
severity and prevent deaths (25).

Although the most extensively used vaccines have shown high
protective efficacy, their effectivity, particularly the antibody
response's longevity and the virus-neutralizing function,
appears short-lasting, suggesting the need for new vaccine
formulations. Based on the recent advances in understanding
the structure and function of S protein, and with the aim of
identifying highly effective virus proteins/fragments this work
concentrate on further characterization of the S protein, focusing
on shorter fragments/domains with vaccine potential. We
selected the S-ACE2 receptor binding motif (RBM436-507)
which was produced as a single synthetic peptide, along with
shorter sequences which were compared in their antigenicity and
immunogenicity using sera from humans naturally exposed to
COVID-19, and sera from immunized animals. Selected sera
were also analyzed for their neutralization activity.
MATERIALS AND METHODS

Recombinant S and RBD
Proteins Production
Since the S trimer is described as the primary protein responsible
for inducing a protective immune response against the SARS-
CoV-2 virus, first we produced a secreted and soluble form of
this protein self-assembled in the trimer using Chinese Hamster
Ovary (CHO) cells as previously described (26). Briefly, the
transmembrane domain and the C terminal intracellular tail
were removed and replaced by a T4 foldon DNA sequence and
an 8xHis tag. A signal peptide sequence was added. To stabilize
the prefusion structure of the S trimer in our constructs, we
deactivated the original RRA furin cleavage site R by changing it
to RGSA. We introduced amino-acid mutations K986P/V987P
("2P") as suggested elsewhere (12). The construct used in this
work had the D614G mutation shared by most of the SARS-
May 2022 | Volume 13 | Article 879946
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CoV-2 variant of concern (B.1.1.7 - Alpha, B.1.351 - Beta,
B.1.617.2 - Delta, B.1.1.529 - Omicron) widely spread during
the 2020-2021 pandemic (27). This S protein construct was
established to form trimers predominantly folded in the
prefusion conformation (26). In addition, the RBD of the S
protein (aa 319-541) was produced as a recombinant product
(26) and a series of peptides covering the BIP sequence were
synthesized and analyzed.

Peptide Synthesis, Purification and
Characterization
Peptide sequences corresponding to the fullRBM436-507 length (72aa)
aswell as shorter fragmentsof20-22aminoacids (P11-P16)described
inTable 1were synthesized and analyzed. Single cysteine residues in
peptides P11, P12, and P13 (486-507, 476-495 and 466-485 of S
protein, respectively) were replaced with serine to avoid unwanted
spontaneousformationofdisulfidedimers.Peptideswerepreparedby
microwave-assisted solid-phase peptide synthesis (MW-SPPS),
cleaved from the resin and, in the case of RBM436-507 and P12,
oxidized in solution with H2O2 at pH 9.0. (28) Purifications were
performed by flash chromatography followed by semi-preparative
HPLC to achieve purity >70% (RBM436-507 and P16) or >87% (P11-
P15).FinalproductswerecharacterizedbyanalyticalUHPLCcoupled
with ESI single quadrupole mass spectrometry and/or MALDI-ToF
analysis. Analytical data and details on the synthesis and purification
procedures are available as Supplementary Information.

Conformational Studies by
Circular Dichroism
The CD spectrum of the RBM436-507 peptide was recorded using
quartz cells of 0.1 cm path length with a JASCO J-710 CD
spectropolarimeter at 25 °C. The spectrum was measured in the
260−190 nm spectral range, 1 nm bandwidth, 64 accumulations,
and 100 nm/min scanning speed. The peptide was dissolved in
water to a concentration of 12 mM. The secondary structure
content of the peptide was predicted using the online server for
protein secondary structure analyses DichroWeb (29). Input and
output units and the wavelength step were q (mdeg) and 1.0
nm, respectively.

The mean residue molar ellipticity [Q]MR (Y-axis label) was
calculated, which is defined as:

Q½ �MR = Q= 10 x Cr x lð Þ
where: Q is ellipticity in mdeg, Cr is the mean residue molar
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concentration, l is the cell path in cm, and Cr = (n x 1000 x
Cg)/Mr

where: n is the number of peptide bonds (residue), Cg is the
macromolecule concentration (g/ml), Mr is the molecular weight
of the peptide.The algorithm used was CDSSTR, and the
reference database was set-7 (30).

The normalized root means square deviation (NRMSD)
was 0.035.

Human Blood Samples
A clinical protocol was developed, submitted to and approved by
the local Ethical Committees (CEAVNO, Approval # 17522) in
Italy and (CECIV, approval # 04-2020) in Colombia. Whole
blood (10 mL) was collected from COVID-19 patients from both
Italy and Colombia. Samples were collected by arm venipuncture
using dry tubes after hospitalization, and upon the patient's
written informed consent, socio-demographic data and clinical
manifestations were recorded. SARS-CoV-2 infection was
confirmed by RT-PCR. Blood was fractionated, and sera were
collected and kept frozen at -20oC until use for serology.

Mice Immunization and Sera Collection
A total of 30 male and female, 6-8 weeks old BALB/c mice of 20 ±
5 g of body weight were randomly selected and distributed in
three groups (A, B and C) of 10 animals each. Each group was
further divided into experimental (Exp) and control (Ctrl) sub-
groups of five mice each and were further immunized with
SARS-CoV-19 S (group A) or RDB (group B) recombinant
proteins as well as with the synthetic RBM436-507 peptide
(group C). Each group of mice was immunized subcutaneously
(s.c.) at the base of the tail on days 0, 20 and 40 with 20mg of each
antigen diluted in 50 mL PBS and emulsified in Montanide ISA-
51 (Seppic Inc., Paris, France) according to the manufacturer's
recommendations. Mice were bled from submandibular veins on
days 1-2 before the first and third immunizations, 20 days after
the third dose and every 60 days until day 140. Whole blood
(~100 mL) was collected, and sera were separated by
centrifugation and stored frozen at -20°C until use for
serological analyses. Animal studies were carried out at the
Caucaseco Research Center in Cali (Colombia) and approved
by the Animal Ethics Committee of MVDC in Colombia. Animal
care, housing, and handling were performed according to
institutional guidelines and following the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
TABLE 1 | Synthesized RBM peptide sequences.

Name Sequence Amino acids

RBM436-507 Ac-WNSNNLDSKVGGNYNYLYRLRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQP-NH2 436-507
P11 Ac-FNSYFPLQSYGFQPTNGVGYQP-NH2 486-507
P12 Ac-GSTPCNGVEGFNCYFPLQSY-NH2 476-495
P13 Ac-RDISTEIYQAGSTPSNGVEG-NH2 466-485
P14 Ac-FRKSNLKPFERDISTEIYQA-NH2 456-475
P15 Ac-GGNYNYLYRLFRKSNLKPFE-NH2 446-465
P16 Ac-WNSNNLDSKVGGNYNYLYRL-NH2 436-455
May 2022 | Volume 13 |
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Serological Analyses
Reactivity of Mouse Antibodies to S and RBD
Proteins and RBM436-507

The reactivity of sera from mice immunized with the S, RBD and
RBM436-507 was determined by ELISA, using as antigens the
specific immunogens. Briefly, 96-well plates (Nunc-Immuno
Plate, Maxisorp, Roskilde, Denmark) were coated with one μg/
mL RBM436-507, RBD and Spike Trimer protein, pH 7.4 at 4°C,
overnight. After plates were blocked with 5% skim milk solution
[PBS 1X, 0.05% Tween 20, (PBS-T)], serum samples were added
at 1:100 or three-fold serial dilutions starting at 1:100 in 2.5%
skim milk in PBS-T and were incubated for 1 hour. Plates were
then washed and incubated with alkaline phosphatase-
conjugated anti-mouse IgG antibody (Sigma Chemical Co., St
Louis, MO) at a 1:1000 dilution for 1 hour. Reactions were
revealed with para-nitrophenyl phosphate substrate (p-NPP)
(Sigma Aldrich) and read at 405 nm wavelength (Dynex
Technologies, Inc., MRX Chantilly, VA).

ELISA Assays to Analyze Anti-Spike,
Anti-RBD and Anti-RBM436-507
Human Antibodies
Nunc Maxisorp polystyrene plates were coated with Spike
Trimer (Excellgene, Monthey, Switzerland) or RBD
(Excellgene, Monthey, Switzerland) at 1 mg/ml in PBS pH 7.4
(50 ml/well) overnight at 4°C; peptide RBM436-507 coating was at
2 mg/ml in Carbonate buffer, pH 9.6; 20-mers P11-P16 at 10 mg/
ml in PBS, pH 7.4. After blocking for 1 hr at room temperature
(RT) with PBS pH 7.4, BSA 3% (A4503 - Merck KGaA,
Darmstadt, Germany), sera diluted 1/100 in PBS pH 7.4, BSA
1%, Tween-20 0.05% were incubated on the plate (50 ml/well) for
2 hours at RT. After 3 washings with PBS Tween-20 0.05% (150
ml/well), goat anti-human IgG HRP (A0293 - Merck) diluted
1:5000 in PBS BSA 1% Tween-20 0.05% was added to the plates
at 50 ml/well and incubated for 2 hours. For IgM and IgA
determination, goat anti-human IgM HRP conjugate (A0420 –
Merck) or goat anti-human IgA HRP conjugate (A0295 - Merck)
diluted 1:20,000 in PBS, BSA 1%, Tween 0.05% were added to the
plates. After three washings with PBS Tween-20, 0.05%,
enzymatic activity was measured at 450 nm after TMB
addition (T4444 - Merck) and blocked by H2SO4 1M.

Inhibition of ACE Binding to RBD With
Anti-RBM436-507 Specific Human
Antibodies
The ability of anti-RBM436-507 antibodies to inhibit the binding of
ACE2 to RBD was evaluated using a modification of the SPIA
commercial kit (Diametra Srl, Spello, Pg - Italy, ImmunoDiagnostic
System Group). Anti-RBD antibodies were used as a positive
control. Anti-N1 (20-mer linear peptide of SARS-CoV-2
nucleocapsid, aa 366-388) and anti-TT (tetanus toxoid) antibodies
were used as virus-related and -unrelated negative controls. Specific
antibodies were eluted from four sera with high anti-COVID-19
antibody titers using polystyrene plates coated with RBD, RBM436-

507, N1 and TT. Briefly, the plates were blocked with PBS BSA 3%,
and COVID-19 sera diluted 1/50 in PBS BSA 1% Tween-20 0.05%
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and incubated for 2 hours at RT. Plates were washed three times
with PBS Tween-20 0.05%, and bound antibodies were eluted with
200ml PBS pH 3.0 and immediately neutralized at pH 7.4 with basic
phosphate buffer. The concentration of eluted antibodies was
evaluated by A280 absorbance measurement with Nanodrop, and
binding to the respective antigen was confirmed by indirect ELISA.
For ACE inhibition assay, anti-RBD, anti- RBM436-507, anti-N1 and
anti-TT eluted antibodies were incubated onto Diametra SPIA
plates coated with recombinant RBD. Calibrator and controls
were loaded as per the manufacturer's instructions. Ready-to-use
ACE2 conjugated with horseradish peroxidase was then added to
the wells, and plates were incubated for 90 minutes at 37°C. After
washings, plates were incubated with TMB for 15 minutes and acid
stop solution was added before reading the absorbance at 450 nm.
Results were expressed as percentage inhibition according to the
manufacturer's instruction.

Statistical Analysis
Antibody titers were compared between mouse groups. A
descriptive analysis was performed to evaluate differences in
humoral immune responses within each group of mice. Kruskal-
Wallis was performed to compare the antibody response to each
protein, followed by Dunn's multiple comparison test. Results of
anti-S, anti-RBD and anti- RBM436-507 antibodies were expressed
as Odd Ratio (OR) of a positive internal control set at 1.0. A p-
value < 0.05 was considered statistically significant. Data were
analyzed and plotted using GraphPad Prism software (version
5.01; GraphPad Software Inc, San Diego, California, USA).
RESULTS

Selection and Circular Dichroism Analysis
of RBM436-507 Peptide
To study the interaction between S and ACE2, we focused on the
surface of the RBD involved in the ACE2 receptor binding, which
should represent the target of the neutralizing antibodies. Our
analysis of the 3D structure of the RBD-ACE2 complex showed
that the large part of the RBD interacting surface, the Receptor
Binding Motif (RBM), is composed of a 436-507 aa segment
(Figures 1A–C). Since peptide synthesis technology has several
advantages compared to recombinant proteins (31–34), we
selected this RBM region for peptide synthesis and subsequent
experimental studies. The central part of RBM436-507 should
mimic well the native-like conformation due to a disulfide
bond. The peptide flanking parts should be unstructured and
highly flexible both in peptides as well as within the 3D structure
of the S-protein. In addition to the critical surface localization of
the RBM436-507 in the S protein, its amino acid sequence is
specific to the SARS-CoV-2 and contains several predicted T-cell
epitopes (33). The sequence of RBM436-507 (Table 1) was N-
terminal acetylated and C-terminal amidated to avoid including
terminal charged groups not present in the native protein.

The conformation of RBM436-507 in water at pH 7 was
explored by CD spectrometry (Figure 1D). We then evaluated
the antigenic properties of this peptide. The absence of a defined
May 2022 | Volume 13 | Article 879946
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minimum around 200 nm, diagnostic of random coil
conformation, is compatible with a certain degree of
structuration of the peptide. The secondary structure content
was predicted based on the CD spectrum using the online server
for protein secondary structure analyses, DichroWeb (29): 2%
helix, 30% b-strand, 19% b-turn, and 49% random coil. The
relatively high percentage of b-strand conformation suggests the
intriguing hypothesis that RBM436-507 peptide can partially
preserve the extended conformation displayed along most of
its sequence within the folded Spike protein (pdb code 6VXX)
(8, 21).

Immunogenicity of S, RBD and RBM436-507
in Mice
As shown in Figure 2, sera from all immunized animals tested by
ELISA at 1:100 dilution, in response to the S, RBD and RBM436-

507 antigens, indicated specific IgG seroconversion after the first
immunization dose. Furthermore, most of them displayed a
Frontiers in Immunology | www.frontiersin.org 5
boosting response after the second immunization dose, with
the highest levels against the three proteins observed on day 40.
However, while animals immunized with RBM436-507 and RBD
developed similar high level antibody profiles (3.0 to 3.5 OD),
mice immunized with the S protein displayed significantly lower
responses (1.0 to 2.0 OD). For RBM436-507 and RBD, antibodies
remained at high levels (>2.0 OD) after day 140, whereas
antibodies against the S protein notably decreased (< 0.5 0D)
during the same period. None of the control mice immunized
with adjuvant alone seroconverted. The antibody titration
(three-fold dilutions) using sera collected on day 140 indicated
titers of 1:24,300, 1:72,900 to RBM436-507 and RBD respectively,
and 1:900 to S (Supplementary Material, Figure S1).
Reactivity of Mouse Antibodies to S, RBD
and RBM436-507
The analysis of the homologous and cross recognition of the S,
RBD and RBM436-507 antigens by antibodies elicited upon mice
immunization is shown in Figure 3. ELISA results showed a high
homologous sera reactivity but different reactivity with the other
proteins/domains. Reactivity of sera diluted at 1:100 showed OD
values ranging from 1.2 to 2.0 against the full-length S antigen,
3.2-3.5 to the RBD and 3.0-3-5 to the RBM436-507 fragment. The
titration of this homologous reactivity indicated that final
reactivity (OD 0,2) at 1:104 dilution to the S protein
(Figure 3A), whereas at the final dilution tested (1:104) the
OD values were higher for RBD (OD= 2.5-3.0) and RBM (0.5-
1.7) (Figures 3B, C, respectively).

Regarding the analysis of the cross reactivity, anti-S
antibodies displayed similar recognition of RBD and RBM436-

507 (Figure 3), and the anti-RBD antibodies high recognition of
both the S- and -RBM436-507 proteins, although the S-protein was
better recognized. In contrast, for the anti-RBM436-507

antibodies, only two mice presented cross reactivity with end
point of 1:104 whereas the remaining animals of the group
presented only weak reactivity at 1:100 dilution. Notably, these
antibodies did not cross react with the S-protein (Figures 3D–I).

The final reactivity titer of the anti-S antibodies was 1:104

against the S protein, and 1.8x103 against RBD and RBM436-507.
In the case of RBD, mouse immunization elicited a vigorous
antibody response (Figure 3) with high optical densities even at
1:104 dilution. Although reactivity to the S protein and the
RBM436-507 peptide were lower, recognition remained
significant even at dilutions of 1:104 and 5:103, respectively.
A B C

FIGURE 2 | Immunogenicity of S, RBD and RBM436-507 in mice. Analysis of the antibody response in mice immunized at days 0, 20, 40. (A) Anti-S, (B) Anti-RBD
and (C) Anti-RBM436-507. SD is < 20% of the mean.
A B

D C

FIGURE 1 | 3D structure of the RBD-ACE2 complex and CD of RBM436-507.
(A) Atomic 3D structure of the S trimer in the prefusion conformation (27).
RBD is shown in ribbon representation (dark green). Region 476-507 is in
orange. (B) Complex between RBD (green-orange) and ACE2 receptor (light
cyan) (12). (C) Conformation of the RBM peptide (436-507) within the RBD.
Cysteine residues are shown as spheres. (D) Circular Dichroism of RBM436-

507 synthetic peptide used in this work.
May 2022 | Volume 13 | Article 879946

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pratesi et al. Anti-Spike RBM Antibodies in COVID-19
Sera from mice immunized with RBM436-507 peptide also
displayed high reactivity with the homologous peptide and the
RBD protein; however, these sera did not react with the S protein
(Figure 3). We further analyzed reactivity of anti-RBM436-507

antibodies upon solid-phase capture on ELISA plates followed by
glycine elution with its homologous peptide, the RBD and the S
proteins. As shown in Figure 4, while there was significant
reactivity of eluted antibodies with RBM436-507, no recognition
of the motif on the RBD and S proteins was observed.

Evaluation of Anti- RBM436-507 Antibodies
in Humans
Patient sera were first screened by ELISA using S and RBD
proteins and compared to a group of pre-pandemic normal sera.
IgG antibody levels higher than the 97.5th percentile of normal
Frontiers in Immunology | www.frontiersin.org 6
sera were detected in 45% (29/64) of patient sera on S and in 53%
(34/64) on RBD (Figures 5A, B). A strong positive correlation
(p<0,0001) was observed between antibody levels for the two
recombinant proteins (Figure 5C).

It has been shown that low pH affects spike structure, favoring
a closed conformation of the trimer (34), affecting epitope
exposure (16). We thus performed the ELISA assay at acidic
pH, obtaining a similar level of antibodies in patient sera
(Supplementary Figures 2A, B). Sera from COVID-19
patients and normal subjects were tested by ELISA using RBM
immobilized on polystyrene plates (see Materials and Methods
for details). IgG anti-RBM436-507 higher than the 97.5

th percentile
of the healthy population was detected in 21/60 (35%) of the
COVID-19 patients. IgG antibody levels were significantly
higher in patients than in controls (p<0.05) (Figure 6A) and
A

B

D

E

F

G

I

H

C

FIGURE 3 | Homologous and cross reactivity of the S, RBD and RBM436-507 antigens with antibodies elicited upon mice immunization. (A–C) show reactivity of anti-
S, anti-RBD and anti-RBM436-507 produced in mice with their homologous antigens. (D, G) show cross reactivity of anti-S with RBM and RBD antigens. (E, H) of
anti-RBD with S and RBM antigens. (F, I), of anti RBM436-507 with S and RBD, respectively. SD is < 20% of the mean.
FIGURE 4 | Cross-reactivity of S and RBD with ELISA captured RBM436-507. ELISA captured mice anti-RBM436-507 antibodies were eluted with Gly pH 2.5 and
used to determine the reactivity with RBM (homologous), and with S and RBD (heterologous) antigens ELISA reaction was developed using rabbit anti-mouse
alkaline phosphatase conjugate.
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were correlated with anti-S and anti-RBD antibody levels (p <
0.01) (Figures 6D, E). Anti RBM436-507 of IgM and IgA isotype
were also evaluated, with IgM anti- RBM436-507 detected in 7/60
(11.6%) and IgA in 6/60 (10%) (Figures 6B, C). IgM and IgA
antibody levels were not significantly different in COVID-19
patients and controls. There was coexpression of anti-RBM436-507

Ig isotypes in COVID-19 samples (Figure 6F).

Epitope Mapping and Functional Activity
of Murine and Human Anti-RBM436-507
Antibodies
The analysis of the neutralizing activity of antibodies elicited by
mouse immunization showed that, for mice immunized with S
and RBD, the neutralization was significantly boosted after the
second and third doses. Both S and RBD sera induced total
neutralization after the third dose and remained high until the
last test on day 115. In contrast, antibodies to RBM436-507

reached 40% neutralization, which remained at that level until
day 115 (Figures 7A–C).

To determine whether RBM436-507 represents a target of
neutralizing antibodies in natural conditions, we first carried out
an extensive ELISA analysis of sera from both COVID-19 patients
and immunized mice, and second, we compared the ACE2-RBD
binding neutralization by antibodies to the whole RBD and to
RBM436-507. In the ELISA analysis of human sera (n= 100) from
COVID-19 patients 35 (35%) reacted with the RBM436-507

indicating a lower reactivity than the same sera with the S and
RBD. Positive samples displayed distinct reactivity with different
Frontiers in Immunology | www.frontiersin.org 7
regionsofRBM436-507,more frequentlywith theN-terminalportion
(P15-P16). Neutralizing activity of anti-RBM436-507 antibodies has
been evaluated by inhibition of RBD binding to ACE2, an assay
considered a SARS-CoV-2 surrogate virus neutralization test (35–
37).Neutralizing antibodiesmay bind to sequences exposed both in
the closed and the open conformation of the S protein or only in the
open one; most of these sequences are comprised in RBM436-507. In
contrast to human patients, mice immunized with RBM436-507

presented good recognition of RBM436-507 and RBD but no
reactivity with S.

Since neutralizing antibodies mostly specific for RBD but also
to several targeted epitopes are produced during natural
infection (21, 22), in the ACE2-RBD binding neutralization
assay, antibodies to the whole RBD and to RBM436-507 were
compared. In the case of humans with confirmed COVID-19
infection, sera positive to RBM436-507 were tested using the 20-
mer overlapping peptides covering the entire RBM sequence
(Table 1). As shown in Figure 8, immune response mainly
targets the N terminal domain (P15-P16) rather than the C-
terminal part (P11-P12). To evaluate the ability of antibodies to
RBD or RBM436-507 sequences to block ACE2 binding to RBD,
specific anti-RBD and anti-RBM436-507 antibodies were eluted
from COVID-19 positive sera using antigen-coated wells and
incubated with labeled ACE2 on solid-phase RBD. Anti-RBD
antibodies eluted from 4 COVID-19 sera inhibited the binding of
labeled ACE2 to solid-phase RBD (Figure 9). Anti-RBM436-507

antibodies from 2 out of 4 sera displayed some inhibition, higher
than anti-N1 and anti-TT control antibodies.
A B

C

FIGURE 5 | Anti-Spike and anti-RBD antibodies in COVID-19 patients. Distribution of anti-S IgG (A) and anti RBD IgG (B) in COVID-19 patients as compared to
normal controls (NHS). Correlation of anti-S IgG and anti-RBD IgG in COVID-19 patients (C). p < 0.05 was considered significant.
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DISCUSSION

This study confirmed the high seroreactivity of the full-length S
and RBD recombinant proteins and described the
immunogenicity of the synthetic RBM436-507 fragment.
Moreover, it compared the antibody responses induced by
natural human exposure to SARS-CoV-2 with that of rodents
experimentally immunized with the three antigens.

Analysis of 3D structures of the S protein and RBD-ACE2
complex led to selecting a RBD 72 aa long segment (RBM436-507)
highly specific to SARS-CoV-2 and located in the RBD-ACE2
interface. Importantly, in silico studies confirmed the presence in
this protein fragment of multiple immune epitopes (B- and T-cell
epitopes) previously identified (33), and ourCDdata suggested that
the RBM436-507 peptide alone can partially preserve the extended
Frontiers in Immunology | www.frontiersin.org 8
beta-conformation observed in the context of the native protein
structure. Indeed within the folded Spike protein, two short
antiparallel beta sheets are observed (residues 453-454, 492-493
sheet1, and 473-474, 488-489, sheet2) but many other residues are
in extended conformation (38/72, 53 %). The RBM436-507 peptide
shows a high percentage of random coil conformation (about 50%)
as expected for an isolated peptide; however, itmaintains about one
half of the extended conformation of the segment 436-507 when
included in the whole protein which is an interesting result
especially considering that many of the epitope residues of RBM
that make interactions with a human neutralizing antibody (P2B-
2F6 Fab) are in extended conformation, notably K444, N448, L452,
V483, E484, F490 and S494 (38)

These features, together with the high RBD immunogenicity
during human natural infection, vaccination and animal
A B C

FIGURE 7 | Neutralizing ability of antibodies in mice. Neutralizing ability of anti-S (A), anti-RBD (B) and anti-RBM (C) antibodies from immunized mice. Results are
shown as the percentage of inhibition of specific antibodies at different days (0, 40, and 115) post-immunization.
A B

D E F

C

FIGURE 6 | Anti-RBM436-507 Ig isotypes in COVID-19 patients. Distribution of anti RBM IgG (A), IgM (B) and IgA (C) in COVID-19 patients is shown compared to
normal controls (NHS). Correlation of anti-RBM IgG with anti-Spike (D) or anti-RBD (E) IgG in COVID-19 patients (D). Distribution of anti-RBM antibody isotypes (F).
p < 0.05 was considered significant.
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immunization, as well as the efficient neutralization of the RBD-
ACE2 interaction by anti-RBD antibodies, encouraged the search
for a smaller fragment with vaccine potential, suitable for
production by peptide synthesis technology. It was hoped that
the smaller fragment could elicit virus-neutralizing antibodies
with similar or superior vaccine performance than the S protein.

The multiple vaccines delivered worldwide are based on the
full-length S protein using different technological platforms (39).
Although most of them have displayed high protective efficacy,
their effectivity, particularly the antibody response's longevity
and the virus-neutralizing function, appears short-lasting.
Within less than a year of a two doses immunization schedule,
a third vaccine dose was required to maintain the protection
level; moreover, boosting vaccine doses may be further required
to offer functional immunity in the population (40). Because of
Frontiers in Immunology | www.frontiersin.org 9
the vast virus propagation capacity in the population, frequent
vaccination generates a significant logistic and global economic
challenge; therefore, alternative vaccine platforms are envisioned.

The strong positive correlation of the ELISA seroreactivity of the
S (45% = 29/64) and RBD (53% = 34/64) proteins (p<0,0001) is very
interesting and confirms the feasibility of using a fragment of the S
protein as vaccine. In addition, this result correlates with the highly
efficient neutralization induced by mouse anti-S and -RBD sera.
Moreover, the IgG ELISA reactivity of these two proteins with
COVID19 and pre-pandemic normal sera (>97.5th percentile)
indirectly confirmed the response specificity to SARS-COV-2. In
contrast, specific IgM and IgA antibodies are less frequent in
COVID-19 patients. This latter finding may be explained because
in the COVID-19 sera the primary IgM response and IgA had
waned. These results support the idea that shorter protein fragments
i.e., RBD would have the capacity to stimulate at least a similar
immune response to S protein.

We show here that the antibody recognition of RBM436-507 as
an isolated fragment, i.e., as RBM436-507 peptide, was present in a
fraction of COVID-19 donors. In COVID-19 patients, a
polyclonal anti-RBM436-507 antibody response with IgM, IgG
and IgA isotypes was detected in one third of the cases, in
amounts correlated with the level of anti-RBD and anti-S
antibodies. Our finding that COVID-19 patients recognise
RBM436-507 and smaller peptides within this sequence is in
agreement with a report from 2020 (17) showing that infected
subjects produced antibodies to multiple sequences, such as S412-
431 and S446-465, that overlap ACE2 contact residues, and S432-451
and S475-494, that are adjacent to critical residues contacted by
ACE2, all contained within RBM436-507.

The high level of neutralization achieved by mice sera after
the first immunization dose with RBD encouraged selection of a
smaller protein fragment with vaccine potential. Complete
neutralization is produced after the first immunization with
RBD, whereas similar neutralization by anti-S antibodies is
only obtained after two immunization doses. In contrast, the
poor neutralization of the anti-RBM436-507 antibodies was
unexpected and deserves further studies. This result is
surprising as there was significant cross reactivity of anti-RBD
and anti-RBM436-507.
FIGURE 9 | Neutralizing ability of antibodies in Covid-19 patients. Neutralizing ability of antigen eluted anti-S, anti-RBD and anti-RBM antibodies in COVID-19
patients. Results are shown as the percentage of inhibition of ACE-HRP binding to RBD.
FIGURE 8 | Fine specificity of anti-RBM436-507 antibodies in COVID-19
patients. Reactivity of anti-RBM positive COVID-19 sera with 20-mers
overlapping peptides (P11-P16) covering the entire RBM436-507 sequence.
Results are shown as percentage of anti-RBM positive sera reacting with the
specific peptide.
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The neutralizing activity of anti-RBM436-507 antibodies might
be associated with the lack of recognition of the full-length S by
the anti-RBM436-507 sera. In addition, the high immunogenicity
of RBM436-507 mice confirms the presence of T-cell epitopes
within this protein segment, as suggested by the analysis
performed by Grifoni et al. (33).

Mouse IgG antibodies efficiently reacted with both RBM436-

507 and RBD, but not with S. The latter results can be explained
by the fact that RBM436-507 represent only 6-7% of the whole
protein. Moreover, anti-RBM436-507 specific antibodies elicited
by mice immunization only partially inhibited (30-40%) the
RBD-ACE2 interaction, while mouse anti S and RBD
recognized RBM and induced 100% inhibition of the ligand-
receptor interaction. These results suggest that the conformation
of isolated RBM436-507 only partially overlaps with the RBM
structures present in S or RDB. The relatively high percentage of
b-strand conformation suggests that RBM436-507 peptide alone
can partially preserve the extended conformation displayed along
most of its sequence within the folded S protein (pdb code
6VXX) (21, 23).

In conclusion, our comparative analysis of immunological
properties has shown that although RBM436-507 had reduced
seroreactivity compared to the S protein and RBD, it could still
represent an alternative path for developing virus control means,
such as vaccines. The basis for this potential lies in its small size,
absence of folding problems, possibility to constraint the RBM
conformation in a required state, easy incorporation in different
multimeric carriers and advantages associated with peptide
synthesis production.

Further studies are needed to strengthen the potential use of
RBM436-507 in vaccination strategies.
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