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Epigenetic Regulation of Immune
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Qi Chen, Hao Li, Yusi Liu and Min Zhao*

Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China

Purpose: Rheumatoid arthritis (RA) is a disease associated with multiple factors.
Epigenetics can affect gene expression without altering the DNA sequence. In this
study, we aimed to comprehensively analyze epigenetic regulation in RA.

Methods: Using the Gene Expression Omnibus database, we identified a methylation
chip, RNA-sequencing, and miBRNA microarray for RA. First, we searched for DNA
methylation, genes, and miRNAs associated with RA using differential analysis. Second,
we determined the regulatory networks for RA-specific methylation, miRNA, and m6A
using cross-analysis. Based on these three regulatory networks, we built a
comprehensive epigenetic regulatory network and identified hub genes.

Results: Using a differential analysis, we identified 16,852 differentially methylated sites,
4877 differentially expressed genes, and 32 differentially expressed miRNAs. The
methylation-expression regulatory network was mainly associated with the PI3K-Akt
and T-cell receptor signaling pathways. The miRNA expression regulatory network was
mainly related to the MAPK and chemokine signaling pathways. MBA regulatory network
was mainly associated with the MAPK signaling pathway. Additionally, five hub genes
were identified in the epigenetic regulatory network: CHD3, SETD1B, FBXL19,
SMARCA4, and SETD1A. Functional analysis revealed that these five genes were
associated with immune cells and inflammatory responses.

Conclusion: We constructed a comprehensive epigenetic network associated with RA
and identified core regulatory genes. This study provides a new direction for future
research on the epigenetic mechanisms of RA.

Keywords: DNA methylation, rheumatoid arthritis, miRNA, m6A methylation, epigenetic regulation, gene expression

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease that manifests as an inflammatory
change in synovial tissue. It causes erosive joint damage, resulting in impaired articular cartilage and
bone, eventually leading to functional disability upon its progression to the terminal phase. RA can
also cause fever, anemia, vasculitis, pulmonary interstitial changes, and other systemic injuries (1)
thereby increasing the economic burden of treatment. Therefore, determining the cause of RA is
urgently needed to reduce the treatment burden and disability rate. While the exact cause of RA is
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unknown, several factors have been shown to contribute greatly
to the pathogenesis of RA, such as genetic factors. First-degree
relatives of RA patients (2) have a 2-4 fold increased risk of RA
in comparison with the general population, and the concordance
rate of RA in monozygotic twins was as high as 15%, fourfold
higher than in dizygotic twins due to having the same genetic
information (3, 4). At present, a hundred more risk loci for RA
have been identified, which helped reveal the pathogenesis of RA
and provide new therapeutical targets (5).

Nevertheless, genetic heterogeneity does not explain all the
characteristics of RA (6), and there is increasing evidence
suggesting that epigenetic modifications play an important role in
RA pathogenesis (7). Epigenetics is defined as a heritable but
reversible phenomenon that affects gene expression without
changing the primary DNA sequence. The main epigenetic
phenomenon includes DNA methylation, histone modification,
and regulation of non-coding RNAs, such as microRNAs
(miRNAs) (8). A previous study reporting a whole-genome DNA
methylation analysis in peripheral blood mononuclear cells
(PBMCs) of patients with RA suggested that DNA methylation
influences the formation of an interferon-inducible gene interaction
network associated with RA and highlighted the role of the PARP9
gene in RA pathogenesis (9). In addition to DNA methylation,
miRNAs also play a vital role in the occurrence and progression of
RA. MiR-499 is associated with the occurrence of RA, and miR-223
and miR-125b are associated with the development and recurrence
of RA and response to treatment (10). RNA methylation is also a
form of epigenetic regulation; N6-methyladenosine (m6A), one
of the most abundant internal modifications of mRNA in
eukaryotic cells, plays a crucial role in many diseases, including
cancer (11) and cardiovascular diseases (12). Qing Luo et al. found
that decreased expressions of ALKBHS5, FTO, and YTHDEF2, which
are enzymes necessary for the m6A mRNA modification, are risk
factors for RA (13). Hui Jiang et al. established a transcriptional
map of m6A in MH7A cells and suggested that m6A methylation
is possibly associated with the occurrence and progression of
RA (14). However, the role of m6A methylation in RA
pathogenesis remains unclear.

Although the role of epigenetics in RA has been studied, there
has been no comprehensive study on the abnormal expression of
various epigenetic mechanisms in RA. Therefore, in this study we
analyzed the abnormal expression of DNA methylation-,
microRNA, and m6A-related genes by comparing three high-
throughput datasets containing the synovial tissues of patients
with RA and osteoarthritis to identify the potential regulatory
genes of RA.

MATERIAL AND METHODS

Data Collection

To analyze the effect of epigenetic regulation on RA, we collected a
DNA methylation chip (GSE46364), RNA sequencing (RNA-seq)
chip (GSE89408), and miRNA microarray (GSE72564) from the
Gene Expression Omnibus (GEO) datasets (https://www.ncbinlm.
nih.gov/geo/). GSE46364 is an Illumina HumanMethylation450
BeadChip containing synovial tissue samples from five patients

with osteoarthritis (OA) and six patients with RA, GSE89408 is an
RNA-seq chip containing samples from 22 patients with OA and
152 patients with RA, and GSE72564 is a miRNA expression
profiler comprising four samples from patients with OA and four
samples from patients with RA.

Differential Gene Filtering

Difterential analysis was used for multi-omics data to identify RA-
related genes. ChAMP packages were used to identify differentially
methylated genes (DMGs) with P < 0.05 considered as the “difference
criteria” (15). The Deseq2 package in R was used to search for
differentially expressed genes (DEGs) in RNA-seq data (16), and the
limma package was applied to analyze the miRNA microarray (17).
Benjamini & Hochberg algorithm (18) was used to adjust the P value.
The absolute value of Log2 foldchange>1 and P < 0.05 were
considered as the screening criteria for the expression data.

Epigenetic Network Construction of
Methylation, microRNA, and m6A
Since gene expression regulation by methylation is generally
negative, we screened hypermethylated-low expression genes
(Hyper-LGs) and hypomethylated-high expression genes
(Hypo-HGs) based on differentially methylated sites and DEGs.
To investigate the potential regulatory mechanisms of
miRNAs in RA, we first predicted the potential target genes of
RA-specific miRNAs using the Starbase database (http://starbase.
sysu.edu.cn/) and then performed cross-analysis between
predicted target genes and differentially expressed mRNAs.
Because of the negative regulatory effect of miRNA on mRNA,
we sought low expression mRNA with high expression miRNA
and high expression mRNA with low expression miRNA.
Additionally, m6 A methylation is mainly regulated by 19 related
genes (19). The intersection of these 19 genes and results of RNA-
seq differential analysis were used to predict the potential target of
related genes using mé6a2Target (http://m6a2target.canceromics.
org/#/home). Subsequently, the obtained potential targets and
DEGs were cross-analyzed to identify key target genes in RA.

Comprehensive Epigenetic Network
Construction and Hub Genes Screening

We cross-analyzed the potential regulatory genes based on the
above-mentioned methylation, miRNA, and m6A methylation
networks to identify genes that were simultaneously affected by
them as RA epigenetic-related genes. The STRING database
(string-db.org) was used to analyze the protein-protein
interaction (PPI) network between these genes and the
molecular complex detection (MCODE) clustering algorithm
was used to analyze the protein network and identify hub genes.

Functional Enrichment Analysis

Gene ontology analysis (GO) is a database for annotating genes and
gene products (20). It contains terms in three categories: cellular
component (CC), molecular function (MF), and biological process
(BP). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
collection of databases that contains information on genomes,
biological pathways, diseases, and drugs (21). We performed GO,
and KEGG pathway enrichment analysis of DEGs obtained
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through analysis using clusterProfiler (22). Benjamini & Hochberg
algorithm (18) was used to adjust P value. Adjust P values < 0.05
were considered as significant results.

Analysis of the Functions of Hub Genes in RA
To understand the functions of hub genes in RA, we used the GSVA
algorithm to evaluate the scores of 24 types of immune cells in RA
samples. We used Pearson’s correlation analysis to observe the
relationship between hub genes and immune cells. Because of the
crucial role of the inflammatory response in the occurrence and
development of RA, we also investigated the co-expression
relationship between hub genes and inflammation-related genes.
The specific functions of these hub genes were determined using
single-gene gene set enrichment analysis (GSEA). Benjamini &
Hochberg’s algorithm was used to adjust the P-value (18). Adjust P
values < 0.05 were considered as significant results.

RESULTS
mRNA Methylation Network Construction

To construct a methylation network for mRNA methylation in
RA, ChAMP was used for differential methylation analysis, and
16,852 differential methylation sites were obtained, including
7,004 hypomethylated sites and 9,848 hypermethylated sites.
Based on gene location analysis, we found that both
hypermethylated and hypomethylated genes were mainly
located in the genomic region and the intergenic region
(Figure 1A). In addition, differential expression analysis of
RNA-seq revealed 1864 highly-expressed genes (Hypo-HGs)
and 3013 low-expressed genes (Hyper-LGs) (Figure 1B), and
1246 hyper-LGS and 345 hypo-HGs were obtained by cross-
analysis (Figure 1C). Enrichment analysis of the above genes
revealed that hyper-LGs were associated with 25 signaling
pathways, including the PI3K-Akt, cAMP, and Hippo signaling
pathways. In contrast, hypo-HGs were mainly related to immune
processes, including Th1 and Th2 cell differentiation and the T-
cell receptor signaling pathway (Figure 1D and Table 1).

miRNA-mRNA Regulatory Network
Construction

To construct a miRNA expression network in RA, differential
miRNA analysis was performed using the limma package. A total
of 32 differential miRNAs were identified, including nine low-
expressed miRNAs and 23 highly-expressed miRNAs (Figure 2A).
The miRNAs of potential target genes were predicted using the
StarBase database and were co-analyzed with DEGs. The results of
the co-expression analysis showed that 906 low-expressed genes
were regulated by highly-expressed miRNAs (HM-LGs), and 374
highly-expressed genes were regulated by low-expressed miRNAs
(LM-HGs) (Figure 2B and Supplementary Table 1). The pathway
enrichment analysis results revealed that HM-LGs were associated
with 22 signaling pathways, including the relaxin, Notch, and
MAPK signaling pathways. LM-HGs were mainly associated with
17 pathways, including the TNF and chemokine signaling pathways
(Figure 2C and Table 2).

m6A Regulatory Network Construction

To construct an méa regulatory network in RA, we analyzed the
expression of 19 m6A-related genes mentioned above using
differential gene expression analysis, which showed that only
IGF2BP3 was significantly differentially expressed in RA
(Table 3). The possible target genes of IGF2BP3 were predicted
using the m6A2Target database. They were cross-analyzed with
DEGs in RA, which revealed that IGF2BP3 influences 1419 genes
involved in the regulation of m6A methylation. Pathway
enrichment analysis revealed that these 1419 genes were
mainly associated with eight signaling pathways, including the
VEGF, MAPK, and ECM-receptor interaction signaling
pathways (Table 4).

Construction of RA-Related Epigenetic
Regulatory Network

To identify genes that are simultaneously regulated by the above
networks, we cross-analyzed these networks and identified 369
genes (Figure 3A). Additionally, PPI analysis revealed 561 edges
with an average node degree of 3.46 (Figure 3B and
Supplementary Table 2). GO analysis suggested that these
genes were mainly associated with the regulation of AMPA
receptor activity, among other pathways (Figure 3C). To select
PPT hub genes, we used the MCODE plug-in and identified a hub
gene module composed of five proteins, including CHD3,
SETD1B, FBXL19, SMARCA4, and SETD1A (Figure 3D).

Functional Analysis of Hub Genes

To understand the functions of hub genes, the essential functions
of the five obtained genes were analyzed, including their effects
on RA immune cells and association with inflammation-related
genes. We first calculated the immune cell score of 24 immune
cells using GSVA and then compared the correlation between the
five genes and immune cells. SETD1A and CHD3 were shown to
affect most immune cells, and the five genes were all associated
with CD4+ effector memory T (Tem) cells (23) (Figure 4A). In
addition, because RA is a chronic inflammatory disease, we
analyzed the relationship between these five genes and
inflammation-related genes. We found that most of the hub
genes were associated with inflammation-related genes, of which
the transforming growth factor-beta 1 (TGFBI) gene and three
characteristic genes (FBXL19, SMARCA4, and SETDIA) had a
strong positive correlation (Figure 4B). Additionally, single-gene
GSEA of these five genes revealed that they were all associated
with the Notch and phosphatidylinositol signaling pathways
(Figure 4C). Collectively, these results show that hub genes
may influence the occurrence and development of RA through
regulating cellular inflammatory responses.

DISCUSSION

Rheumatoid arthritis is an autoimmune joint disease
characterized by irreversible cartilage destruction and bone
erosion. The occurrence and progression of RA are greatly
influenced by immune (24) and inflammatory responses (25),
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FIGURE 1 | DNA methylation regulatory network in RA. (A) Statistic of the genomic location of differentially methylated sites. (B) Volcano plot for RNA-seq differential
expression analysis. (C) Screening of hypermethylated-low expression genes (Hyper-LGs) and highly-expressed genes (Hypo-HGs). (D) Kyoto Encyclopedia of
Genes and Genomes pathway enrichment analysis of Hyper-LGs and Hypo-HGs.
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TABLE 1 | Functional analysis of DNA methylation regulatory network.

Trends Term Description Count pvalue

HyperLow hsa04974 Protein digestion and absorption 21 3.95E-08
hsa04512 ECM-receptor interaction 19 6.72E-08
hsa04724 Glutamatergic synapse 21 2.47E-07
hsa04510 Focal adhesion 28 1.12E-06
hsa05032 Morphine addiction 16 1.26E-05
hsa04020 Calcium signaling pathway 28 3.50E-05
hsa04360 Axon guidance 23 5.09E-05
hsa04926 Relaxin signaling pathway 18 9.28E-05
hsa04713 Circadian entrainment 15 0.00011
hsa01522 Endocrine resistance 15 0.000124
hsa05033 Nicotine addiction 9 0.000147
hsa05165 Human papillomavirus infection 33 0.000167
hsa04330 Notch signaling pathway 1 0.000168
hsa04727 GABAergic synapse 13 0.000553
hsa04024 CcAMP signaling pathway 23 0.000799
hsa04022 cGMP-PKG signaling pathway 19 0.000863
hsa04390 Hippo signaling pathway 18 0.001071
hsa04151 PI3K-Akt signaling pathway 32 0.001165
hsa04080 Neuroactive ligand-receptor interaction 31 0.001266
hsa04915 Estrogen signaling pathway 16 0.001776
hsa05146 Amoebiasis 13 0.002011
hsa04921 Oxytocin signaling pathway 17 0.002207
hsa04010 MAPK signaling pathway 27 0.002223
hsa05224 Breast cancer 16 0.003394
hsa04925 Aldosterone synthesis and secretion 12 0.004127

HypoOver hsa04660 T cell receptor signaling pathway 10 2.64E-05
hsa04659 Th17 cell differentiation 10 3.67E-05
hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 9 4.53E-05
hsa04640 Hematopoietic cell lineage 9 0.000105
hsa04020 Calcium signaling pathway 14 0.000184
hsa04658 Th1 and Th2 cell differentiation 8 0.000347
hsa04657 IL-17 signaling pathway 8 0.000402
hsa04060 Cytokine-cytokine receptor interaction 15 0.00048
hsa04061 Viral protein interaction with cytokine and cytokine receptor 8 0.000611

along with genetic and epigenetic factors. In this study, we aimed
to determine the role of epigenetics, including DNA methylation,
miRNA, and m6A methylation, in the pathogenesis and
development of RA. We comprehensively analyzed these three
epigenetic mechanisms to construct an epigenetic regulatory
network that is closely associated with immune and
inflammatory responses.

We used three high-throughput sequencing assays for a
comprehensive epigenetic analysis. In the original article of
these data, GSE46364 only analyzed the high-throughput
methylation data, and the main functions of RA-related
methylation genes were analyzed through enrichment analysis
(26). The original article of GSE72564 just selects a suitable
miRNA for downstream research. The function of all miRNAs
has not been analyzed (27). While GSE89408 mainly analyzed
the functions of differentially expressed genes related to RA (28).
Comparing the results of our analysis with the previous literature
results, the enrichment analysis results of mRNA high-
throughput expression data and the results of epigenetic
regulatory networks have certain similarities. However,
comparing functional analysis of differentially methylated
genes with the functional analysis of methylated genes that
affect gene expression, we found that there were almost no

identical pathways between the two results. Therefore, if we
want to analyze methylation sequencing data affected gene
regulation function, we still need to combine expression data
for cross-analysis.

In the DNA methylation regulation network, the DNA
methylation chip and RNA-seq were analyzed to identify
differentially methylated and expressed genes. We found 1246
Hyper-LGS and 345 Hypo-HGs associated with RA. The PI3K-
Akt signaling pathway plays a crucial role in the cellular
inflammatory response (29), as it can affect fibroblast-like
synoviocyte metabolism and promote proliferation of synovial
cells and osteoclasts (30), which aggravates RA. In our study,
Hyper-LGs were enriched with the term “PI3K-Akt signaling
pathway”, indicating that in RA, the PI3K signaling pathway is
mainly activated via DNA methylation. Previous studies have
shown that many drugs for the treatment of RA target and
inhibit the PI3K signaling pathway (31-33). Therefore, we
speculate that drugs that regulate gene methylation may also
be candidate drugs for the treatment of RA, providing a potential
new target for epigenetic therapy. In addition to the pathways
associated with the inflammatory response, we found some
immune-related pathways to be significant. Hypo-HGs can
affect immune responses, including the T-cell receptor
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FIGURE 2 | MiRNA regulatory network in RA. (A) Volcano plot for miRNA differential expression analysis. (B) miRNA regulatory network. Red circles represent
miRNAs, and blue circles represent mRNAs. (C) KEGG pathway enrichment analysis of highly-expressed miRNAs (HM-LGs) and low-expressed miRNAs (LM-HGs).

signaling pathway, which affects the development and function =~ RA-related m6a methylation. IGF2BP3, one of the readers of

of T cells, leading to the occurrence of RA (34-36). m6A methylation, has been shown to play a regulatory role in
Moreover, we identified 22 pathways associated with highly-  many diseases including cancer (40-42) and cardiovascular
expressed miRNAs and 17 pathways associated with low-  diseases (43, 44); however, its role in RA is unknown. In this

expressed miRNAs in RA. Most of these pathways were  study, we found that IGF2BP3 is mainly involved in the
associated with inflammation, including the MAPK (37) and  regulation of inflammation-related pathways, including the
TNF signaling pathways (38). Immune-related pathways, suchas ~ MAPK signaling pathway. Additionally, by cross-analyzing
the Notch signaling pathway, were also identified in the  these three epigenetic networks, we found that they are all
constructed miRNA-mRNA regulatory network. The Notch  involved in the regulation of inflammatory responses and that
signaling pathway not only regulates immune responses but ~ miRNA and DNA methylations are also involved in the
also interferes with osteoclast differentiation, which is involved ~ regulation of immune responses. Our results indicate that
in bone remodeling (39). In the screening for m6A-related  epigenetics plays an important role in the regulation of RA.

proteins, only IGF2BP3 was found to be related to RA; Because the occurrence of RA is simultaneously regulated by
therefore, we theorized that it was a crucial factor influencing  three epigenetic mechanisms. Therefore, we talk about the
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TABLE 2 | Functional enrichment analysis of miRNA regulatory networks.

Trends Term Description Count pvalue
HM-LGs hsa04510 Focal adhesion 23 2.94E-06
hsa01522 Endocrine resistance 15 4.86E-06
hsa04974 Protein digestion and absorption 15 9.11E-06
hsa04926 Relaxin signaling pathway 17 9.19E-06
hsa04330 Notch signaling pathway 11 1.34E-05
hsa04928 Parathyroid hormone synthesis, secretion and action 14 5.55E-05
hsa04360 Axon guidance 19 7.81E-05
hsa00532 Glycosaminoglycan biosynthesis - chondroitin sulfate/dermatan sulfate 6 7.99E-05
hsa04933 AGE-RAGE signaling pathway in diabetic complications 13 0.000120537
hsa05146 Amoebiasis 13 0.000147866
hsa04010 MAPK signaling pathway 24 0.000445426
hsa05165 Human papillomavirus infection 26 0.000469436
hsa04512 ECM-receptor interaction 11 0.000562502
hsa04261 Adrenergic signaling in cardiomyocytes 15 0.000696194
hsa04810 Regulation of actin cytoskeleton 19 0.000798121
hsa04912 GnRH signaling pathway 11 0.000901842
hsa04012 ErbB signaling pathway 10 0.001595268
hsa04935 Growth hormone synthesis, secretion and action 12 0.002181488
hsa04919 Thyroid hormone signaling pathway 12 0.002511337
hsa05205 Proteoglycans in cancer 17 0.002537387
hsa04390 Hippo signaling pathway 14 0.003093187
hsa04015 Rap1 signaling pathway 17 0.003261983
LM-HGs hsa04668 TNF signaling pathway 14 7.20E-08
hsa04657 IL-17 signaling pathway 12 5.09E-07
hsa04060 Cytokine-cytokine receptor interaction 21 7.74E-07
hsa04061 Viral protein interaction with cytokine and cytokine receptor 12 1.00E-06
hsa05143 African trypanosomiasis 6 0.000103648
hsa05323 Rheumatoid arthritis 9 0.000131484
hsa04621 NOD-like receptor signaling pathway 13 0.000132753
hsa04062 Chemokine signaling pathway 12 0.000668445
hsa05164 Influenza A iRl 0.000926237
hsa04640 Hematopoietic cell lineage 8 0.001050876
hsa04933 AGE-RAGE signaling pathway in diabetic complications 8 0.001122298
hsa04064 NF-kappa B signaling pathway 8 0.001447735
hsa04620 Toll-like receptor signaling pathway 8 0.001447735
hsa05417 Lipid and atherosclerosis 12 0.001783866
hsa04659 Th17 cell differentiation 8 0.001844074
hsa05321 Inflammatory bowel disease 6 0.002274031
hsa05162 Measles 9 0.00247169
TABLE 3 | Differential analysis of m6a-related proteins.
m6aGene baseMean log2FoldChange IfcSE stat pvalue padj
YTHDCA 1796.161526 -0.028221513 0.080886709 -0.348901735 0.727163082 0.80270679
IGF2BP1 2.697784456 -0.281933868 0.560397819 -0.503095941 0.61489682 0.708631271
IGF2BP2 402.3500668 -0.590021278 0.165311101 -3.569157022 0.000358132 0.001238057
IGF2BP3 105.4914646 1.221619118 0.228126806 5.355000316 8.56E-08 5.92E-07
YTHDFA1 959.8377988 0.109755315 0.057790866 1.899181016 0.05754068 0.105592872
YTHDF3 2925.769544 0.255598485 0.084646814 3.019587771 0.002531189 0.007033159
YTHDC2 1840.72859 0.329315265 0.089510793 3.679056484 0.000234098 0.000843939
HNRNPA2B1 7087.424742 -0.034613113 0.065149662 -0.531286151 0.595220501 0.691717891
YTHDF2 1639.946419 0.340595006 0.06620877 5.144258181 2.69E-07 1.71E-06
HNRNPC 6292.814787 0.242423905 0.099017759 2.448287117 0.014353722 0.032137332
RBMX 4378.152403 0.213741124 0.078550519 2.721065726 0.006507182 0.016172884
METTL3 844.7837167 0.087648891 0.061145514 1.433447612 0.15172996 0.235997149
METTL14 558.3295856 0.126012711 0.089093881 1.414381216 0.157250002 0.242919061
WTAP 3321.199154 0.707188731 0.129326528 5.468241852 4.55E-08 3.30E-07
RBM15 1143.633457 -0.024373501 0.069823956 -0.349070755 0.727036191 0.802687218
RBM15B 1687.483233 -0.295446918 0.092183229 -3.204996405 0.001350642 0.004021684
FTO 2155.948843 -0.220745072 0.075130092 -2.938171212 0.003301546 0.008895402
ZC3H13 2756.868741 -0.386453097 0.072532073 -5.328030527 9.93E-08 6.79E-07
ALKBH5 1950.070619 -0.411945241 0.097650023 -4.218588273 2.46E-05 0.000109564
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TABLE 4 | Functional enrichment of m6a regulatory networks.

ID Description Count pvalue
hsa04370 VEGF signaling pathway 13 2.95E-05
hsa04510 Focal adhesion 27 4.66E-05
hsa05165 Human papillomavirus infection 37 0.00011688
hsa05135 Yersinia infection 19 0.00040802
hsa04512 ECM-receptor interaction 14 0.00058222
hsa04360 Axon guidance 22 0.00101461
hsa04010 MAPK signaling pathway 31 0.00111894
hsa04929 GnRH secretion iA 0.00115637
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combination of genes regulated by three mechanisms.
Comprehensive analysis to further understand the comprehensive
regulation of epigenetics in RA.Based on these three epigenetic
networks, we constructed a comprehensive regulatory network in
RA and identified 369 epigenetically regulated genes, most of which
were expressed at low levels, which is consistent with methylation
pattern and miRNA expression. Among these low-expressed genes,

SMARCAA4 is most associated with other proteins in the entire
epigenetic network. SMARCAA4 is a member of the SWI/SNF family
(45), which have ATPase and helicase activities and regulate gene
transcription via chromatin remodeling (46). Zhang et al.
constructed a neuroendocrine immunomodulation network
(NIM) and showed that SMARCAA41 plays a critical role in RA
(47). Hou et al. revealed that SMARCA4 induces apoptosis of
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human rheumatoid fibroblast-like synoviocyte MH7A cells in a
p53-dependent pattern (48). Therefore, consistent with the results of
these previous studies, our study confirms the important role of
SMARCA4 in the pathogenesis of RA. Furthermore, we used the
MCODE algorithm to identify hub genes in the PPI network, and
five genes, CHD3, SETDIB, FBXLI19, SMARCA4, and SETDIA,
were selected as hub genes. SETD1A and SETDIB belong to a
protein family containing the SET domain and are constituent of a
histone methyltransferase (HMT) complex that generated
methylated histone H3 at Lys4, indicating that these two proteins
are involved in the regulation of methylation. Presently, there are no
studies on role of these two genes in RA; therefore, our RA
epigenetic network can provide novel mechanistic insights into
their functions. CHD3 is a component of the Mi-2/NuRD complex,
a type of histone deacetylase complex, which takes part in the of
chromatin remodeling by deacetylating histones. FBXL19 can
combine with the transmembrane receptor interleukin 1 receptor-
like 1 and regulate its ubiquitination and degradation. Zhao et al.

showed that FBXL19 inhibits inflammatory response through
degradation of the IL-33 receptor, which mediates immune
system-related disorders, through ubiquitination (49). The
interleukin IL-33 can influence the occurrence of RA. Therefore,
FBXL19 can inhibit RA onset by inhibiting the IL-33 receptor (50).

To further understand the role of these genes in RA, we
analyzed the relationship between hub genes and immune
infiltration and found that all the five genes were associated
with multiple immune cells participanting in the pathogenesis of
RA, such as Tem cells (51-53) and macrophages (54, 55).
Inflammation is the main pathological manifestation of RA,
thus, we used TGFBI as a representative inflammation-related
gene and analyzed its relationship with the five genes. TGFB1,
encoding a ligand of the TGF-beta superfamily of proteins, is a
central regulator of the inflammatory response. TGFEp-
responsive tyrosine phosphatase promotes invasiveness of
rheumatoid synovial fibroblast and participates in the
pathological mechanism of RA synovial lesions (56). In our
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study, FBXL19, SMARCA4, and SETDIA showed strong positive
correlations with TGFBI1 expression. Therefore, these genes play
an important role in RA development and should be studied
further in future studies.

Our study has several limitations. First, despite mainly using
high-throughput sequencing data, the sample size used in our
study was relatively small, and the results may be influenced by
false positives. Second, we only focused on three epigenetic
mechanisms, such as methylation and miRNAs; other
epigenetic mechanisms in RA, such as IncRNAs, should be
investigated in the future. Finally, this present study is mainly
based on high-throughput sequencing, and our results should be
clinically validated.

CONCLUSION

In conclusion, we performed a comprehensive analysis of
epigenetic regulation in RA using public sequencing datasets
and determined the main regulatory mechanisms of DNA
methylation, RNA methylation, and miRNA expression in RA.
Additionally, we constructed a comprehensive epigenetic
regulatory network and identified five hub genes, thereby
providing new insights into the pathogenesis of RA.
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