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Macrophages are versatile immune cells associated with various diseases, and their
phenotypes and functions change on the basis of the surrounding environments.
Reprogramming of metabolism is required for the proper polarization of macrophages.
This review will focus on basic metabolic pathways, the effects of key enzymes and
specific products, relationships between cellular metabolism and macrophage
polarization in different diseases and the potential prospect of therapy targeted key
metabolic enzymes. In particular, the types and characteristics of macrophages at the
maternal-fetal interface and their effects on a successful conception will be discussed.
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OVERVIEW OF MACROPHAGES

Origination of Macrophages
It is believed that macrophages belong to the mononuclear phagocytic system, mainly derived from
bone marrow progenitor cells. When macrophages are within the bloodstream, they are called
mononuclear cells. When inflammation or injury occurs, monocytes are recruited to tissues and
induced into macrophages based on the condition of the local environment (1, 2). As a matter of
fact, most adult tissue-resident macrophages are seeded during embryonic development, have self-
renewal capacity and are maintained without depending on monocytes (2–4). The most majority of
tissue-resident macrophages are derived from erythro-myeloid progenitors that develop in vitellus
capsule embryos. However, the existence of tissue-specific macrophage progenitors that can
promote the maintenance of adult macrophages has not been clarified (4). When the quantity of
monocytes in the blood is reduced, those in the tissues are largely unaffected. However, monocytes
and their progenitors can supplement classical tissue mononuclear phagocytes as needed (2).
Embryonic macrophages are involved in tissue remodeling while monocyte-derived macrophages
mainly play a role in host immune response (2). The activation status and the function of tissue
macrophages under different stimuli are largely dependent on the local tissue microenvironment
(3, 5). The importance of the local microenvironment has been identified through studies based on
transcriptomics, epigenetics and open chromatin regions (3).

Currently, comparative studies of gene expression have been conducted in macrophages from
the most commonly used cell sources: murine bone marrow, human peripheral monocytes, and
human leukemic monocytic cell line THP-1, as well as those derived from induced pluripotent stem
cells (iPSCs) which were generated from differentiated cells by upregulating pluripotency factors
org July 2022 | Volume 13 | Article 8802861
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(Oct3/4, Sox2, c-Myc, and Klf4) (6). MCP1, IL6, TNF, IL10,
CXCL12, IL1b and IL6 are expressed in human blood-derived
macrophages; meanwhile, IL1b, TNFa, iNOS, IL12b, Arg1,
VEGFA and IL10 are expressed in murine bone marrow-
derived M1 and M2 macrophages (7). IL1 and CD36 are
expressed in THP-1 cells in vitro (7), which can be treated as a
model of human macrophages when studing relatively simple
biological processes, but cannot be used in more comprehensive
immunopharmacology and drug screening programs (8).
Human peripheral blood-derived macrophages and human
induced pluripotent stem cell (iPSC)-derived macrophages
showed similar gene expression patterns, reminding that iPSC-
derived monocytes can be used as a credible cell source of human
macrophages for in vitro studies (7, 9). Further studies are
needed to determine how the heterogeneity of macrophages is
reflected, whether the functions and activities of tissue-specific
macrophages are different from those of peripheral migration-
induced cells, and the concordance between in vitro and in
vivo experiments.

Classification of Macrophages
Diversity and plasticity are hallmarks of macrophages. In response
to IFN-g/lipopolysaccharide(LPS) (10) or IL-4/IL-13, macrophages
undergoM1orM2activation (11), which represent two extremesof
a continuum of functional states. M1 macrophages have
proinflammatory abilities and are able to initiate and maintain
inflammatory reactions (12, 13), induce Th1 response activation
(14), activate endothelial cells, amplify antigen presenting capacity
(12, 14, 15), secrete proinflammatory cytokines and recruit other
immune cells into inflammatory tissue. Nevertheless, M2
macrophages release anti-inflammatory mediators (16), support
angiogenesis, induce adaptive Th2 immunity, refurnish and repair
of scavenge debris and damaged tissue, take part in tumor
progression, allergic reactions, and response to helminths (15).
Some molecules are relative to both M1 and M2 macrophage
polarization, such as NF‐kB (17), IRF, AP1, PPAR‐g, AMPK and
SIRPa (18). Somepathways aremainly involved inone polarization
process of macrophages, JAK/STAT1 (12), JAK/STAT5 (19),
extracellular signal-regulated kinase (ERK) (19), and Notch-RBP-
J signaling pathway (18) take part in M1 polarization. JAK/STAT6
(12) and IL-4-JNK-c-Myc pathway (20) participate in M2
polarization. The common transcription factors and the
differences in M1 and M2 macrophages are described in Figure 1.

Recent studies have found that theM2macrophages are further
sub-categorized intoM2a, M2b,M2c, andM2d subtypes (21). M2a
macrophagescanbe inducedby IL-4or IL-13, expressinghigh levels
of arginase 1 (Arg1), FIZZ1 and Ym1 (22), playing a role in anti-
inflammatory activity and tissue remodeling.M2bmacrophages are
activated by IL‐1 receptor ligand, immune complexes (ICs) and
Toll-like receptor (TLR) agonists and produce both anti-
inflammatory and proinflammatory cytokines, including IL-6, IL-
10, CCL1, CD86, TNF-a and SpHK1 (23), playing a role in
immunoregulation. The M2c subset of macrophages is induced
by IL-10, TGF-b or glucocorticoids (24), secreting high levels of IL-
10, TGF-b, CCL16, CCL18, MMP7, MMP8, and TIMP1, playing
crucial roles in the phagocytosis of apoptotic cells (2) and wound
Frontiers in Immunology | www.frontiersin.org 2
healing (25). M2d macrophages, also called tumor-associated
macrophages (TAMs), can be induced by IL-6 or combined
exposure to adenosine 2A receptor (A2AR) agonists and TLR
agonists. M2d macrophages secrete high levels of TGF-b, VEGF
and IL-10, and low levels of IL-1b, IL-12 and TNF-a, taking part
in tumor growth, angiogenesis and metastasis (26). It has been
demonstrated that several stimuli in the tumormicroenvironment,
such as hypoxia, may contribute to the tumoral heterogeneity of
TAMs. The integrated use of new technologies, such as single-cell
RNA-seq, spatial transcriptomics, mass cytometry, and systems
biology approaches, is promising to strongly reveal the tumoral
heterogeneity of TAMs, potentially redefining TAMs with new
valuable biomarkers (27). Excessive activity of either polarized
phenotype is responsible for tissue damage, inflammatory disease,
fibrosis, or tumor growth. Fortunately, macrophages sustain
plasticity after activation and can change phenotypes according to
the microenvironment (15).

Functional macrophage polarization has been reported in vivo,
under physiological conditions (embryogenesis and pregnancy)
and pathological conditions (chronic inflammation, infection and
cancer). In some conditions, such as infection or pregnancy,
macrophage polarizations express mixed or unique phenotypes.
in vitro Because of the complexity of tissue macrophages, the in
vitro-based M1/M2 dichotomous classification does not fully
capture the classification of them. Some researchers have
hypothesized that an M3 switch phenotype exists under the
background of M1 and M2 phenotypes based on studies in lung
diseases (28). M3 switch phenotype reprograms toward the anti-
inflammatory M2 phenotype with proinflammatory stimuli,
contrarily, M3 switches to proinflammatory M1 phenotype with
anti-inflammatory stimuli. Therefore, understanding the role of
coexisting phenotypes of macrophages and the mechanisms driving
their dynamic modulation to adjust to the microenvironmental
changes will be a key challenge in the coming years. The effort
might provide a great prospective for designing macrophage-
centered diagnostic and therapeutic strategies.

Tissue Specific Macrophages: Maternal-
Fetal Interface Macrophages
The maternal-fetal interface consist of various types of immune
cells, such as decidual macrophages (dMfs), natural killer (dNK)
cells, T cells, dendritic cells, B cells and NKT cells. dMfs account
for a proportion of ~20% of decidual immune cells, and is the
second most common immune cells during early human
pregnancy (29). dMfs are present in all stages of pregnancy
and cannot be simply distinguished according to the M1 or M2
types. dMfs constantly switch in the spectrum of continuous
changes between the M1 and M2 types throughout the
pregnancy. It has been found that dMfs around the blastocyst
are inclined toward M1 polarization before implantation. While
trophoblast cells begin to invade the myometrium, dMf are
inclined toward M1/M2 mixed-type polarization. M2 phenotype
predominates during the late first trimester and maintenances of
pregnancy during the second trimester. Then during the third
trimester and parturition, M2 phenotype begins to decline and
M1 phenotype again increases. Successful pregnancy requires
July 2022 | Volume 13 | Article 880286
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that the dMfs activation states remain regulated throughout
pregnancy. Imbalanced M1/M2 dynamics are associated with
complications, such as fetal growth restriction, preeclampsia and
preterm delivery.

Different from dMfs, which are primarily recruited from the
maternal peripheral circulation, there is another homogeneous
population of macrophages of fetal origin at the maternal-fetal
interface, which are called Hofbauer cells (HBCs) (30). HBCs exist
in the placental villi starting from Day 11 in mice and Day 18 in
humans, persisting until parturition and representing a highly
pleiomorphic cell population (31). HBCs phenotypically and
functionally resemble M2 macrophages and are thought to have
broad roles in immune regulation, placental morphogenesis,
stromal water content and ion transport across the maternal–fetal
barrier (32). In vitroAlterations of HBCs have been associated with
several pregnancy disorders, such as Villitis and preterm
delivery (33).

HBCs may be DC-SIGN+/CD163+, which may be connected
with the relation between the high expression of IL-10 in the
chorionic villi and the maintenance of immune regulation (34).
CD28 expression has also been found in Hofbauer cells, which
may adjust the immune function of leukocytes positively or
negatively, and may have a very important influence on
physiological or pathological processes (35). HBCs expressd
higher levels of SPP1, PLIN2, HMOX1, CD36, and LYVE1,
whereas dMfs showed higher expression of HLA genes (HLA-
DRA, HLA-DPA1, HLA-DRB1, HLA-DPB1, HLA-DQA1,
and HLA-DMA) and invariant chain CD74, indicating
strong antigen-presenting capacity of dMfs. What’s more,
dMf sspecifically expressed MS4A4A, STAB1, SEPP1,
Frontiers in Immunology | www.frontiersin.org 3
and MS4A7 (36). In a recent study, CD74 was regarded as a
critical marker in Hofbauer cells. CD45+CD68+CD74- cells were
determined as HBC-like-1 cells and CD45+CD68+CD74+ cells
were determined as HBC-like-2 cells (37). The expression of
these markers is regulated by environmental signals, such as
cytokines and hormones,. Meanwhile, it is suggested that
differential epigenetic regulatory patterns might be critical for
the functional and characteristic differences between dMf and
HBCs (38). Epigenetic patterns will give clues for further
understanding of the immunological characteristics of dMf
and HBCs during human pregnancy.
METABOLIC SIGNATURE OF
MACROPHAGE POLARIZATION IN
PHYSIOLOGICAL AND
PATHOLOGICAL SITUATIONS

In the 1920s, Warburg reported the “Warburg effect” in which
cancer cells “ferment” glucose to produce lactic acid in aerobic
environment, whereas noncancer cells rely primarily on
oxidative phosphorylation in the presence of adequate oxygen
levels (39). Since then, studies have confirmed lipopolysaccharide
which is the cell wall components of gram-negative bacteria can
stimulate aerobic glycolysis and produce the Warburg effect in
macrophages (40). In 2011, Mathis and Shoelson introduced the
term immunometabolism, which was defined as the interaction
between inflammation and metabolic diseases (40). Recently, the
term immunometabolism has been given new meanings that
FIGURE 1 | The common transcription factors and the differences of stimuli, markers, secreted cytokines, the main regulate pathways and functions between M1 and
M2 macrophages. iNOS, inducible nitric oxide synthase; Arg1, Arginase 1; LPS, lipopolysaccharides; GM-CSF, granulocyte-macrophage colony stimulating factor; IFN-g,
interferon-gamma; IL, interleukin; TNF-a, tumor necrosis factor-a; TGF‐b, transforming growth factor‐b; ROS, reactive oxygen species; VEGF, vascular endothelial growth
factor; EGF, epidermal growth factor; Ym1, chitinase 3-like 3; Fizz1, resistin-like-a; MIP-1b, macrophages inflammatory protein; MCP-1, monocyte chemo-attractant
protein-1; RANTES, regulated on activation, normal T cell expressed and secreted; ERK, extracellular signal-regulated kinase; RBP-J, recombination signal-binding protein
Jk; IRF, interferon‐regulatory factors; NF‐kB, nuclear factor‐kB; AP1, activator protein1; AMPK, adenosine monophosphate kinase; PPAR‐g, peroxisome proliferator‐
activated receptor‐g; SIRPa, signal regulatory protein a. RBP-J, recombination signal-binding protein Jk.
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incorporate the following components: contributions of
metabolic pathways to the development, maturity, destiny, and
behavior of immune cells; the changes in intracellular metabolic
pathways that alter the functions of immune cells; and the
metabo l i c r eprogramming o f immune ce l l s (39 ) .
Immunometabolism opens new perspectives for modulating
immune responses. Thus, targeting metabolic machineries is a
potential treatment for immune-related diseases (17). This
review mainly describes the metabolic characteristics of
activated macrophages, the roles of specific metabolites, and
the crucial steps in metabolic processes. In addition, metabolic
features in decidual macrophages were summarized. The main
metabolic specialties of M1 and M2 macrophages are exhibited
in Table 1. The main metabolic pathways and crucial metabolites
in macrophages are shown in Figure 2.
Glycometabolism in Macrophages
Glycolysis
Glycolysis includes aerobic and anaerobic glycolysis. Pyruvate is the
end product of glycolysis (62). Glycolysis not only provides rapid
production of ATP, but also produces metabolic intermediates,
including material used for the biosynthesis of nucleotides and
proteins in macrophages (63). When LPS-inducible glycolysis is
attenuated in macrophages, macrophages switch to the M2
phenotype and is accompanied by a decrease in the inflammatory
response (41). However, elevated glucose levels could enhance the
expression of inflammatory factors, such as IL-6, IL-1b andTNF-a,
in monocytes (42). TAMs are a heterogeneous cell population
dominated by M2-type macrophages, corresponding to the
increased mitochondrial respiration and reduced glycolysis (64).
It has been shown that chloroquine, a proven antimalarial drug,
reprogrammed the metabolism of TAMs from oxidative
phosphorylation to glycolysis and switched TAMs to the tumor-
killing M1 phenotype (65). What’s more, glycolysis contributes to
the proinflammation of macrophages in adipose tissue of obesities
(66). M1 macrophages use glycolysis to rapidly kill other cells (43),
whileM2macrophagesobtainenergy frommitochondrial oxidative
phosphorylation (OXPHOS) and fatty acid oxidation (FAO) (4, 49,
67). Glycolysis is pivotal toM1-typemacrophages, but its effects on
Frontiers in Immunology | www.frontiersin.org 4
M2-type macrophages remain unclear. While glycolytic activity is
effectively suppressed, there is no effective suppression of the
expression of M2 differentiation markers, intracellular ATP levels,
oxidative phosphorylation and STAT6 phosphorylation (68). A
recent study found that HIF1a-dependent glycolysis is associated
with M2 macrophage differentiation, indicating that glycolysis is
also essential to the M2 macrophages polarization (44).
Mitochondrial elimination, also known as mitochondrial
autophagy is the process of eliminating damaged mitochondria
(69). It has been found that mitochondrial elimination is essential
for the glycolytic switchduringmacrophagepolarization toward the
M1 phenotype (70).

There are three irreversible reactions catalyzed byhexokinase, 6-
phosphofructokinase 1 (PFK1), and pyruvate kinase (PK) in the
glycolytic pathway. These enzymes are three regulatory points of
the glycolytic pathway. Recent studies have mainly focused on the
isozymes of these enzymes. For example, researchers found that
glucose uptake and the expression of proinflammatory cytokines
were attenuated by inhibiting hexokinase 2 (HK2) expression in
macrophages (71). Likewise, targeting inhibition the expression of
glycolysis limiting enzyme PFK-m by miR-21 was associated with
the suppression of macrophage glycolysis (72) Pyruvate kinase M
(PKM) is glycolytic enzyme, containing two isoforms (PKM1 and
PKM2), and also take part in the metabolic changes in activated
macrophages. PKM1 converts phosphoenolpyruvate to pyruvate,
which is thefinal step of glycolysis. Pkm2was identified as a partner
of proinflammatory Hdac7 and Pkm2-Hdac7 complex acts as an
immunometabolism signaling hub inmacrophages. Disrupting the
Pkm2-Hdac7 complex attenuates LPS-inducible glycolysis and the
accompanying inflammatory responses (41). From above findings,
we can see that the regulation of the isozymes is crucial to the
process of glucose metabolism and is a promising field for
future research.

Lactate has been considered a waste product of glycolysis for
decades. Studies in the recent years have shown otherwise.
Lactate is an active signaling metabolite working through
transporter- and receptor-mediated signaling, which directly
regulate functional polarization (73). It has been demonstrated
that cancer cell-deprived lactate is a Gpr132 activator which
stimulates the macrophage M2 phenotype in a Gpr132-
TABLE 1 | The main metabolic characteristics in M1 and M2 macrophages.

Metabolic pathways M1 macrophages M2 macrophages

Glycolysis Elevated glycolysis (41–43) 1) HIF-1a-dependent glycolysis (44)
2) Inhibited glycolysis (45)

PPP 1) Increased PPP (46)
2) Increased expression of NADPH-dependent ROS (47)

Restricted PPP (48)

TCA cycle 1) Two broken points (49, 50)
2) Accumulation of citrate and succinate (4, 51)
3) Production of itaconate (52, 53)
4) Generation of ROS (54, 55)

Entire TCA cycle provides ATP (56)

Lipid Metabolism Increased FAS (57, 58) FAO is essential (59)
Amino Acid Metabolism 1) Upregulated iNOS (60)

2) Reduced a-KG/succinate (61)
1) Upregulated arginase expression (60)
2) Rised a-KG/succinate (61)
HIF-1a, hypoxia inducible factor-1a; PPP, pentose phosphate pathway; ROS, reactive oxygen species; NADPH, reduced form of nicotinamide-adenine dinucleotide phosphate; FAS, fatty
acid synthesis; TCA cycle, tricarboxylic acid cycle; FAO, fatty acid oxidation; ATP, adenosine-triphosphate; iNOS, inducible nitric oxide synthase; a-KG, a-ketoglutarate.
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dependent manner (74). In addition, tumor-derived lactate is
sufficient to increse the expression of M2-labeled MGL1, FizZ1
and MGL2 in BMDMs (75). The results in the study conducted
by Ohashi et al. showed that more macrophages aggregate at the
tumor site when the intratumoral concentration of lactate is
lower; however, a higher concentration of lactate inhibits
monocyte migration in vitro (76). It is possible to say that the
effects of lactic acid on immunity depend on the concentration of
lactate. Hyperchloremia and lactic acidosis are two common
metabolic acidosis, both of which are relative to distinct patterns
of immune response. HCl is intrinsically proinflammatory
through increased LPS-induced NF-kB DNA binding and NO
release. Conversly, lactic acid significantly decreases LPS-
induced IL-6, NO and IL-10 expression in a dose-dependent
manner and inhibits LPS-induced NF-kB DNA binding (77). It is
suggested that lactic acidos has an anti-inflammatory effect.
From the functional comparison of these two situations, lactic
acid possibly acts as a regulator unrelated to acidity. In addition,
blocking the lactic acid signaling pathway can directly improve
macrophage functions, even if the concentration of lactic acid in
the tumor is not reduced (78). The pathway regulating lactic acid
production can also influence the polarization of macrophages.
Lactic acid clearance can be used for synergistic immunotherapy
of tumors (79). Overall, we can predict that lactic acid is
associated with M2-like macrophage polarization as a signaling
mediator or through the regulatory pathway of its production.
Lactate and the related signaling pathways reveal potential new
therapeutic targets for disease amelioration.
Frontiers in Immunology | www.frontiersin.org 5
Pentose Phosphate Pathway
PPP branches from glycolysis and contributes to inflammatory
responses in macrophages (49, 57). The PPP contributes to
amplifying the specific effector functions of LPS-activated
macrophages, mainly providing two types of materials: pentose
phosphates, which can participate in nucleotide and amino acid
metabolism, and nicotinamide-adenine dinucleotide phosphate
(NADPH), which is a critical factor for NADPH oxidase-
dependent ROS (47). Nucleotide metabolism can be involved
in the production of active substances, which are closely related
to the function of macrophages. ROS plays a crucial role in the
activation and maintenance of M1 macrophages, because ROS
has strong oxidative characteristics and can damage intracellular
constituents, such as nucleic acids, proteins and lipids.
Mitochondrial ROS-induced lysosomal dysfunction contributes
to M1 macrophage polarization (80) under diabetic conditions
(81) and abamectin-induced cytotoxic disposition (82).
Additionally, bacterial killing in macrophages is damaged
when mitochondrial ROS (mROS) levels are attenuated (83).
Researchers found that intracellular ROS production was
significantly attenuated when the PPP was restricted, while M2
phenotype macrophage polarization was sensitized (48).
Surprisingly, ROS also takes part in the anti-inflammatory
reactions of macrophage phenotypes (84). In addition, glucose
6-phosphate dehydrogenase (G6PD) is highly active in
macrophages and is the key enzyme in the PPP. The
generation of ROS can be promoted by G6PD in macrophages
under stressful conditions (80). In another trial, researchers
FIGURE 2 | The main metabolic pathways and crucial metabolites in macrophages. Ru5P, d-ribulose-5-phosphate; Xu5P, d-xylulose-5-phosphate; RPE, ribulose 5-
phosphate 3-epimerase; PPP, pentose phosphate pathway; TCA, tricarboxylic acid; FAS, fatty acid synthesis; FAO, fatty acid oxidation; Acetyl-CoA, acetyl-Coenzyme A;
OXPHOS, oxidative phosphorylation; a-KG, a-ketoglutarate.
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found that proinflammatory responses were suppressed after the
inhibition of G6PD in macrophages (85). It is reported that
overexpression of G6PD enhanced the activation of the p38-
MAPK and NF-kB signaling pathways and promoted the
production of proinflammatory cytokines and ROS in a
macrophage cell line (86, 87). Thus, the modulation of G6PD
activity appears to provide a novel method for researchers to
regulate macrophage activity and develop alternative therapies.

Tricarboxylic Acid Cycle
The TCA cycle, also named the citric acid or the Krebs cycle, uses
a series of chemical reactions to generate energy in aerobic
organisms (88). M2 macrophages can obtain enough ATP from
OXPHOS through the TCA cycle. By contrast, M1 depends on
ROS and intermediate metabolites (56). Mitochondrial ROS
promotes macrophages swift to an inflammatory type through
damaging the autophagy-lysosome system (81). OXPHOS
deficiency in mitochondria is a feature of M1 macrophages.
There are two breakpoints in M1 macrophages (49, 50): one
breakpoint causes the accumulation of citric acid at the level of
isocitrate dehydrogenase (IDH), which produces itaconate, and
the other breakpoint causes the accumulation of succinate at the
level of succinate dehydrogenase (SDH), which in turn induces
HIF-1amediated upregulation of glycolysis and IL-1b production
(4, 51). In addition, SDH drives ROS generation (54, 55).

Citrate is reported to support both proinflammatory and anti‐
inflammatory macrophage functions, which are mainly shown
by citrate’s mediated products. The accumulation of citric acid
increases NADPH through ATP‐citrate lyase (ACLY)-mediated
reactions, which directly act on NADPH‐dependent inducible
nitric oxide synthase (iNOS) and increase the production of NO
(89). NO was shown to be able to induce M1 marker expression
on peritoneal macrophages under Con-A treatment (90).
Remarkably, NO has the ability to inhibit the mitochondrial
electron transport chain (ETC). Researchers have demonstrated
that OXPHOS during M1 polarization can be repressed by NOS-
derived NO in bone-marrow-derived macrophages (BMDMs)
(91). What’s more, inhibiting NO production in mitochondrial
contribute to macrophage M2 type convertion (67). In addition,
NO modulates the productions of citrate and succinate, which
are TCA cycle metabolites and inflammatory mediator,
respectively (51). There is a complex relationship between
metabolites. In further explorations, the network of metabolites
should be taken into account.

Itaconate is also a vital metabolite rooted in redundant citrate
and is synthesized through the intermediate cis-aconitate produced
by cis-aconitate decarboxylase under regulation of immune
responsive gene 1 (IRG1) (52, 53). In addition, some researchers
found that IDH activity and itaconate synthesis were inhibited by
endogenous type I IFN-driven IL-10 via in LPS-macrophages (92).
At present, itaconate and itaconate derivatives, 4-octyl itaconate
(4OI), dimethyl itaconate (DI), and 4-monoethyl itaconate (4EI),
are mainly studied. Researchers found (93) that OI alleviated LPS-
induced acute lung injury. Activation of nuclear factor erythroid 2-
related factor 2 (NRF2) may contribute to the anti-inflammatory
and antioxidant effects of OI. However, Sun, K. A., et al. (94) found
Frontiers in Immunology | www.frontiersin.org 6
that endogenous itaconate does not take part in inflammation
induced by particulate matter (PM) or activation of NRF2 in
macrophages either in vitro or in vivo. Conversely, OI attenuated
PM-induced inflammation in macrophages. In another trial, DI
could suppress the inflammatory responses of macrophages by
triggering NRF2 (95). Meanwhile, DI increased the production of
NRF2 and its downstream factors NQO-1 andHO-1 in sepsis (96).
In addition, researchers found that DI is not metabolized into
itaconate intracellularly (97). Recently, some researchers (98)
confirmed that nonderivatized itaconate can efficiently
concentrate in macrophages, and can be used for mechanistic
studies through comparing unmodified itaconate and commonly
used itaconate derivatives. By contrast, many of the ester
derivatives were not detected with similar results as expected for
nonderivatized itaconate. Beyond this, the results represented that
itaconate should be regarded as an immunoregulatory metabolite
rather than a simple immunosuppressive metabolite. Therefore,
more research is required to identify the features and moderating
effect of itaconate and its derivatives.

Succinate is synthesized from a-ketoglutarate (51). Extracellular
succinate is sensed by succinate receptor 1 (SUNCR1) and works as
a signaling metabolite. The activation of SUCNR1 in macrophages
take part in anti-inflammatory responses (99) and can polarize
macrophages into TAMs in the tumor microenvironment (100).
Moreover, succinate stimulates osteoclastogenesis in osteoclastic
lineage cells in vitro and in vivo (101). In addition, succinate
stabilizes hypoxia-inducible factor-1a (HIF-1a) (102), a
transcription factor, which plays a crucial role in mediating
aerobic glycolysis and M1 differentiation (103). Moreover,
researchers have found that TAMs enhance aerobic glycolysis by
stabilizing HIF-1a protein. In diabetic nephropathy, TAB1/TAK1
can activate NF-kB in bone marrow mesenchymal stem cells to
upregulate HIF-1a activity and enhance glycolytic metabolism
(104). In another study, intraperitoneal exudate macrophages of
HIF1a -/- mice showed significantly reduced glycolytic activity
compared to those of wild-type mice; this reduced glycolytic
activity was associated with a reduced proton production rate
(PPR, a value used to indicate the cellular respiration rate) and
glucose transporter 1 (GLUT1) expression. In addition, these
peritoneal exudate macrophages (PEMs) from HIF1a -/- mice
showed lower secretion of proinflammatory cytokines and iNOS
expression than those from wild-type mice (44). In glucose
metabolism of macrophages, GLUT1 is a key regulator. The
expression of proinflammatory cytokines (IL-6, IL-1B and TNF-
a) and glucose uptake are obviously increased when GLUT1 is
overexpressed in macrophages, even in the absence of stimulus-
specific activation (105). It has also been reported that HIF-1a
affects glycolysis in macrophages in an AMPK-dependent manner
(106). In addition, HIFs are key effector molecules regulating the
metabolism and functional reprogramming through the PDPK1/
Akt/mTOR pathway under neuroinflammatory conditions in M1/
M2 microglia (107). HIF-1a is closely related to energetic
metabolism and improves the activity of glycolytic enzymes such
as 6-phosphate fructose-2-kinase/fructose-2, hexokinase-1 (HK1),
lactate dehydrogenase A (LDHA) and 6-bisphosphatase 3
(PFKFB3) (108). Overall, HIF-1a participates in the metabolism
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of macrophages and regulates the switching of phenotypes;
therefore HIF-1a is a potential intervening target to macrophages.

Lipid Metabolism in Macrophages
Fatty acid synthesis (FAS) takes part in the inflammatory reaction
andsignaling inmacrophages (57).Theproinflammatory response in
macrophages can be inhibited through restraining fatty acid synthase
(FASN), which is a key enzyme of FAS that catalyzes the production
of long-chain fatty acids (58). Lipid droplets (LDs) is a feature of
foamy macrophages that have been found in many diseases.
In addition, polyunsaturated fatty acid (PUFA) metabolism in
macrophages also influences pathological processes. In
cardiovascular diseases, purified n-3 FA supplementation may be a
potential strategy fortreatment and prevention (109). Therefore,
understanding how immune cells handle and synthesize PUFAs is
important. During macrophages activating, SREBPs and LXRs, the
two master transcription factors of FAS, are upregulated.
Upregulation in SREBPs enhances the maturation of pro-
inflammatory precursors and causes macrophages to differentiate
toward the pro-inflammatory M1 phenotype. In contrast, LXRa
promotes cells towards an M2 phenotype (110).

FAO is essential in functional M2 macrophages by enhancing the
secretion of IL-1b (59). Treatment with LPS attenuates the expression
of inflammatorygenes inmacrophageswhenFAOis suppressed (111).
FAOplays a crucial role in activation ofNLRP3 inflammasome ofM1
macrophages (112). It is implied that enhancing FAO inmacrophages
may be an underlying therapeutic method for patients with obesity,
type 2 diabetes (113) or cancers (114). However, it remains unclear
whether the increase in FAOcorrelateswithM2polarization (115). IL-
4-induced polarization is not affected by the inhibition of FAO (116).
The two subtypes of carnitine palmitoyltransferase (CPT) system,
CPT1 and CPT2, are essential to the b-oxidation of long-chain
aliphatic acid in mitochondria. Lacking CPT2, macrophages are
unable to finish b-oxidation of fatty acids, but they can be polarized
to M2 phenotype after stimulated by IL-4 in vitro and in vivo (117).
Moreover, the CPT-1 inhibitor etomoxir in low concentrationcould
suppress CPT-1 without changing M2 polarization.i However, high
concentration of etomoxir can inhibit M2 polarization without
affecting the activity of CPT-1 (56). Macrophage FAO likely plays a
correlative rather thancausative role in systemicmetabolicdysfunction
(118). Further exploration is needed to determine which is the
dominant factor, the switchof cell phenotypes or the changes of
metabolic transformation.

Amino Acid Metabolism in Macrophages
Mills et al. first proposed the notion that arginine can be used to
determine the functions of macrophages (119). The M1
macrophages are a product of the iNOS pathway, while the M2
macrophages come from the arginase pathway (60). L-Arginine
takes part in initiating of intracellular signaling pathways in
macrophages, such as triggering inflammatory responses and
accelerating the sensitivity to bacterial endotoxin (120). Arginine
deprivation attenuates osteoclastogenesis and also dampens
generation of IL-4 induced multinucleated giant cells. Strikingly,
in the absence of extracellular arginine, osteoclasts and IL-4-
induced multinucleated giant cells display flexibility, since their
formation can be restored by supplementation with select arginine
Frontiers in Immunology | www.frontiersin.org 7
precursors in vitro (121). The production of a-Ketoglutarate
(aKG) is important for activation of M2 macrophages,
including engagement of FAO and epigenetic reprogramming of
M2 genes. The potential M2-promoting mechanism is
demonstrated by the high aKG/succinate ratio,Whereas a low
aKG/succinate ratio strengthens M1 polarization in macrophages
(61). Nontargeted metabolomic analysis revealed that tryptophan
metabolism is involved in M1 polarization (122). Ornithine
decarboxylase (ODC), the rate-limiting enzyme in polyamine
synthesis, leads to an increase in putrescine levels and imparis
the transcription of M1 genes. InM1macrophages, the translation
of proinflammatory mediators can be regulated by spermidine and
spermine (15). In applied research, there are no clear results that
using amino acid auxotrophy to decrease the growth of cancerous
lymphocyte, though attempting for decades (123). As for
macrophages, there is also a long way to go. The detailed
metabolic pathways in macrophages are shown in Figure 3.

In addition, the classic metabolic pathways, some bypasses, and
the enzymes involved have also come into view in recent years.
Glucose is converted to sorbitol by aldose reductase (AR) in Polyol
pathway. When activating the Polyol pathway, the production of
proinflammatory cytokines was increased in kidney cortex of
diabetic mice (124). What’s more, upregulation of AR in human
macrophages is proinflammatory in foam cells in atherosclerosis
(125). When inhibiting the activity of AR, the phenotype was
transferred to M2 (126). Ribulose 5-phosphate 3-epimerase (RPE)
is an important enzyme for cellular response against oxidative stress
and takes part in PPP, contributing to the reversible conversion of
D-ribulose 5-phosphate toD-xylulose 5-phosphate (127). The gene
coding RPE has exposed to be relative to poor outcome in cancer
patients (128). Some metabolites also affect the function and
polarization of macrophages. Lactate-derived lactylation of
histone serves as an epigenetic modification and could directly
stimulatesM2gene expressionduringM1macrophagepolarization
(129).Ketonebody, especially,b-hydroxybutyrate (BHB) promotes
M2 macrophage polarization, contributing to the resolution of
intestinal inflammation and providing ideas for the treatment of
inflammatory bowel disease (130). Metabolites in shaping the
phenotypes and functions of macrophages were summarized
in Table 2.
MATERNAL-FETAL INTERFACE
MACROPHAGES REMAIN ENIGMATIC

Houser (137, 138) found two distinct subsets of CD14+ dMfs in
the decidual tissues in early pregnancy: CD11cHI (CD11c high)
and CD11cLO (CD11c low). CD11CHI dMfs express genes
related to lipid metabolism and inflammation, and may be the
major APCs in the decidua. dMfs (139) were further analyzed and
three subtypes were identifiedin the first trimester of gestation:
CCR2-CD11cLO (~80%), CCR2+CD11cHI (10–15%) and CCR2-

CD11cHI (~5%). CCR2-CD11CHI macrophages were
significantly different from the other two subsets in the heat
map. CCR2-CD11cHI macrophages are specifically enriched in
pathways related to cell metabolism and proliferation. The
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CCR2+CD11cHI subset wasparticularly involvedin the TNF
signaling pathway and phagocytosome pathway. Few pathways
were particularly enriched in the CCR2-CD11cLO subset. In
addition, high expression levels incarbon metabolism genes and
almost all genes related to heme metabolism, including NADPH,
quinone oxidoreductase 1 (NQO1), ferritin heavy chain (FTH1)
and HMOX1, were observed in CCR2-CD11cHI macrophages.
HMOX1 is an enzyme that catalyzes the degradation of heme into
Frontiers in Immunology | www.frontiersin.org 8
carbon monoxide, ferrous iron, and biliverdin. Anti-inflammatory
and antioxidant properties have been convincingly demonstrated
in the above byproducts of heme metabolism (140). Thus, it is
inferred that CCR2-CD11cHI macrophages may have an effect of
anti-inflammation during the first trimester. Whetherand how the
overall metabolic environment affects the function of
macrophages are unanswered. Whether there is a special
metabolic pattern in decidua macrophages remains to be
FIGURE 3 | The main metabolic pathways in macrophages. In the cytosol, glucose is converted into L-lactate by glycolysis, in which HK, PFK1 and PK are key
enzymes. In the progress of glycolysis, glucose-6-P can be shunted to PPP pathway sustaining pentose phosphates and NADPH production. Pentose phosphates are
used for the synthesis of amnio acid and nucleotide, while NADPH contributes to the production of ROS and NO. Pyruvate is induced to lactate in hypoxic conditions,
whereas decarboxylated into acetyl-CoA within the mitochondria in normoxic conditions. Here, acetyl-CoA enters into the TCA cycle, providing reducing agents to the
ETC through OXPHOS to generate energy. Citrate, a metabolite in TCA, participates in fatty acid synthesis when exported to the cytoplasm. Acetyl-CoA produced from
FAS can be transferred into mitochondria and take part in the FAO. In M1 macrophages, two breakpoints cause the production of itaconate and the accumulation of
succinate that induces HIF-1a mediated upregulation of glycolysis and IL-1b production.What’s more, the production of NO inhibits ETC. M2 macrophages can obtain
enough ATP from OXPHOS through the TCA cycle. As for energy gain, FAO is essential. HK, hexokinase; Glucose 6-P, glucose 6-phosphate; Fructose 6-P, fructose 6-
phosphate; PFK1, 6-phosphofructokinase 1; PK, pyruvate kinase; PPP, pentose phosphate pathway; G6PD, glucose 6-phosphate dehydrogenase; iNOS, inducible nitric
oxide synthase; NO, nitric oxide; ETC, electron transport chain; TCA, tricarboxylic acid; OXPHOS, oxidative phosphorylation; IDH, isocitrate dehydrogenase; NADPH,
nicotinamide-adenine dinucleotide phosphate; SDH, succinate dehydrogenase; FAS, fatty acid synthesis; FAO, fatty acid oxidation; Acetyl-CoA, acetyl-Coenzyme A; IL-
1b, interleukin-1b; HIF-1a, hypoxia inducible factor 1a.
TABLE 2 | Metabolites in shaping the phenotypes and functions of macrophages.

Metabolites Changes in downstream molecules Changes in phenotypes or functions Changes in surrounding environment Ref.

Lactate lactylation of histone lysine M1; Arg1 were induced Promoting wound healing and homeostasis (129)
lactylation and acetylation of HMGB1 Changes in exosomes released from

macrophages
Increasing endothelium permeability (131)

suppressing the NLRP3 inflammasome and the
caspase-1 pathway

M2;
decreasing the phagocytic capability;
suppressing macrophage pyroptosis

Modulating the intestinal microbiota (132)

Glutamine Increasing glutamine M2 Inducing epithelial cell proliferation (133)
Inhibiting non-canonical transaminase pathway Impaired phagocytic capacity Clearance of dying cells and maintenance of

tissue homeostasis
(134)

High glutamine synthetase M2 Promoting cancer cells to release N-
acetylaspartate

(135)

Ketone body Addition of BHB M2 Repairation of mucosa (130)
Decreasing the percentage of M1 Suppressing colonic inflammation (136)
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explored. The association between disorders and metabolism in
macrophages is shown in Table 3.
THERAPEUTIC PERSPECTIVE OF
INTERVENING IN METABOLISM
VIA MACROPHAGES

The different polarization types of macrophages have an obvious
influence on the effects of therapies. At present, there are many ways
to regulate thepolarizationofmacrophages, andmetabolic regulation
is a new research field with great development. Moreover, the
research on intervention in macrophages in metabolism as a
therapeutic method mainly focuses on tumor-related fields. For
example, interference with the phenotypes of TAMs, which are
known to be immunosuppressive, is potential to be helpful
combing with immunotherapy and/or chemotherapy (157). THP-1
M1macrophages increased etoposide-induced cancer cell apoptosis,
while M2 macrophages decreased apoptosis of cells (158). Recently,
researchers found that itaconic acid is one attractive candidate for
anti-tumor responses, since peritoneal tumors could be controlled by
specifically targeting residentmacrophage-associated itaconate levels
(159).Althoughprecise regulation is unclear, the targeting of resident
macrophages is a potential perspective for future research.Moreover,
it was found that administration of miR-223 over-expressed
macrophages, with IL-4 preconditioning, attenuated sepsis severity
in a LPS model, through the inhibition of the glycolysis pathway.
Thesecells are thusproposedasacandidate forcell therapyduring the
pro-inflammatory phase of sepsis (160).

Metformin is one of the few drugs that clearly affect
macrophage function by regulating its metabolism. Metformin
can regulate glycometabolism, and is used as an antidiabetic
agent. In metformin treated tumor tissue, M2-like macrophages
decrease while M1-like macrophages increase. AMPK-NF-kB
signaling, a pathway involved in regulating M1/M2 expression,
can be activated by metformin and induce cytokines expression
for macrophage polarization to an antitumor phenotype (161).
In addition, macrophages could be transformed to foam cells
through cholesterol transport and storage. Foam cells are present
in all stages of atherosclerosis. Foam cell targeting anti-
inflammatory therapies are known to indirectly regulate the
Frontiers in Immunology | www.frontiersin.org 9
actions of pro-atherogenic and anti-atherogenic cytokines
(162). What’s more, in a murine model of pancreatic cancer,
atorvastatin, a frequently used inhibitor for cholesterol synthesis
and HMG-Coa reductase, facilitates TAMs to reprogram to M2-
like phenotype and attenuates the chemotherapeutic efficacy of
gemcitabine on pancreatic cancer (163).

Regulation of key enzymes in themetabolic process is also one of
themainmethods of treatment. In a recent trial of non-alcoholic fatty
liver disease (NAFLD) (164), acetyl-coenzyme A carboxylase (ACC)
inhibitor was used alone or cooperated with a diacylglycerol
acyltransferase 2 (DGAT2) inhibitor in patients to observe the
change of magnetic resonance imaging - proton density fat fraction
in liver. ACC inhibitor monotherapy showed significant anti-liver
steatosis, suggesting a potential clinical benefit for chronic treatment.
Co-administration of these two trugs is possible to decrease some of
the limitationsofACC inhibition alone. It canbe seen from this study
that the regulation in the metabolic process has the possibility of
clinical application.But the influenceofkeyenzymeson the functions
ofmacrophages is still in the stage of scientific research. For example,
lactate dehydrogenase (LDH) can catalyse the reversible conversion
of pyruvate and lactate in glycolysis. When feeling tumor-derived
miR-375, TAMs downregulated the expression of LDHB and
increased aerobic glycolysis and lactagenesis (165). Then tumor-
derivedmiR-375 was established as a novel regulator of macrophage
metabolism in breast cancer. More research is needed in pregnancy-
related diseases. Intervention inmetabolism inmacrophages is a very
rational immunotherapeutic perspective, and it will bring good news
for patients.
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TABLE 3 | Association between disorders and metabolism and function in macrophages.

Disorders Main types Main metabolic changes Functional phenotypes

Tumors TAMs (M2) (141,
142)

1) Increased mitochondrial respiration (64);
2) Reduced glycolysis (64)

1) Combination and secretion of galectin-3 (143)
2) Activation of ROS (143)
3) Induced HIF-1a (144)

Obesity and Diabetes (M1)
(81, 145)

1) Reducing lipid transportation (146, 147);
2) Increased glycolysis (66)

Production of ROS (148)

Atherosclerosis M1 (149) Increased glycolysis (150) 1) Proinflammatory phenotype (149, 150)
2)Reduced phagocytic activity (151)
3) Production of foam cells (146, 152)

Injury and Repairation M1 ! M2 (153) Activation of glycolysis, the TCA cycle, the PPP, FAS and
FAO (154)

Transform from proinflammatory to reparative phenotype
timely (153, 154)

Pregnancy- related
diseases

a mixed group
(155, 156)

Still being studied Dynamic changes of phenotypes,
M1 ! M1/M2 ! M2 (137–139, 156)
TAMs, tumor-associated macrophages; PPP, pentose phosphate pathway; TCA, tricarboxylic acid; FAS, fatty acid synthesis; FAO, fatty acid oxidation.
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43. Rodrıǵuez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martıń-Sanz
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M, Núñez-Roa C, et al. SUCNR1 Controls an Anti-Inflammatory Program
in Macrophages to Regulate the Metabolic Response to Obesity. Nat
Immunol (2019) 20(5):581–92. doi: 10.1038/s41590-019-0372-7

100. Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, et al. Cancer-
Derived Succinate Promotes Macrophage Polarization and Cancer
Metastasis via Succinate Receptor. Mol Cell (2020) 77(2):213–27.e5.
doi: 10.1016/j.molcel.2019.10.023

101. Guo Y, Xie C, Li X, Yang J, Yu T, Zhang R, et al. Succinate and its G-Protein-
Coupled Receptor Stimulates Osteoclastogenesis. Nat Commun (2017)
8:15621. doi: 10.1038/ncomms15621

102. Mills E, O’Neill LA. Succinate: A Metabolic Signal in Inflammation. Trends
Cell Biol (2014) 24(5):313–20. doi: 10.1016/j.tcb.2013.11.008

103. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular Vesicle-
Packaged HIF-1a-Stabilizing lncRNA From Tumour-Associated
Macrophages Regulates Aerobic Glycolysis of Breast Cancer Cells. Nat Cell
Biol (2019) 21(4):498–510. doi: 10.1038/s41556-019-0299-0

104. Zeng H, Qi X, Xu X, Wu Y. TAB1 Regulates Glycolysis and Activation of
Macrophages in Diabetic Nephropathy. Inflammation Res: Off J Eur
Histamine Res Soc (2020) 69(12):1215–34. doi: 10.1007/s00011-020-01411-4

105. Song W, Li D, Tao L, Luo Q, Chen L. Solute Carrier Transporters: The
Metabolic Gatekeepers of Immune Cells. Acta Pharm Sin B (2020) 10(1):61–
78. doi: 10.1016/j.apsb.2019.12.006

106. Yu Y, Cai W, Zhou J, Lu H, Wang Y, Song Y, et al. Anti-Arthritis Effect of
Berberine Associated With Regulating Energy Metabolism of Macrophages
Through AMPK/HIF-1a Pathway. Int Immunopharmacol (2020) 87:106830.
doi: 10.1016/j.intimp.2020.106830

107. Wei Y, Chen J, Cai GE, Lu W, Xu W, Wang R, et al. Rosmarinic Acid
Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway
Under Conditions of Neuroinflammation. Inflammation (2020) 44(1):129–
47. doi: 10.1007/s10753-020-01314-w
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GLOSSARY

EMPs erythro-myeloid progenitors
PB peripheral blood
iPSC induced pluripotent stem cell
ICs immune complexes
ROS reactive oxygen species
Arg1 arginase 1
MIP macrophages inflammatory protein
RANTES regulated on
activation normal T cell expressed and secreted
MCP-1 monocyte chemo-attractant protein-1
iNOS inducible nitric oxide synthase
TNF tumor necrosis factor
TLR toll-like receptor
TGF‐b transforming growth factor‐b
LPS lipopolysaccharide
GM-CSF granulocyte-macrophage colony stimulating factor
VEGF vascular endothelial growth factor
ERK extracellular signal-regulated kinase
EGF epidermal growth factor
IRF interferon‐regulatory factors
AMPK adenosine monophosphate kinase
AP1 activator protein1
NF‐kB nuclear factor‐kB
PPAR‐g peroxisome proliferator‐activated receptor‐g
SIRPa signal regulatory protein a
Tim-3 T cell immunoglobulin and mucin domain-3
PK pyruvate kinase
HK2 hexokinase 2
PPP pentose phosphate pathway
PFK1 phosphofructokinase 1
G6PD Glucose 6-phosphate dehydrogenase
OXPHOS oxidative phosphorylation
IDH isocitrate dehydrogenase
NADPH nicotinamide-adenine dinucleotide phosphate
SDH succinate dehydrogenase
ACLY ATP‐citrate lyase
ETC electron transport chain
IL-1b interleukin-1b
IRG1 immuneresponsive gene 1
HIF-1a hypoxia inducible factor 1a
PPR proton production rate
LDHA lactate dehydrogenase A
FAO fatty acid oxidation
FAS fatty acid synthesis
FASN fatty acid synthase
PDPK1 phosphoinositol-dependent protein kinase 1
LDs lipid droplets
NRF2 Nuclear Factor Erythroid 2-Related Factor 2
PUFA polyunsaturated fatty acid
a-KG aketoglutarate
TAMs tumor-associated macrophages
ABCA1 ATP-binding cassette transporter A1
IR insulin resistance
CPT carnitine palmitoyltransferase
AT adipose tissue
FC free cholesterol
ATMs adipose tissue-derived macrophages
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