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The current study was conducted to analyze the functions of blood neutrophils in
transition cows and their association with postpartum mastitis risk as indicated by
somatic cell counts (SCCs) in milk. Seventy-six healthy Holstein dairy cows were
monitored from Week 4 prepartum to Week 4 postpartum. Five dairy cows with low
SCCs (38 ± 6.0 × 103/mL) and five with high SCCs (3,753 ± 570.0 × 103/mL) were
selected based on milk SCCs during the first three weeks of lactation. At Week 1 pre- and
postpartum, serum samples were obtained from each cow to measure neutrophil
extracellular trap (NET)-related variables, and blood neutrophils were collected for
transcriptome analysis by RNA sequencing. The serum concentration of NETs was
significantly higher (P < 0.05) in cows with high SCCs than in cows with low SCCs
(36.5 ± 2.92 vs. 18.4 ± 1.73 ng/mL). The transcriptomic analysis revealed that the
transcriptome differences in neutrophils between high- and low-SCC cows were mainly in
cell cycle-related pathways (42.6%), including the cell cycle, DNA damage, and
chromosomal conformation, at Week 1 prepartum. The hub genes of these pathways
were mainly involved in both the cell cycle and NETosis. These results indicated that the
formation of NETs in the blood of transition dairy cows was different between cows with
low and high SCCs, which may be used as a potential indicator for the prognosis of
postpartum mastitis risk and management strategies of perinatal dairy cows.

Keywords: neutrophil extracellular traps, cell cycle, somatic cell count, mastitis risk, transition dairy cow
INTRODUCTION

Dairy cows are accompanied by marked physiologic inflammatory adjustments mastitis during the
transition period (from 3 weeks prepartum to 3 weeks postpartum). It has become firmly established
that the inflammatory response and immune activation of the mammary gland are a normal
component of transition cow biology (1, 2). However, if inflammation becomes pathological,
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it increases the mastitis risk, leading to reductions in lactation
performance and milk quality (3). Mastitis-related immune
responses are complex biological processes involving immune
cells, mammary epithelial cells, and endothelial cells in blood
vessels (4). The somatic cell count (SCC) is the total number of
somatic cells in milk, includes shed mammary epithelial cells and
white blood cells and is usually used as a biomarker of mastitis
risk (1). SCC is closely linked to the immune status in the
mammary gland in lactating cows (5). Therefore, investigating
the correlation between the SCC and immune status during the
transition period will provide novel insights and potential
strategies to improve immune function and milk quality in
dairy cows.

In the immune responses in dairy cows (6), neutrophils are
most of the leukocytes that migrate into the mammary gland to
defend against infection, and these cells are also a major
component of the SCC (7). The massive recruitment of blood
neutrophils to infection sites is a hallmark of infectious diseases,
such as mastitis (6). In our previous work, the numbers of
neutrophils tended to be higher in dairy cows with high SCCs
than in those with low SCCs during the transition period (8). In
addition, functional variations in neutrophils have been observed
in a variety of diseases, including inflammatory diseases in
humans (9) and mastitis in dairy cows (10). However, the
relationship between neutrophil functions and SCCs in dairy
cows during the transition period has not been studied. The
migration of neutrophils into the mammary gland mainly
depends on adhesion, migration, chemotaxis, phagocytosis, and
antimicrobial actions (11). Neutrophil extracellular traps (NETs)
are large, extracellular, web-like structures composed of cytosolic
and granule proteins that are assembled on a scaffold of
decondensed chromatin (12). NETosis is a novel microbe-
eliminating process of neutrophils and has recently received
much attention (13). The formation of NETs is mediated by
reactive oxygen species (ROS) and is associated with mitogenic
reactivation of cell cycle regulators (14, 15). Previous studies have
shown that serum ROS concentrations are decreased in low-SCC
dairy cows but are increased in high-SCC cows from Week 1
prepartum to Week 1 postpartum (8), suggesting that high ROS
concentrations in dairy cows with high mastitis risk may mediate
the formation of NETs. Changes in neutrophil phagocytosis,
antimicrobial actions, chemotaxis, and adhesion are associated
with mastitis in dairy cows (8, 16). However, which neutrophil
functions are mostly related to mastitis in dairy cows needs to
be studied.

Transcriptomics is a powerful method for exploring the
temporal and spatial specificity of gene expression (17). RNA
sequencing (RNA-Seq)-based transcriptomics can detect whole-
genome expression changes in different conditions and can
provide a holistic understanding of the relationship between
blood neutrophil functions and mastitis risk in cows during the
transition period (18). We hypothesized that the formation of
NETs in the blood of transition dairy cows is different between
cows with low and high SCCs, which may be used as an indicator
of mastitis risk in dairy cows during the transition period. This
work aimed to study the relationship between neutrophil
functions and SCC changes in postpartum milk.
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MATERIALS AND METHODS

All animal experimental procedures were approved by the
Animal Care Committee of Zhejiang University (Hangzhou,
Zhejiang, China) and were in accordance with the university’s
guidelines for animal research (No. ZJU20200031).

Experimental Design and Sampling
The animals used in this study were selected from 76 Holstein
cows used in a previous study (8). In order to investigate the
mechanism behind the SCC variations, five cows with low SCCs
(38 ± 6.0) × 103/mL and five with high SCCs (3,753 ± 570.0) ×
103/mL were selected for this study based on the average SCCs
during the first three weeks postpartum. Briefly, all ten cows had
similar parity (2.60 ± 0.221), and they were in health monitored
weekly and had no clinical symptoms records during this study.
They were housed in individual tie stalls, bedded with sawdust,
and had free access to water. Diet that was designed to meet the
nutrient requirements of dry and early lactating cows (19) was
offered as total mixed rations to allow approximately 5% orts
three times daily (at 06:30, 13:00, 18:30). After the experiment, the
cows with high SCC were transferred to the unified area of the
dairy farm for antibiotics treatment. There were four metabolic
clusters in this study: prepartum (Week 1 prepartum), low SCC
(PR-low); postpartum (Week 1 postpartum), low SCC (PP-low);
prepartum, high SCC (PR-high); and postpartum, high SCC (PP-
high). Blood and milk samples were collected from the cows as
described previously (8). Briefly, blood samples were collected
from the tail vein at Week 1 pre- and postpartum. One sample
was stored at 4°C until the serum separated, the other samples
were used to isolate neutrophils by gradient centrifugation, and
the isolated neutrophils were identified by flow cytometry (20).
The purity of neutrophils was approximately 97%. The serum and
neutrophil samples were stored at -80°C for further analyses. Milk
samples were collected three weeks postpartum, and milk
composition was analyzed (8).

Serum Cytokines and Oxidative
Stress Variables
The serum concentrations of interleukin-1b (IL-1b, #SEKB-
0363), interleukin-8 (IL-8, #SEKB-0366), and interleukin-17
(IL-17, #SEKB-0006) were measured using corresponding
enzyme-linked immunosorbent assay (ELISA) kits (Beijing
Solarbio Science & Technology, Beijing, China) (21).

The serum ROS concentration was measured with a fluorescent
dichlorofluorescein-diacetate (DCFH-DA) probe provided by an
ROS kit (#E004-1-1, Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) (22). Lipid peroxidation in serum, which is
expressed as the malondialdehyde (MDA) concentration, was
measured using an MDA assay kit (#A003-1-2, Nanjing
Jiancheng Bioengineering Institute) (23). Protein oxidation level,
which is expressed as the concentration of protein carbonyls (PC),
was measured according to a described previously method with a
PC kit (#BC1275, Beijing Solarbio Science & Technology) (24). The
level of 8-hydroxy-2-deoxyguanosine (8-OHdG) was measured
with an ELISA kit (#E-EL-0028, Elabscience Biotechnology,
Wuhan, China) (25).
April 2022 | Volume 13 | Article 880578
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Serum Neutrophil Extracellular
Trap-Related Indices
The blood samples were clotted in serum tubes for 2 h at room
temperature before being centrifuged at 1,000 × g for 20 min.
Freshly prepared serum was assayed immediately or stored in
aliquots at -80 °C for further analysis. The NET level of serum
samples was measured according to a previously described
method (26). The serum myeloperoxidase (MPO)-DNA
complexes were determined as a marker of NETs (27, 28).
Briefly, the antibodies (anti-MPO, 1:2,000 dilution in sterile
PBS) were captured in 96-well high-binding capacity ELISA
microplates and incubated overnight at 4°C. In addition, the
plates were washed with PBS-Tween 20, blocked with 5% BSA
(200 mL/well), incubated for another 2 h at room temperature, and
washed with PBS-Tween 20 again. After that, the serum samples
were incubated in ELISA plates overnight at 4°C. The plates were
washed with PBS-Tween 20, and the detection antibody (HRP-
labeled anti-dsDNA, 1:500, mouse, 50 mL/well) was added and
incubated for 1 h in the dark at room temperature. The plates were
then washed again with PBS-Tween 20, TMB peroxidase substrate
was added to each well and incubated for 30 min (50 mL/well), and
the reaction was terminated by the addition of 1 M HCl (50 mL/
well). The NETs inter-assay CV is 10% and intra-assay CV is 15%.
The absorbance was measured using a microplate photometer
(Thermo Fisher Scientific, Tokyo, Japan) at 450 nm.

The concentration of serum myeloperoxidase (MPO, #A044-
1-1, inter-assay CV is 1.3% and intra-assay CV is 1.3%) was
measured using an MPO kit (Nanjing Jiancheng Bioengineering
Institute) and the contents of deoxyribonuclease I (DNase I,
#CK-EN77261, inter-assay CV is 10% and intra-assay CV is
15%) and neutrophil elastase (NE, #CK-EN78022, inter-assay
CV is 10% and intra-assay CV is 15%) in serum samples were
determined using corresponding ELISA kits (Quanzhou Ruixin
Science & Technology, Quanzhou, China) (29, 30).

RNA Isolation, Library Construction, RNA
Sequencing and Bioinformatics Analysis
Total RNA was isolated from blood neutrophils using TRIzol
reagent (TaKaRa, Dalian, China) according to the manufacturer’s
instructions (31), and RNA quality was validated on an Agilent
Technologies 2200 bioanalyzer. The library was amplified with
phi29 (Thermo Fisher Scientific, Waltham, MA, USA) and
sequenced using the Illumina HiSeq X ten platform (32). Clean
reads were obtained by removing low-quality sequences (more
than 30% of < Q20 bases), reads with more than 10% unknown
nucleotides (N), and adapters. The clean reads were aligned with
the bovine genome (ARS-UCD1.2), which was downloaded from
the ENSEMBL database (http://www.ensembl.org/index.html), to
assemble transcripts using salmon (v 1.4.0) (33). The gene
expression levels were normalized using the fragments per
kilobase of transcript per million fragments (FPKM) method.

Gene Coexpression Network Analysis and
Expression Level
The hybrid coexpression networks of blood neutrophils were
constructed using the weighted gene coexpression network
Frontiers in Immunology | www.frontiersin.org 3
analysis (WGCNA) package in R with FPKM data (34). To
obtain coexpression patterns, we set the minimum module size
to 30 genes, the deep split to 2, and the minimum height for
merging modules to 0.25. Each module was summarized by an
eigengene, which was the first principal component of the scaled
module expression. To obtain cleaner modules, we defined the
module membership measure (also known as module eigengene-
based connectivity kME) as the correlation between gene
expression values and the module eigengene. Genes with kME
> 0.7 were cut off to obtain the hub genes. Moreover, the hub
genes of the brown module were submitted to analyze the cell
cycle pathway with Cytoscape software (v3.7.2).

Quantitative real-time PCR (qPCR) was performed as
described by Mohamed et al. (31). Total RNA was isolated
from blood neutrophils using TRIzol reagent (TaKaRa) and
then reverse-transcribed using a commercial kit (Perfect Real
Time, SYBR@ PrimeScript ™, TaKaRa) according to the
manufacturer’s instructions. The mRNA expression of genes
involved in the cell cycle pathway, including TP53, CDK1,
CDK2, CDK4, CCNA2, CCNB3, CCND1, CCNE1, CDC25A,
DP1, C-Myc, ORC1, ORC2, ORC4, MCM3, MCM5, and
MCM6, was analyzed (35). The fold-changes in the expression
of individual genes were calculated according to the 2-DDCt

method (35), and b-actin gene expression was used as an
internal standard. The primer sequences used in qPCR are
shown in Table S1.

Functional Analysis of Differentially
Expressed Genes in Prepartum Cows
Deseq2 software (V1.4.5) was used to identify the differentially
expressed genes (DEGs) in blood neutrophils between PR-low
and PR-high cows (FDR < 0.05 and |log2FoldChange| ≥ 1) (36).

The data were annotated using the gene ontology (GO)
database (http://www.geneontology.org/) by the hypergeometric
test to examine the biological mechanisms and pathways of these
genes. The GO terms were considered significant when the P value
was less than 0.05. Pathway analyses of these data were also
performed using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (http://www.genome.jp/kegg/), and those with
P values less than 0.05 were considered to be significantly
different. The data were used in gene set enrichment analysis
(GSEA), which is a computational pathway analysis tool that
determines if a given set of manually curated genes shows
statistically significant, concordant differences between two
biological states (37) and is accessible at http://www.
broadinstitute.org/-gsea/index.jsp. The P values and false
discovery rate (FDR) for the enrichment scores of the gene set
were calculated based on 1,000 gene set permutations (|NES| > 1,
P < 0.05, FDR < 0.05).

Statistical Analysis
This study was performed a 2 × 2 experimental design with
health status (Hs, low SCC vs. high SCC) and sampling week
(Wk, -1 Wk vs. +1Wk) as independent factors, interaction (Hs ×
Wk) as fixed effects, and the dairy cow as the dependent variable.
The data (except RNA-Seq data) of different indices were
April 2022 | Volume 13 | Article 880578
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analyzed with the repeated measurements mixed procedure
(PROC MIXED) by Statistical Analysis System software
(version 9.1; SAS Institute, Inc., Cary, NC, USA). The data are
expressed as mean ± standard error of the mean (SEM).
RESULTS

Formation of Blood Neutrophil
Extracellular Traps in Transition
Dairy Cows
The serum cytokine and oxidative stress variable results are shown
inTable 1. Compared with those in cows with low SCCs, the levels
of serum cytokines (IL-1b, IL-8, and IL-17) and oxidative stress
variables (ROS, MDA, 8-OHDG, and PC) were significantly
higher (P < 0.05) in cows with high SCCs. The serum levels of
IL-1b, IL-17, MDA, 8-OHDG, and PC were significantly higher
(P < 0.05) postpartum than prepartum. No significant difference
was found in IL-8 or ROS levels between prepartum and
postpartum cows. The interaction effects between SCC levels
and time (Hs × Wk) were significant for MDA and PC (P < 0.05).

The serum concentrations of NET-related variables are
shown in Table 2. The levels of NETs (36.5 ± 2.92 vs. 18.4 ±
1.73 ng/mL) and the main functional components (MPO and
NE) of NETs were significantly higher (P < 0.05) in the high-SCC
cows than in the low-SCC cows, whereas NET marker (DNase I)
concentration was significantly lower (P < 0.05). The levels of
NETs (32.2 ± 4.01 vs. 22.7 ± 2.97 ng/mL) and their main
functional components (MPO and NE) were significantly
higher (P < 0.05) postpartum than prepartum. No significant
difference was found in DNase I level between prepartum and
postpartum cows. The interaction effects (Hs × Wk) were found
to be significant for the concentration of serum MPO (P < 0.05).

RNA Sequencing Analysis of Blood
Neutrophils
More than 42.8 million raw reads were generated by RNA-Seq
from a total of 20 blood neutrophil samples: five samples each
Frontiers in Immunology | www.frontiersin.org 4
from the PR-low (44.9 ± 1.58), PP-low (45.9 ± 0.83), PR-high
(45.7 ± 1.45), and PP-high (48.0 ± 2.30) groups (Table S2). More
than 38.6 million clean reads were obtained from these raw reads
after low-quality and adaptor sequences were filtered out, with a
sequencing error rate of less than 1%. More than 88.1% of reads
were mapped to the bovine genome (ARS-UCD1.2) for the PR-
low (90.0 ± 0.40%), PP-low (90.2 ± 0.42%), PR-high (89.6 ±
1.01%), and PP-high (89.2 ± 1.10%) groups (Table S2). Among
these clean reads, more than 89.7% had quality scores with a ratio
of Q30 (a base quality >30 and error rate <0.001). No GC bias
was found.

Principal component analysis (PCA) revealed a relatively
clear distinction between the transcriptomes of blood
neutrophils from the low-SCC and high-SCC cows, with the
first two principal components showing 59.8% variance (Figure
S1A). The boxplots of FPKM values of blood neutrophil
transcripts revealed that sequencing depth and gene length
were at the same levels (Figure S1B).

Neutrophil Functions Related to Somatic
Cell Count Variations
A total of 20 gene modules related to SCC levels were identified
(Figure 1A). Among these modules, the MEbrown module
exhibited the highest correlation (r-value = 0.744) and the
lowest P value (0.00017). A total of 1,439 genes were involved
in the MEbrown module (r = 0.69, P < 0.05, Figure 1B). These
genes were analyzed for GO enrichment. The top 10 biological
process (BP), cellular component (CC), and molecular function
(MF) GO terms with the smallest P values are shown in
Figure 1C. The enriched GO terms in BP were mainly related
to immunity (40%), cell cycle (20%), energy metabolism (20%),
cell maturation (10%), and transcription (10%). The GO terms in
CC included cell cycle (80%), cell connection (10%), and cell
signal transduction (10%). The GO terms in MF included cell
cycle (70%), signal transduction (10%), energy metabolism
(10%), and structural molecule activity (10%). The hub genes
of the MEbrown module were subjected to cell cycle pathway
analysis. The detailed regulation of these genes in cell cycle
pathways is shown in Figure 1D.
TABLE 1 | Serum concentrations of cytokines and oxidative stress variables in dairy cows with low and high milk somatic cell counts (SCCs)1 at Week 1 pre- (-1 Wk)
and postpartum (+1 Wk).

Items3 -1 Wk +1 Wk P-value2

Low SCC High SCC Low SCC High SCC SEM Hs Wk Hs × Wk

Cytokines
IL-1b (pg/mL) 149c 294ab 236b 357a 22.5 <0.01 <0.01 0.58
IL-8 (pg/mL) 81b 126ab 94b 162a 8.6 <0.01 0.09 0.40
IL-17 (pg/mL) 196c 315b 220c 383a 19.4 <0.01 0.03 0.27
Oxidative stress variables
ROS (IU/mL) 274c 329ab 251c 337a 11.3 <0.01 0.72 0.43
MDA (nmol/mL) 0.66c 1.68b 0.70c 3.05a 0.229 <0.01 <0.01 <0.01
8-OHDG (ng/mL) 97b 111b 115b 165a 7.0 <0.01 <0.01 0.10
PC (umol/mL ×10-3) 43.5bc 51.3b 40.9c 73.5a 3.17 <0.01 <0.01 <0.01
April 2022 | Vo
lume 13 | Artic
1The data are expressed as the mean ± SEM, n = 5 cows per group. Different superscripts (a, b, and c) represent significant differences (P < 0.05).
2Hs, health status; Wk, sampling week; Hs × Wk, interaction between health status and sampling week.
3IL-1b , interleukin-1b; IL-8, interleukin-8; IL-17, interleukin-17; ROS, reactive oxygen species; 8-OHDG, 8-hydroxy-2 deoxyguanosine; PC, protein carbonyl.
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Compared with those in the low-SCC group, neutrophil
expression levels of genes involved in the cell cycle, including
TP53, CDK1, CDK2, CDK4, CCNA2, CCNB3, CCND1, CCNE1,
CDC25A, DP1, C-Myc,ORC1,ORC2, ORC4,MCM3,MCM5, and
MCM6, were significantly higher (P < 0.05) in high-SCC cows
(Figure 2). CDK2 expression was significantly higher (P < 0.05)
in postpartum dairy cows than in prepartum cows, while the
expression of other cell cycle-related genes in the neutrophils of
postpartum cows was not different from that in prepartum cows
(Figure 2). The interaction effect (Hs × Wk) was significant for
CCNA2 (P < 0.05).
Formation of NETs by Neutrophils in
Prepartum Cows
The mRNA expression of a total of 21,648 genes was examined in
the 10 cDNA libraries of blood neutrophils isolated from dairy
cows (5 high-SCC cows and 5 low-SCC cows) at Week 1
prepartum, and the DEGs between the PR-low and PR-high
groups are shown in Figure 3. A total of 1,285 DEGs (FDR <
0.05, |log2FoldChange| ≥ 1) were identified, of which 651 were
downregulated and 634 were upregulated in the PR-high group
compared with the PR-low group.

The GO terms enriched by the upregulated and
downregulated genes are shown in Table S3. In total, we
obtained 144, 47, and 41 upregulated GO terms in BP, CC,
and MF, respectively, and 75 and 4 downregulated GO terms in
BP and MF, respectively. There were more upregulated GO
terms in BP, CC, and MF than downregulated GO terms.
Among these, the upregulated GO terms in BP, CC, and MF
were mostly related to cell cycle processes. The downregulated
GO terms in BP were related to diseases, immunity, signal
transduction, cell adhesion, energy metabolism, translation,
and cell migration. The downregulated GO terms in MF were
mainly related to immunity.

A total of 1,285 DEGs were mapped to 121 KEGG pathways
(P < 0.05, Figure 4). Among these pathways, 47 were related to
cellular functions, including the cell cycle (42.6%), apoptosis
(19.2%), cell recruitment (14.9%), cell migration (14.9%), cell
adhesion (4.26%), chemotaxis (2.13%), and phagocytosis (2.13%)
(Figure 4A). The 20 pathways involved in the cell cycle are
shown in Figure 4B.

The results of GSEA are shown in Figure 5. These pathways
(|NES| > 1, P < 0.05, FDR < 0.05) were related to the cell cycle,
DNA damage, and chromatin conformation (Figure 5A), and
Frontiers in Immunology | www.frontiersin.org 5
the hub genes involved in these selected pathways included TP53,
CDKs, CCNs, DP1, ORCs, and MCMs (Figure 5B).
DISCUSSION

To our knowledge, this work was one of a few studies using RNA-
seq analysis to investigate the relationship between functional
changes in neutrophils and mastitis risk in transition dairy cows.
We found that the transcriptome changes in blood neutrophils
during the transition period were mainly associated with cell
cycle-related processes. However, neutrophils in the peripheral
blood are terminally differentiated cells that do not proliferate,
and the reactivation of the cell cycle that was observed in this
study is similar to NETosis. These findings suggested that
prepartum formation of blood NETs increases the postpartum
mastitis risk of dairy cows.

The functions of neutrophils in immunity and microbe
elimination are affected by pathological conditions (38). Our
previous work showed that the serum ROS concentrations of
dairy cows with low and high SCCs changed differently after
calving (8). This difference indicated that changes in ROS
enhance the formation of NETs in dairy cows with high
mastitis risk. Indeed, in the present study, analysis of serum
NET-related indices confirmed the difference in the formation of
NETs in cows with low and high SCCs at Week 1 pre- and
postpartum. Among these indices, DNase I is a NET marker that
can directly reflect the degradation of NETs in vivo (39). Both
MPO and NE are the main components by which NETs exert
their antimicrobial effects (40). IL-1b and IL-8 are external
inducers that stimulate neutrophils to form NETs (41), and
ROS stimulate neutrophils to directly generate NETs and
promote their release (12). 8-OHdG reflects the oxidative
damage of DNA (42, 43), which is necessary for neutrophils to
generate NETs (44). In this study, neutrophils in dairy cows with
high mastitis risk may be stimulated by IL-1b or IL-8 in the
blood, and the DNA conformation in the nucleus might be
damaged by high ROS levels. Then, NETs formed in these cows
by the binding of DNA to cytoplasmic granules and were
ultimately released into the blood.

The formation of NETs is beneficial to cow health.
However, excessive formation of NETs, in turn, can damage
tissues and organs, resulting in increased neutrophil
accumulation in inflamed tissues and organs (12). The MDA
and PC concentrations reflect oxidative damage of lipids and
TABLE 2 | Serum concentrations of NET-related indices in dairy cows with low and high somatic cell counts (SCCs)1 at Week 1 pre- (-1 Wk) and postpartum (+1 Wk).

Items3 -1 Wk +1 Wk P-value 2

Low SCC High SCC Low SCC High SCC SEM Hs Wk Hs × Wk

NETs (ng/mL) 15.4c 30.1b 21.4c 43.0a 2.66 <0.01 <0.01 0.16
DNase I (U/L) 69.0b 38.0a 67.0b 37.7a 3.92 <0.01 0.76 0.81
MPO (U/L) 97.6c 157b 114bc 229a 13.4 <0.01 <0.01 0.04
NE (U/L) 101c 170b 152b 201a 8.9 <0.01 <0.01 0.11
April 2022 | V
olume 13 | Artic
1The data are expressed as the mean ± SEM, n = 5 cows per group. Different superscripts (a, b, and c) represent significant differences (P < 0.05).
2Hs, health status; Wk, sampling week; Hs × Wk, interaction between health status and sampling week.
3NETs, neutrophil extracellular traps; MPO, myeloperoxidase; NE, neutrophil elastase.
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proteins, respectively (43). The results in the present study
revealed that dairy cows with high SCCs had higher levels of
MDA and PC resulting from the excessive formation of NETs.
IL-17 can mediate the activation of neutrophil mobilization,
Frontiers in Immunology | www.frontiersin.org 6
effectively mediating the inflammatory response in tissue (45).
In the present study, an increased IL-17 concentration was
observed in cows with high mastitis risk, indicating that NETs
in the blood may increase the release of neutrophils into blood
A

C

D

B

FIGURE 1 | Neutrophil weighted gene coexpression network analysis in dairy cows with low and high somatic cell counts (SCCs) at Week 1 pre- and postpartum.
(A) The relationship between coexpressed modules and SCCs. (B) Gene distribution map in the brown module is shown in brown in (A). (C) Gene ontology analysis
of hub genes in the brown module. (D) The hub genes involved in the cell cycle. Gray indicates downregulated genes, and red represents upregulated genes. BP,
biological process; CC, cellular component; MF, molecular function.
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and milk. Taken together, these results indicated that the
formation of blood NETs increased the mastitis risk of dairy
cows during the transition period. Consistently, our previous
studies (8) also suggested that alterations in serum TNF-a, IL-
Frontiers in Immunology | www.frontiersin.org 7
6, and PSGL-1 concentrations between cows with low and
high SCCs were associated with changes in neutrophil
chemotaxis, adhesion, and apoptosis. In addition, the
neutrophil counts and its functional factors tended to be
A

C

B

D

F

G

E

FIGURE 2 | The mRNA expression of genes involved in the cell cycle in neutrophils from dairy cows with low and high somatic cell counts (SCCs) at Week 1 pre- (-1 Wk)
and postpartum (+1 Wk). (A) Neutrophil cell cycle reinitiation gene (TP53). (B) Cyclin-dependent kinases (CDK1, CDK2, CDK4). (C) Cyclin-dependent kinase specific-
substrates (CCNA2, CCNB3, CCND1, CCNE1). (D) Cyclin-dependent kinase upstream gene (CDC25A). (E) Cyclin-dependent kinase downstream genes. (DP1, C-Myc)
(F) DNA promoter-binding genes (ORC1, ORC2, ORC4). (G) Initiation factors (MCM3, MCM5, MCM6). The data are expressed as the mean ± SEM, n = 5 cows per
group. Different superscripts (a, b, and c) represent significant differences (P < 0.05). Hs, health status; Wk, sampling week; Hs × Wk, interaction between health status and
sampling week. TP53, tumor suppressor p53; CDK1, cyclin-dependent kinase 1; CDK2, cyclin-dependent kinase 2; CDK4, cyclin-dependent kinase 4; CCNA2, cyclin A2;
CCNB3, cyclin B3; CCND1= cyclin D1; CCNE1, cyclin E1; CDC25A, cell division cycle 25A; DP1, D-prostanoid receptor 1; C-Myc, transcriptional regulator Myc-like;
ORC1, origin recognition complex subunit 1; ORC2, origin recognition complex subunit 2; ORC4, origin recognition complex subunit 4; MCM3, minichromosome
maintenance 3; MCM5, minichromosome maintenance 5; MCM6, minichromosome maintenance 6.
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higher in dairy cows with high SCCs than those with low SCCs
from prepartum to postpartum in both our previous (8) and
present studies. Thus, we suggest that the functional factors of
neutrophils with different SCCs might be potential indicators
for mastitis risk from late gestation to early lactation.
However, the behind mechanism warrants further study.

Transcriptomic analysis revealed that the changes in
neutrophil functions in dairy cows with different SCCs were
mainly associated with immunity- and cell cycle-related
processes. In this study, we focused on the formation of NETs
because of its capacity of directly aggravating mastitis risk.
However, the pathways involved in NETosis are poorly
understood. In neutrophils, cell-cycle pathways are repurposed
for controlling NETosis (15, 46). Before cell cycle processes are
activated, gene products of ORCs (ORC1,ORC2, andORC4) bind
to the DNA start site on the chromosome and other transcription
initiation factors, such as the MCM family (MCM3, MCM5, and
MCM6), to form a prereplication complex, shifting cells from the
G0 phase to the G1 phase (47). In this study, the increased gene
expression of ORC1, ORC2, ORC4, MCM3, MCM5, and MCM6
in the neutrophils of cows with high SCCs indicated that the cell
cycle may be activated in neutrophils in high mastitis risk cows
during the transition period. However, it is still unclear how the
cell cycle is activated because blood neutrophils are terminal cells
and cannot re-enter the cell cycle alone. TP53 is a critical
transcription factor that regulates the expression levels of
cyclin-dependent kinases (CDK2 and CDK4) and their specific
Frontiers in Immunology | www.frontiersin.org 8
substrates (CCNE1 and CCND1) to initiate G1 phase (48–50).
During G1 phase activation, CDC25A regulates CDKs (CDK2
and CDK1) and their specific substrates (CCNA2 and CCNB3) to
start the S phase, G2 phase, and M phase (51). Increased gene
expression of TP53, CDK1, CDK2, CDK4, CCNA2, CCNB3,
CCND1, CCNE1, and CDC25A was observed in our study and
suggested that neutrophil mitosis might occur in dairy cows with
high SCCs. The processes of chromosome unwinding during
mitosis highly correspond to NETosis. The cell-cycle kinases
CDK4 can mediate the formation of NETs (15). We suggest that
neutrophils in dairy cows with high mastitis risk may not actually
reactivate the cell cycle but do undergo NETosis.

After neutrophils are stimulated, their chromatin is
depolymerized, the nuclear membrane is ruptured, and the cell
membrane eventually breaks, releasing NETs (12, 13). NETosis is
a new type of neutrophil cell death that is distinct from apoptosis
or necrosis. NETosis is an active process characterized by the
internal breakdown of nuclear membranes (15). The expression
level of DP1 and c-Myc in the nucleus is increased by the
activation of the cell cycle and the coregulation of CDKs,
leading to nuclear membrane rupture (52). In this study, the
high expression of DP1 and C-Myc in the neutrophils of high
mastitis risk cows revealed that the formation of blood NETs
increased the mastitis risk of dairy cows during the transition
period. Mastitis leads to great economic losses in the dairy
industry and impairs animal health. A prepartum prognosis of
mastitis is crucial in transition dairy cows (53). No significant
FIGURE 3 | Differentially expressed genes (DEGs) in the neutrophils of dairy cows with low or high milk somatic cell counts at Week 1 prepartum. The x-axis
represents the log2-fold change values of DEGs, and the y-axis indicates log10 (P value). The significantly up- and downregulated genes are shown as red and
green dots, respectively, whereas the blue dots represent genes without significant expression changes. PR-high, prepartum high SCC.
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difference was found in the expression of cell cycle pathway genes
between the pre- and postpartum dairy cows in the present
study, indicating that the formation of NETs observed in
postpartum dairy cows occurred during the prepartum period.
Therefore, we further investigated whether prepartum functional
changes in neutrophils were consistent with the changes in
neutrophils during the transition period.

Consistent with the functional changes in neutrophils in
transition dairy cows, GO term analysis of DEGs in the
neutrophils of cows with high or low SCCs at Week 1
prepartum also showed changes related to the cell cycle.
Among the cellular pathways related to the functional
variations in neutrophils, the proportion of cell cycle-related
pathways was the largest (42.6%). The other pathways were
related to cell recruitment, adhesion, migration, chemotaxis,
phagocytosis, and apoptosis. Decreases in neutrophil
recruitment, adhesion, migration, chemotaxis, phagocytosis,
and apoptosis were observed in dairy cows with diseases (6).
DNA damage can reactivate the cell cycle and induce chromatin
conformation changes, which is closely related to the formation
Frontiers in Immunology | www.frontiersin.org 9
of NETs (15). The present study showed that pathways related to
the cell cycle, DNA damage, and chromosomal conformation in
neutrophils were different between PR-low and PR-high cows.
The hub genes of these pathways, such as CDK4, were involved in
the cell cycle and were related to NETosis (15). The expression of
the hub genes was largely confirmed by qPCR, and the analysis of
serum NET-related indices further confirmed the formation of
NETs in high-SCC dairy cows at Week 1 prepartum. The
analysis of prepartum neutrophil transcriptome differences
indicated that the formation of NETs by blood neutrophils
during the prepartum period was closely linked with the
increased SCCs in postpartum milk. When blood neutrophils
reach the inflamed mammary gland, they may generate and
release NETs and continuously kill bacteria. However, excessive
NET accumulation could damage the mammary gland, causing
mammary epithelial cells to slough off and more neutrophils to
enter the inflamed mammary gland. Finally, the excessive
generation of NETs led to increased SCCs and negatively
impacted milk production and milk quality. The abnormal
state of neutrophils persisted during the transition period,
A

B

FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes in neutrophils from dairy cows with high or
low somatic cell counts at Week 1 prepartum. (A) The KEGG pathways. (B) Cell cycle-related pathways. In (B) the x-axis shows the gene ratio, and the y-axis
displays the enrichment related to the cell cycle pathway. The circle size represents the number of genes, and the color indicates the P value.
April 2022 | Volume 13 | Article 880578

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jiang et al. NETs and Mastitis Risk
leading to the differences in SCCs in postpartum milk observed
in the two groups of dairy cows.
CONCLUSIONS

Our study showed that the cell cycle of blood neutrophils
is highly associated with milk SCCs in transition dairy cows.
The chromosome of neutrophils, which are terminal cells,
Frontiers in Immunology | www.frontiersin.org 10
unwinds and binds to cytoplasmic granular proteins
to form and release NETs, but these cells do not enter the
cell cycle. After neutrophils migrate into the mammary gland
and enter into NETosis, NETs continue to exert their
antimicrobial effects. However, the excessive accumulation of
NETs might recruit more neutrophils to the mammary gland,
resulting in increased SCCs and reduced milk production and
milk quality. The NETs formed in dairy cows before calving are
present during the transition period, which might explain the
A

B

FIGURE 5 | Gene set enrichment analysis (GSEA) of differentially expressed genes (DEGs) in neutrophils from dairy cows with high or low somatic cell counts at
Week 1 prepartum. (A) The cell cycle, DNA damage, and chromatin conformational pathways identified by GSEA. (B) Heatmap showing hub DEGs in the cell cycle,
DNA damage, and chromatin conformational pathways. PR-low, prepartum low SCC; PR-high, prepartum high SCC.
April 2022 | Volume 13 | Article 880578

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jiang et al. NETs and Mastitis Risk
variations in SCCs. In conclusion, the formation of blood NETs
in transition dairy cows can increase the risk of postpartum
mastitis (Figure 6).
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