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The E/ID protein axis is instrumental for defining the developmental progression and
functions of hematopoietic cells. The E proteins are dimeric transcription factors that
activate gene expression programs and coordinate changes in chromatin organization. Id
proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated
throughout hematopoietic development to enable the progression of hematopoietic stem
cells into multiple adaptive and innate immune lineages including natural killer cells, B cells
and T cells. In early progenitors, the E proteins promote commitment to the T and B cell
lineages by orchestrating lineage specific programs of gene expression and regulating
VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis
functions to promote class switch recombination and somatic hypermutation. E protein
activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and
instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins
define the adaptive immune system lineages, focusing on their role in directing
developmental gene programs.

Keywords: HLH, E proteins, Id proteins, VDJ recombination, lymphopoiesis, hematopoiesis, T cell development,
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BACKGROUND

Decades of research have demonstrated the essential role of E proteins in mediating both innate and
adaptive immune cell development and the wide implications of E protein activity in disease
progression and immune response. In mammals, E proteins include E2A, E2-2 and HEB (1). E
proteins are members of the helix-loop-helix (HLH) family of transcription factors. E proteins
either homo- or heterodimerize with other HLH proteins to bind to E-box sites (CANNTG)
through a basic region to modulate the expression of nearby and distal genes. This activity is
opposed by Id proteins, which lack a basic DNA binding region and heterodimerize with E proteins
to prevent them from binding to DNA. Together, E and Id proteins form an E-Id axis to instruct
immune development.

This review discusses the role of the E-Id axis in adaptive immune development. These proteins
are expressed in all mammalian cell types. They are regulated both transcriptionally and post-
transcriptionally to orchestrate the development of an armamentarium of immune cell types and to
establish a diverse immune repertoire. We focus on how appropriately timed differentiation to T
and B cell fates is achieved while discussing how the development of alternative cell fates
is suppressed.
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E-ID AXIS IN EARLY HEMATOPOIESIS

Adaptive immune development begins in the fetal liver and in
the bone marrow in adults, where E and ID proteins influence
developmental decisions in hemopoietic stem cells (HSCs),
which give rise to all blood cells (Figure 1). Differentiation to
HSCs is achieved by the E protein SCL/TAL1, and maintained by
E2A proteins and their repressive heterodimerizing HLH
partners Lyl1 and Id1 (2–5). These factors also set the stage for
the ratio of progenitors giving rise to B and T cells. E proteins
oppose proliferation of HSCs, priming their expression to
promote lymphoid-associated gene expression (6, 7). This
activity promotes their differentiation into multipotent
progenitors (MPPs) and further into lymphoid-primed MPPs
(LMPPs), while preventing granulocyte-monocyte progenitor
(GMP) development and partially restricting megakaryocyte-
erythrocyte progenitor (MEP) development (6). As a result,
E2A-deficient mice are associated with reduced HSCs and
MPPs (3). Other E proteins, E2-2 and HEB, were found to be
expendable at this early stage of development (8–10). Thus, E
protein activity orchestrates a supportive transcriptional
landscape for lymphocyte development in HSCs.

Id protein inhibition of E protein activity might play a role in
generating a diverse immune repertoire from HSCs. E2A
promotes HSC differentiation and represses proliferation by
controlling the expression of p21 and Notch1 (11–14). E
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proteins further drive differentiation to LMPPs to common
lymphoid progenitors (CLPs), which give rise to several cell
fates including B cells, T cells, dendritic cells, innate lymphoid
cells, and natural killer (NK) cells (10, 15). In the absence of E2A
expression, fewer LMPPs progress to the CLP stage (6). The cells
that do progress preferentially feed alternative lineages seeded by
GMPs, MEPs, and Pre-MegE-progenitors (7). In the absence of
E2A and HEB, CLPs are compromised in their ability to express
an early lymphoid program (10). The capacity of CLPs to
differentiate into NK, B or T lineages may be further divided
by their expression of different surface markers (16–19). A recent
study suggested that heterogeneous levels of E and Id proteins in
CLPs may contribute to these unique differentiative capabilities
(19). Thus, fine tuning of E protein activity in CLPs instructs
immune cell fate.
EARLY B CELL DEVELOPMENT

E proteins orchestrate B cell development by defining signaling
pathways in CLPs (Figure 2). E2A activity is required to activate
Ebf1 and IL7 receptor protein (IL7Ra) in CLPs, which together with
E2A activate Pax5 (20–23). E2A proteins also act in concert with
Ebf1 to induce Foxo1 expression (24). Subsequently, E2A and HEB
coordinate with Foxo1, Pax5 and Ebf1 to support the progression of
CLPs through the B cell lineage (23, 25). Aberrant Id3 expression at
FIGURE 1 | Lymphopoiesis is directed by E protein activity in early stem cells. The role of E and Id proteins in early progenitors giving rise to B and T cells is
depicted in the bone marrow. Protein factors that support stem cell maintenance or self-renewal are indicated adjacent to each cell, and bolded arrows represent
lineage differentiation (Created with BioRender.com).
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this earlier stage alternatively arrests B cell development and
prevents IL7Ra induction, later inducing caspase-mediated
apoptosis (26). Cytokine signaling from the TGF-b family
represents one mechanism by which Id3 expression is regulated
(27). Thus, E proteins promote B cell development from CLPs by
priming a B-cell transcriptional network.

E proteins then stimulate the subset of CLPs primed with B
cell lineage genes to progress into pre-pro-B cells. Studies have
implicated that the E2A isoform E47 is required to get past this
stage, while E12 is dispensable (28–31). E2-2 and HEB also both
contribute to early B cell development (32). Notably, E2-2
mRNA expression is particularly high in pro-B cells and
orchestrates the developmental maturation of these early B cell
progenitors into pre-B cells (33).

In the B cells, E proteins are regulated by lineage specific post-
transcriptional mechanisms. E47 homodimers, for example, are
only detected at high levels in B cells (34). This cell specific
homo-dimer activity may involve phosphorylation of specific
residues of the E2A proteins (34, 35). Histone acetyltransferases
including p300, CBP, and PCAF interact with E2A to mark the
Frontiers in Immunology | www.frontiersin.org 3
epigenetic chromatin landscape (36, 37). Further, miRNAs
regulate E protein activity. A recent study identified miR-191
as a rheostatic regulator of B cell development to modulate E2A
mRNA abundance from pro-B to immature B cells (38).

E proteins regulate gene expression by coordinating changes
in nuclear architecture. E2A occupancy at the Ebf1 locus is
associated with relocation away from the nuclear lamina in pro-B
cells (39). E2A binding at or near enhancers or promoters was
associated with deposition of active chromatin markers such as
H3K4me1 with further activating epigenetic alterations between
pre-pro-B to pro-B cells (40). Activated genes with E2A
occupancy frequently contained coordinated DNA binding
with Ebf1, Foxo1 and CTCF. Recent studies indicated that E2A
occupancy is closely associated with recruitment of members of
the cohesin complex (41). In parallel studies it was revealed that
H3K27Ac marked enhancers are closely associated with
recruitment of cohesin (42–44).

Collectively, these studies suggest that E2A may act, at least in
part, by initiating loop extrusion across the enhancer landscape.
Other mechanisms may also act with E2A to promote B cell
FIGURE 2 | B cell fate and differentiation is directed by E protein activity. The role of E proteins and their antagonists in B cell development is shown in the bone
marrow and lymphoid organs. Protein factors supportive of differentiation or cell maintenance are indicated in black font next to the arrows or adjacent to the cell
respectively. Protein factors with repressive functions are indicated in red font (Created with BioRender.com).
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development. Notably, E2A recruits Tet2 and Tet3 to promote
chromatin accessibility adjacent to E-box binding sites in pro-B
cells (45). Future studies are warranted to determine how E2A
mediated changes in DNA methylation and recruitment of
cohesin are linked to induce lineage specific gene programs.

E proteins may also be essential in preventing the premature
progression of B cells from pre-pro-B into pro-B cells. E2A
enforces this checkpoint by binding an E-box element in a p21
regulatory region, which encodes a CDK inhibitor and induces cell
cycle arrest (11). This checkpoint can be circumvented by
repression of E protein activity by Id1-3 (11, 26). The
downregulation of E protein activity by rapid induction of Id
proteins occurs upon successful heavy chain V-DJ rearrangement
in pro-B cells, and it will be important to establish whether and
how alterations in Id3 protein levels modulate E2A activity to
orchestrate antigen receptor assembly (28).
GENERATION OF B CELL DIVERSITY

Somatic recombination events in the B cell lineage generate a
diverse antibody repertoire. B cells rearrange the variable regions
of their immunoglobulin heavy chain (Igh) and immunoglobulin
light chain (Igk or IgL) loci to produce mature B cells with unique
antigen binding specificities. E2A regulates these recombination
events by controlling appropriate expression of the Rag genes, as
well as chromatin accessibility and 3D spatial organization of the
Igh and Igk loci. Following these recombination events, B cells can
undergo class switch recombination (CSR) and somatic
hypermutation (SHM) to generate antigen receptors with higher
affinities for their cognate antigens. E proteins regulate CSR and
SHM by promoting chromatin accessibility at the targeted
immunoglobulin (Ig) genes and by controlling the expression of
key enzymes involved in these processes.

E2A Regulates Rag Expression in the
B Cell Lineage
Recombination is catalyzed by the recombinase activating genes,
Rag1 and Rag2 (46, 47). Rag1/2 expression peaks twice in the B
cell linage, first in pro-B cells during Igh rearrangement, when
E47 expression is high. Rag expression is then downregulated as
cells pass through the pre-BCR checkpoint and transition to pre-
B cells (48). E protein activity declines during this time, as pre-
BCR signaling upregulates Id3 expression and E47 protein levels
decline (49, 50). Rag and E47 protein levels are elevated again in
pre-B cells undergoing Ig light chain rearrangements (48, 49). In
E2A deficient mice, B cell development is blocked at the pre-pro-
B cell stage and Igh rearrangements fail to initiate due to lack of
Rag activity (31, 51). E2A regulates Rag expression in a dose
dependent manner (49).

The Rag1/2 genes share a single genetic locus. An
evolutionarily conserved B cell specific enhancer of Rag (Erag)
contains E-box binding sites. Deletion of Erag in mice reduces
Rag1/2 expression and compromises Dh-Jh and Vh-DhJh
recombination (52). Recent findings indicate that E2A directly
regulates Rag1/2 gene expression in pro-B cells by binding to the
Frontiers in Immunology | www.frontiersin.org 4
Rag promoters and enhancer and orchestrating chromatin
conformations that promote a transcriptionally active Rag
locus (41). E2A also binds two additional B cell specific
regulatory elements (R1B and R2B), which partially overlap
with Erag. R1B and R2B orchestrate a B cell specific chromatin
architecture at the Rag1/2 gene cluster. Deletion of these E2A
binding elements resulted in reduced chromatin accessibility of
the Rag1/2 genes, a loss of genomic interactions across the locus,
reduced Rag1/2 expression, a significant developmental block at
the pro-B cell stage, and severely compromised Igh
recombination. Further, E2A directly regulates the Rag1
promoter in pro-B cells. Specific mutation of all 7 E-box sites
in the Rag1 promoter (R1pro-E-boxmut/mut), resulted in a loss of
chromatin accessibility at the Rag1 gene and reduced Rag1 gene
expression. R1pro-E-boxmut/mut mice are phenotypically similar
to Rag-/- mice, have severely compromised Igh V-DhJh
recombination, and exhibit a developmental block at the pro-B
cell stage (41).

Recombination of the Igh Locus
The immunoglobulin heavy chain locus is comprised of Vh, Dh,
and Jh genes, which recombine in a step-wise manner. Dh to Jh
recombination occurs first, and is followed by Vh to DhJh
recombination (53). E2A regulates Vh(Dh)Jh recombination by
promoting chromatin accessibility at the Igh locus. Early
studies found that ectopic expression of either E2A gene
product (E12 or E47) along with Rag1/2 in non-B lineage
cells is sufficient to initiate Igh germline transcription (GLT)
and Dh to Jh recombination (but not Vh to DhJh recombination)
(30, 54, 55). E2A initiates and maintains Pax5 expression in pro-
B cells and cooperates with Pax5 to promote further chromatin
accessibility and allow Vh to DhJh recombination (29). Ectopic
expression of Pax5 with Rag1/2 and E2A in non-lymphoid cells
is sufficient to induce Vh to DhJh recombination (56).
Interestingly, enforced Pax5 expression restores Rag expression
and Dh-Jh recombination at the heavy chain locus in Vav-CRE
E2Afl/fl mice, even though the Rag1 promoter is directly
regulated by E2A (29, 41).

E2A is also essential for Igh locus contraction (57, 58). Prior
to Vh(Dh)Jh recombination, the Igh locus repositions from the
lamina to the nuclear interior and undergoes contraction to
bring Vh and DhJh genes into close physical proximity (59). This
compaction allows Vh and DhJh genes to adopt a wider spectrum
of configurations in pro-B cells, to promote a higher diversity of
Vh genes in the antibody repertoire (58). E2A directly binds to
PAIR elements, regulatory elements in Vh region that facilitate
locus contraction (60–63). The role of E2A binding at PAIR
elements is not yet clear but it likely involves recruitment of the
cohesin machinery to initiate loop extrusion across the Igh locus.

Expression of a pre-B cell receptor (pre-BCR) composed of a
rearranged Igh protein and a surrogate light chain (SCL) is a
developmental checkpoint that monitors for successful
rearrangement of an Igh allele. Pre-BCR signaling indicating a
productive Igh chain has recombined enforces allelic exclusion of
the Igh locus. Pre-BCR mediated regulation of E2A might be
important for downregulation of the SLC genes, as well as other
May 2022 | Volume 13 | Article 881656
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pre-BCR co-receptors and downstream signaling proteins
(64, 65).

Recombination of the Igk Locus
The roles of E2A in orchestrating recombination of the
immunoglobulin kappa (Igk) locus have been extensively
studied. The E2A proteins were initially identified in a
screen for factors that bind sites across the kappa locus
intronic enhancer (iEk) (66). Analogous to its role in Igh
recombination, E2A promotes chromatin accessibility at the
Igk locus. Ectopic E2A expression, along with Rag1/2, is
sufficient to induce Igk germline transcription and Vk to Jk
rearrangements in non-lymphoid cells (55). While forced Pax5
expression restored Dh-Jh recombination at the Igh locus in
E2A-/- mice, it did not rescue Vk-Jk rearrangements, indicating a
unique role for E2A in promoting Igk locus assembly (29).

E2A proteins directly bind sites across the Igk locus to recruit
the histone acetyltransferases CBP and p300 (67, 68). E2A may
increase the rearrangement frequencies of Vk genes by promoting
their transcription. Promoters bound by E2A or that contain E2A
binding sites are associated with strong promoters and are
expressed at significantly higher frequencies compared to overall
Vk genes (39, 67, 69). Another possible mechanism may involve
recruitment of cohesin to instruct loop extrusion at enhancers
across the Igh locus akin to that described above for the Igh locus.
The Igk locus contains an ensemble of enhancers including, the
intronic enhancer (iEk) and the 3’ enhancer (kE3’), that regulate
Vk-Jk rearrangement (70–72). E2A binding to iEk is essential for
enhancer activation and regulates the appropriate developmental
timing of Igk recombination (73–75). Mutation of two of the three
E-box sites in iEk resulted in the same reduction in Igk
rearrangement as that with deletion of the entire iEk enhancer
(73). Before initiating light chain rearrangements, large cycling
pre-B cells attenuate their IL-7/STAT5 signaling, cell cycle exit and
transition into resting small pre-B cells. IL-7/STAT5 signaling
negatively regulates Igk recombination by antagonizing E2A
binding at iEk (74, 75). Similar mechanisms regulate the
activation of kE3’. Developmental control of the kE3’enhancer
involves both active stimulation by PU.1, IRF4, and E2A and
repression by STAT5. STAT5 signaling reduces kE3’ activity in
pro-B cells, possibly by blocking PU.1 recruitment to the
enhancer, as STAT5 and PU.1 competitively bind to the
enhancer (76). Pre-BCR signaling induced IRF4 promotes kE3’
activation by cooperatively binding to the enhancer with E2A and
by rendering kE3’ activity insensitive to STAT5 (76–79). E2A and
PU.1 recruit the TET proteins to kE3’ where they promote
increased chromatin accessibility by facilitating DNA
demethylation (45). Proper developmental timing of Igk locus
demethylation appears critical for appropriate Igk recombination.
Proximal Vk gene promoters and kE3’ were hypomethylated in
mice in which the de novo methyltransferases Dnmt3a and
Dnmt3b were deleted. These mice undergo premature Igk
rearrangements, have increased Igk rearrangement frequencies,
and over-utilize their most proximal Vk genes (80).

The Igk locus is poised for VkJk recombination in pro-B cells,
where it already exhibits signs of chromatin accessibility and has
Frontiers in Immunology | www.frontiersin.org 5
already undergone large scale locus contraction. The Igk locus
repositions to the permissive compartment and contracts at the
pre-pro-B to pro-B developmental cell transition. During this
transition, the intronic enhancer (iEk) forms extensive contacts
with Vk genes across the locus that are associated with E2A
occupancy. These changes in chromatin conformation are
accompanied by increased Igk transcription, widespread H3K4
demethylation, and E2A binding across the locus (39, 81, 82). In
response to pre-BCR signaling, the locus further contracts. E2A
occupancy at the locus increases and kE3’ forms stronger
chromatin interactions with the Vk region (Figure 3).
Interactions between kE3’ and Igk flanking regions are
reduced, while interactions between kE3’ and VK genes that are
located close to E2A binding sites increase. There are strong
positive correlations between presence of E2A binding sites, Vk

gene usage, and long-range chromatin interaction frequencies
between Vk genes and the kappa regulatory elements, which
suggest that E2A is a key factor in Igk locus contraction (82).

In conclusion, much has been learned about the roles of E2A
in orchestrating Igk locus rearrangement. In our view the most
appealing mechanism is that the E2A proteins bind enhancer
elements across the Igk locus to deposit H3K27Ac across the
enhancer repertoire. The deposition of H3K27Ac may then act to
sequester chromatin remodelers like Brg1 that in turn sequester
cohesin to initiate loop extrusion (42). Thus, a common theme is
now emerging in which transcription factors, like E2A, sequester
cohesin to promote large-scale alterations in chromatin folding,
enabling Vk regions to encounter Jk elements with distinct
frequencies that are independent of genomic separation.
MATURE B CELL DEVELOPMENT

After successful VDJ rearrangement and receptor editing of the
Ig light chain genes, E and Id proteins further instruct the
development of pre-B cells. This transition is mediated by
upregulation of Id3 and a reduction in E protein abundance
triggered by BCR signaling (49). E47 levels therefore decline in
transitional B cells followed by a near complete loss of E47
expression in mature B cells. Genetic studies showed that high
levels of E2A promote follicular B cell development while high
Id3 abundance favors the marginal zone B cell fate (33, 49). E2-2
serves an overlapping role controlling this developmental
decision as revealed by the transfer of E2A- and E2-2-deficient
fetal liver cells into irradiated Rag-deficient mice (33). E protein
activity is also essential for the development of germinal center
and plasma cells (83). Likewise, in the absence of Id3 expression
germinal center B cell development is severely affected (84).
Specifically, when researchers abrogated Id3 expression in
germinal center B cells, the expression of genes encoding
for components of antigen receptors, cytokine receptors,
and chemokine receptors was severely perturbed (83). E2A and
E2-2 activity is also essential for the developmental progression
of plasma cells (29, 84, 85). E2A and E2-2 promote plasma
cell identity by directly activating Blimp1 and Xbp1 expression
(84, 85). Together these studies show that HLH proteins play
May 2022 | Volume 13 | Article 881656
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instrumental roles in orchestrating the response of B cells to
exposure of infectious agents.

Class Switch Recombination and
Somatic Hypermutation
Activation of mature naïve B cells initiates class switch
recombination (CSR) and somatic hypermutation (SHM). E
proteins regulate both CSR and SHM by 1) transcriptionally
regulating key factors involved in these processes, 2) interacting
directly with CSR and SHM proteins and targeting them to Ig
genes, and 3) by increasing the chromatin accessibility of
Ig genes.

The enzyme activation induced cytidine deaminase (AID) is
required for both CSR and SHM. AID deaminates cytosine bases
to uracils. In CSR, the DNA repair factor UNG then excises these
uracil bases and DNA repair factors convert these SSBs to DSBs
(86). In SHM, mutations are generated by a variety of error prone
DNA repair mechanisms that are employed to repair the
mismatched U:G bases (87). E2A and E2-2 directly promote
expression of AID by binding to regulatory elements in the Aicda
locus (the AID gene) and increasing chromatin accessibility of
enhancer elements (85, 88, 89). Loss of E protein activity in
activated B cells inhibits CSR, due in part to loss of AID
expression (85, 90, 91). CSR to IgG1 expression is blocked in
in E2A/E2-2 DKO mice due to loss of AID expression (85).
Overexpression of Id2 reduces AID expression in activated B
cells (92). However, a balance of E protein activity must be
maintained for normal CSR, as Id2 also plays an inhibitory role
in CSR. Id2 deficient B cells undergo CSR to IgE at a much high
frequency than that of wild-type B cells (93).
Frontiers in Immunology | www.frontiersin.org 6
E2A proteins also bind directly to Ig genes to promote SHM
and CSR. E2A forms a complex with AID, Pax5, ETS1 and IRF4
that functions to target AID to sites within the Igh locus (94, 95).
E2A and E2-2 promote CSR by opening chromatin at the 3’RR
enhancer and activating GLT of switch regions. E2A/E2-2 DKO
mice have impaired CSR to IgE, due to loss of activation of the
3’RR enhancer and IgE GLT (85). Further, E-box binding sites
within Ig enhancers promote efficient SHM (96–99). E2A may
help direct AID to DNA, and genome wide E2A occupancy is
associated with AID targeting (99). Finally, we suggest that E2A
proteins act to promote CSR and SHM by initiating loop
extrusion across the switch regions and V gene segments and
note that E2A likely plays an additional role in promoting phase
separated droplets to orchestrate CSR and SHM.
REGULATION OF EARLY T CELL
DEVELOPMENT BY HLH PROTEINS

A fraction of LMPPs develops into early T progenitors (ETPs)
that then home to the thymus (Figure 4). E2A and HEB promote
homing by modulating chemokine receptor expression,
including CXCR4, to direct thymocytes to the cortex (100).
Here, ETPs encounter Delta-class Notch ligands. An ensemble
of genes involved in Notch signaling are directly activated by E47
(21). Together with E2A, Notch signaling prevents the activation
of B-lineage and myeloid factors and promotes T lineage
development. These functions are opposed by Id1 and Id2
expression in these early progenitors and in double negative
(DN) T cells, promoting an innate lymphoid fate instead. T cell
FIGURE 3 | Enhancer activation by E2A drives IgK recombination.The IgK locus is poised for recombination in pro-B cells—when E2A is bound to VK genes, VK
regions have acetylated histone marks, and the locus is already contracted, with iEK making extensive contacts with the VK region. Activation of the locus coincides
with E2A activation of the IgK enhancers. Pre-BCR signaling and IL-7/STAT5 attenuation render the iEK and 3’EK enhancers insensitive to STAT5. E2A occupancy at
the enhancers increases, and the Tet proteins are recruited to 3’EK where they demethylate CpG residues. The now accessible 3’EK enhancer forms extensive
contacts with the VK region.
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progression was blocked in CLPs with disrupted E2A and HEB
activity, instead favoring differentiation to alternative lineages
(101). Once ETPs migrate to the thymus, E2A and HEB, in
coordination with Notch signaling instruct further development
(21, 32, 102–104). In developing thymocytes, E proteins
modulate the expression of gene programs including those
involved in cell cycle progression, pre-TCR signaling and
cytokine gene expression (105). Prominent amongst the genes
activated by E47 expression are CDK6, Socs1/2, Ets, Foxo1, and
GATA3. The E2A proteins may act coordinately with Bcl11b,
another key factor known to establish T cell identity, to activate a
common set of target genes (106, 107). Researchers have found
that E2A binds regulatory elements in a distal long non-coding
RNA, ThymoD (108). ThymoD transcription is initiated from
within the Bcl11b intergenic region where it acts to promote T
cell commitment by repositioning the Bcl11b enhancer from a
heterochromatic environment at the lamina to the euchromatic
compartment located in the nuclear interior (107, 108). The
overlapping gene expression profiles between E2A, Bcl11b, and
ThymoD knockout mice combined with the evidence of E2A
binding to elements within ThymoD implicates the possibility
that E2A could indirectly initiate Bcl11b expression by
modulating non-coding transcription. A prominent Bcl11b
target in developing thymocytes is Id2. Interestingly, the
majority of genes regulated by Bcl11b are also modulated by
Id2 (104, 109). HEB also performs multiple, unique functions in
thymocyte development. Elegant studies revealed that an
alternatively spliced form of HEB, named HEBAlt, increases
the development of T cell progenitors (110, 111). Subsequent
studies showed that in the absence of HEB T cell progenitors
Frontiers in Immunology | www.frontiersin.org 7
adopt alternative cell fates (112). HEB also directly activates the
expression of pre-Ta, a component of the pre-TCR complex
(113). Thus, a detailed picture is now emerging in which E2A
and HEB act collaboratively to orchestrate the development of
early T cell progenitors.
GENERATION OF T CELL DIVERSITY

T lymphocytes rearrange their TCRa, TCRb, TCRg and TCRd
loci to generate diverse T cell receptor repertoires. T cell receptor
rearrangements initiate at the CD4- CD8- double negative (DN)
stage of thymocyte development. TCRb, TCRg and TCRd
rearrangements all occur simultaneously in DN2 cells.
Successful rearrangement of TCRg and TCRd loci results in
expression of a gd TCR and potential development into the gd T
cell lineage. Successful rearrangement of a TCRb chain results in
expression of a pre-TCR. Pre-TCR signaling allows progression
to the DN4 cell stage where TCRa rearrangements occur, so that
cells may become ab T cells. The E-ID axis plays critical roles in
T cell development by regulating rearrangement events at all four
TCR loci, orchestrating the ab versus gd cell fate decision, and by
enforcing key developmental checkpoints.

ab/gd T Cell Lineage Decisions
The E-ID axis determines whether cells adopt the ab or gd T cell
fate. gd TCR signaling strength is a critical determinant in the
choice to become ab or gd T cells. Stronger gdTCR signals favor
lineage commitment to the gd T cell fate, while weaker gd TCR
signals favor commitment to the ab T cell fate (114, 115).
FIGURE 4 | T cell fate and differentiation is directed by E protein activity. The role of E proteins and their antagonists in T cell development is shown in the thymus
and lymphoid organs. Protein factors supportive of differentiation or cell maintenance are indicated in black font next to the arrows or adjacent to the cell respectively.
Protein factors with repressive functions are indicated in red font (Created with BioRender.com).
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gdTCR signals mediate lineage decisions through activation of
the Erk-Egr-Id3 pathway (114, 116). In response to TCR
signaling, Egr induces a level of Id3 expression that is
proportional to the TCR signaling strength, and Id3 expression
levels correlate with commitment to the gd cell fate. Cells
committed to the gd cell fate display higher levels of Id3
expression (114). Id3 plays a critical role in gd/ab lineage fate
decision. Loss of Id3 decreases the number of gdTCR+ cells,
however Id3 overexpression does not increase the number of
gdTCR+ cells or influence their maturation (114). Thus, Id3 is
necessary but not sufficient to drive the gd cell fate. Egr acts
upstream of Id3 to promote the gd cell fate, but likely also effects
other pathways besides Id3 to promote gd T cell development, as
Egr1 overexpression is sufficient to increase the frequency of gd T
cell (114, 116). The increase in gd T cells depends in part, on Id3
activation, as the Egr1 overexpression phenotype is diminished
in an Id3 deficient background (116). Id3 regulates the gd/ab
lineage fate decision by promoting the survival of gd T cells and
repressing the survival of ab T cells in response to strong TCR
signals. In response to a strong gd TCR signal, Id3 deficiency
increases the expression of the anti-apoptotic protein Bcl-XL and
the survival of cells committed to the ab lineage, while reducing
expression of the anti-apoptotic protein Bcl-2 in mature gd T
cells (116).

The E-ID Axis Regulates Rag Expression
in the T Cell Lineage
There are two waves of Rag expression in developing T cells. The
first wave peaks in DN cells at a time when the TCRb, TCRd, and
TCRg loci rearrange. The second wave peaks in double positive
(DP) T cells during the course of TCRa rearrangements (117). The
E-Id protein axis is critical to coordinate these waves of Rag
expression. The E proteins, E2A and HEB, positively regulate the
expression of Rag1 and Rag2 in DN and DP cells (30, 37, 118).
Many studies have sought to characterize the cis-regulatory
elements that regulate Rag expression in thymocytes (41, 119,
120). Rag1 and Rag2 share a single genetic locus and their
expression in T cells depends on two overlapping cis regulatory
elements, the Rag-T cell enhancer (R-TEn) and the anti-silencer
element (ASE). E2A directly binds to E-boxes in R-TEn, which is
located within ASE, as well as the Rag1 promoter and upregulates
Rag1/2 expression by coordinating or maintaining the assembly of
a transcriptionally active chromatin hub at the Rag locus in both
DN and DP cells. Deletion of R-TEn induces developmental blocks
at the DN3 and DP cell stages (41, 120). Following productive TCR
rearrangements, Id3 protein expression is upregulated in response
to pre-TCR signaling, positive selection and gd TCR signaling (116,
121, 122). Enforced expression of Id3 in T cell progenitors reduces
levels of Rag1 and Rag2 (123). These studies suggest that Id
proteins function to promote allelic exclusion by antagonizing
E2A binding at the Rag locus, which downregulates Rag1/2
expression and thus prevents further TCR rearrangements (124).

TCRb Rearrangement
In addition to positively regulating Rag expression, high E
protein activity in early thymocyte development promotes
TCRb rearrangements by increasing chromatin accessibility of
Frontiers in Immunology | www.frontiersin.org 8
the locus. The murine TCRb locus is composed of Vb, Db, and Jb
genes. The locus recombines in a step-wise manner, with Db to Jb
rearrangement occurring before Vb to Db Jb rearrangement
(125). Recombination of the TCRb locus is dependent on the
TCRb enhancer (Eb), which drives germline transcription at and
promotes chromatin accessibility of the Db-Jb gene clusters (126–
129). In DN thymocytes, E2A binds to conserved E-box binding
sites in Eb, the Db2 promoters, and the majority of Vb
promoters and drives germline transcription from Vb
promoters as well as H3 histone acetylation at Vb, Db and Jb
genes in dosage dependent manners, likely by directly binding to
and recruiting the histone acetyl transferases CBP and p300 (37,
68, 130, 131).

E2A deficient and null mice have reduced numbers of
thymocytes, exhibit a partial block in thymocyte development at
the DN1 stage, and display gene dosage dependent deficiencies in
both Db-Jb and Vb-DbJb rearrangements (37, 103, 132). HEB plays
a modest role in TCRb recombination. HEB deficient mice show
dosage independent deficiencies in Vb germline transcription, and
do not display a partial developmental block until the ISP stage
(113, 131). It is possible that the modest defects in rearrangement
seen in E2A and HEB deficient mice are caused by loss of a single
E protein being compensated for by homodimers of the remaining
E-protein (133, 134). Studies designed to address concerns of
compensation generated mice with double conditional knockouts
of HEB and E2A at an early stage in lymphocyte development
(HEBfl/fl E2Afl/fl Lck+/Cre), as well as mice that express a dominant
negative HEB gene (HEBbm/bm), which contains a mutation in the
DNA binding region of HEB and forms non-functional
heterodimers with E2A (134, 135). Studies with these mice
confirmed that E2A and HEB can partially functionally
compensate for one another. Both HEBfl/fl E2Afl/fl Lck+/Cre and
HEBbm/bm exhibit severe developmental blocks at the DN stage,
and HEBbm/bm show severely impaired Vb-DbJb rearrangements
(134, 135). Together, these data show that the E-proteins play
essential and overlapping roles in controlling TCRb
locus assembly.

b-Selection
Successful rearrangement of a TCRb chain results in expression
of a pre-TCR containing the TCRb chain and a surrogate light
chain TCRa (pre-Ta) . Pre-TCR signaling indicates
rearrangement of a productive TCRb allele, ensures allelic
exclusion by blocking further TCRb rearrangement, and allows
cells to transition past the b-selection checkpoint and develop
into DN4 and DP cells. The E-Id axis acts on many levels to
regulate proper development at the b-selection checkpoint. E47
and HEB regulate pre-Ta expression in a dose sensitive manner
(135, 136). E2A and HEB double conditional knockout mice
exhibit a severe developmental block at the DN3 stage, exhibit
normal TCRb rearrangements, but have reduced pre-Ta
expression, suggesting that this block could be due to lack of
pre-Ta protein (135).

The E-Id axis also regulates the proliferation of thymocytes
before and after b-selection. Prior to b-selection, E2A activity
suppresses IL-7 induced proliferation. DN3 cells engaging in
TCRb rearrangement are cell cycle arrested in G1. After
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productive TCRb rearrangement, pre-TCR signaling induces
many rounds of proliferation as cells transition to DN4 and
DP stages. HEB and E2A are necessary to keep DN3 cells in a low
or non-proliferating state prior to pre-TCR signaling (135, 137,
138). Pre-TCR signaling inhibits E protein activity primarily by
inducing expression of Id3 and by promoting E2A degradation.
This loss of E protein activity then allows proliferative expansion
of DP thymocytes. Upregulation of Id3 and silencing of E protein
activity functions to ensure allelic exclusion by reducing E2A
occupancy at the TCRb enhancer and Vb regions, as well as CBP
and H3 acetylation at Vb regions. Inhibition of E2A is essential
for allelic exclusion. Enforced expression of E47 in DN
thymocytes that already contain a functional TCRb transgene
enables continued rearrangement of the TCRb loci (37). Further,
E2A is essential to enforce the b-selection checkpoint. E2A
deficiency allows thymocytes that have not undergone TCRb
rearrangement to bypass selection and develop into DP and even
single positive thymocytes (137, 138).

TCRa Rearrangement
The TCRa and TCRd genes share a single genetic locus, with the
TCRd genes nested within the TCRa genes, such that
rearrangement of the TCRa gene results in deletion of the
entire TCRd gene (139). Rearrangements of the TCRa/d locus
are regulated by two enhancers, Ea and Ed (140). In DP cells, pre-
TCR signaling deactivates the Ed enhancer, activates the Ea
enhancer, and promotes the formation of a chromatin hub in
which CTCF and cohesin mediate long range chromatin
interactions between Ea, the more proximal 3’ Va/d and the
more 5’ distal Ja promoters and drives germline transcription
(141). The Ea enhancer contains three E-boxes, two of which are
occupied by E2A prior to pre-TCR signaling. The third E-box
site is bound by E2A only in DP cells and is not occupied in
HEB-/- cells, which suggests that this site is bound by a E2A-HEB
heterodimer (142). Ea does not drive TCRa expression in
mature ab T cells and is inactivated following positive
selection. Following Ea inactivation the TCRa chromatin hub
dissolves. There is a loss of long-range enhancer-promoter
interactions, activating histone modifications (H4K3me1 and
H4K3me3), and E2A and HEB binding to the enhancer (143).

TCRg Rearrangement
E2A and HEB promote TCRg rearrangements. E2A and HEB are
each sufficient to initiate TCRg rearrangements in non-lymphoid
cells expressing Rag1 and Rag2 (144). The TCRg locus is
composed of 3 functional clusters: Cg1, Cg2, and Cg3.
Rearrangement of the Cg1 cluster has been the most extensively
studied. The Cg1 cluster contains four Vg genes and one Jg gene
(Jg1). Vg genes in the Cg1 cluster rearrange with Jg1 in a
developmentally ordered manner. The more proximal Vg3 and
Vg4 rearrange in early fetal thymocytes, while the more distal Vg2
and Vg5 rearrange later in development (140).

E2A regulates ordered Vg rearrangements (145, 146). In fetal
thymocytes, both Vg2 and Vg3 genes have permissive chromatin
states, and the rearrangement preference for Vg3 depends on its
more proximal location to Jg1 (147–150). In adults thymocytes,
selection of Vg genes for rearrangement depends on the Vg
Frontiers in Immunology | www.frontiersin.org 9
promoters (151). E2A regulates ordered rearrangement of Vg
genes by increasing chromatin accessibility at Vg2 and reducing
chromatin accessibility at Vg3 in adult thymocytes. E2A and
HEB bind directly to the Vg2 gene in vivo and positively regulate
GLTs from and histone acetylation at the Vg2 gene in a dose
dependent manner. E2A deficient mice have reduced Vg2
rearrangements in both fetal and adult thymocytes. Further,
E2A represses Vg3 GLTs in adult mice, and E2A deficient mice
have increased Vg3 rearrangements in adult thymocytes. These
results indicate that while E2A promotes Vg2 rearrangement in
both fetal in adult thymocytes, ordered rearrangement depends
on specific repression of the fetal Vg3 gene in adult thymocytes
by E2A (145, 146).

TCRd Rearrangement
Unlike other antigen receptor loci composed of V, D and J gene
segments, Vd to Dd rearrangement usually precedes Dd to Jd
rearrangement (152). E2A has a role in promoting Vd-Dd
rearrangements, but not in Dd-Jd rearrangements (145).
Expression of E2A or HEB with Rag in non-lymphoid cells can
induce Vd-Dd rearrangements (144). Like in TCRg development,
the TCRd locus rearranges particular Vd genes at specific stages
in development. Recombination of Vd1 predominates in early
fetal development, but Vd1 rearrangement is rare in the adult
thymus. Vd5 rearrangement begins later in development and
predominates in the adult thymus (152, 153). E2A acts to both
positively and negatively regulate rearrangement of particular
Vd genes in adult and fetal thymocytes. E2A represses Vd1
rearrangement in adult thymocytes in a dose dependent manner,
and E2A deficient mice exhibit increased rearrangements
involving Vd1. E2A also promotes rearrangement of the
predominantly adult gene Vd5. Vd5 rearrangements that
usually predominate in the adult thymus are not present in
E2A deficient mice. In E2A deficient mice, Vd5 rearrangements
are reduced fetal thymocytes in a dose dependent manner and in
adult thymocytes in a dose independent manner (145).
MODULATION OF NATURAL KILLER
T CELL DEVELOPMENT
AND REARRANGEMENT

While Id3 is generally involved in orchestrating gd cell fate, the Id
proteins restrict development of a specific subset of gd T cells, gd
NKT cells. gd NKT cells are innate-like gd T cells that express a
semi-invariant receptor (Vg1.1Vd6.3), and are associated with
many innate like characteristics. Loss of Id3 expression in gd T
cells leads to higher E protein activity, upregulation of Egr2,
PLZF, and c-Myc and proliferative expansion of gd NKT cells
(154). Id3 deficient mice also show an expanded population of gd
NKT cells (155–157). Id2 either cooperates with or can
compensate for Id3, and gd NKT cells are expanded even more
so in Id3 deficient mice that also have compromised Id2 function
(157). Deletion of Id2 promotes a smaller expansion of gd T cells,
although interestingly, this expansion of gd is not limited to cells
expressing Vg1.1Vd6.3 (157). Id2 and Id3 restrict development
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into the NKT gd T cell fate by inhibiting E protein activity, and
deletion of E proteins in Id deficient mice reverts the expansion
of NKT gd T cells (156, 157).

The mechanism by which inhibition of Id protein activity
expands the gd NKT population is unclear. It is possible that gd
NKT expansion could be a result of increased rearrangement,
however there are conflicting findings regarding whether the
expansion of Vg1.1 gd NKT cells in Id3 deficient mice occurs at
the expense of other gd T cells. It has been reported that Id3-/-

mice have reduced numbers of Vg2 and Vg3 dendritic epidermal
T cell (DETC) subsets (116). Others note that the expanded use
of the Vg1.1 gene is not at the expense of other Vg genes, and that
the number of cells expressing Vg2 and Vg5 genes is the same,
though the proportion of gd T cells expressing them is reduced
(158). One possible explanation for the expansion of gd NKT
cells is that these cells are normally deleted as a result of excessive
gdTCR signaling, but Id3 deficiency allows them to escape
deletion and proliferate (159).

A small fraction of DP thymocytes differentiate into invariant
NKT (iNKT) cells, driven by heightened E protein activity and
modulation of Id2/3 protein expression (160). Upon positive
selection, iNKT cells further mature into multiple subsets,
including NKT1, NKT2 and NKT17 cells. These developmental
transitions are again instructed by E-Id protein activity to indirectly
impact CD8+ T cell fate (161–165). iNKT cells express an invariant
TCRa chain composed of the distally located Va14-Ja18 gene
segments, which recombine in secondary TCRa rearrangements.
Several rounds of Va to Ja recombination occur during TCRa
rearrangement. Primary rearrangements of the TCRa locus make
use of the most proximal 3’ Va genes and most distal 5’ Ja genes.
Secondary rearrangements make use of more 5’ Va and 3’ Ja
segments. Recombination is terminated when cells either pass
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positive selection or undergo cell death. Prolonged survival at the
DP stage allows cells to undergo more sequential arrangements
before undergoing cell death. HEB cooperates with TCF-1 to
promote the survival of DP thymocytes by positively regulating
the anti-apoptotic gene Bcl-XL (118, 166–169). DP thymocytes
which lack HEB have an impaired ability to survive, rearrange their
distal Ja genes less, and completely lack iNKT cells. This loss of
iNKT cells is attributed to the shortened lifespan of DP cells and
subsequent deficiencies in secondary TCRa rearrangements, as
ectopic expression of Bcl-XL restores secondary TCRa
rearrangements and iNKT development (118). Taken together,
these data indicated that HEB instructs the generation of a
diverse ab T cell repertoire, enabling usage of all distally located
genes and the development of iNKT cells (Figure 5).
MODULATION OF MATURE
T CELL DEVELOPMENT

E protein activity mediates the development of DP thymocytes
into unique developmental fates within the CD4+ or CD8+ T cell
compartments. The role of E2A and HEB in supporting the
development of an appropriate ratio of CD4+ to CD8+ T cells is
now well established (170–172). These E proteins bind to CD4 E-
box site to support CD4+ development while antagonizing Id2/3
activity is required for CD8+ development (171–173). E proteins
mediate this development by modulating CCR7 and IL7Ra
expression (171). Conversely, this activity is suppressed by Id
proteins to guide CD8+ development (171). After the successful
rearrangement of the TCRb and TCRa loci, TCR-signaling
induces Id3 expression, which is then maintained to enforce a
naïve state in peripheral T cells (174). Id2 is then upregulated at a
FIGURE 5 | HEB prolongs survival of DP thymocytes and rearrangements of distal Va and Ja gene segments. Rearrangement of the TCRa locus proceeds by a
deletional mechanism, in which the more proximal gene segments rearrange first. Cells that undergo productive rearrangements that pass positive selection mature
into CD4+ and CD8+ mature T cells. Cells with unproductive rearrangements undergo secondary rearrangements, until the cells either produce a productive TCRa
allele or undergo cell death. HEB, along with TCF-1, promotes rearrangements of more distal TCRa genes by prolonging cell survival during this process. HEB is
crucial for the rearrangement of distal TCRa genes, production of a diverse ab T cell repertoire, and generation of iNKT cells expressing an invariant TCRa protein
composed of the distally located Va14 and Ja18 genes.
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later stage through an unknown pathway. Id2 was found to
downregulate Id3 while Id3 had no effect on Id2 expression,
indicating that some of the Id2-mediated effects on gene
expression may be indirect (175). In summary, sustained
sequestration of E proteins by Id proteins may maintain
thymic single positive T cells in a naïve state.

CD4+ T cells are instructed towards unique developmental
fates by the delicate balancing and timing of E protein activity.
Unopposed E protein activity readily leads to the development of
innate variant follicular helper T cell (TFH) cells (174). In
peripheral CD4+ T cells, Id2 and Id3 act to support the Th1
development while restraining TFH lineage differentiation (176).
In parallel studies it was shown that Id2 suppresses TFH

development and expansion by activating the PI3K–AKT–
mTORC1–Hif1a and c-myc/p19Arf pathways (173, 177). An
alternative pathway that underpins TFH cell development may
involve the induction of Bcl6 expression, which in turn inhibits
Id2 expression (176). By permitting TFH development, E proteins
also influence the formation of germinal centers, with higher
amounts of GC and PC B cells found in both thymi and
peripheral lymphoid organs derived from mice that harbor
Id2/3 deletions (173, 174). These findings highlight the
importance of E protein activity in T cells in coordinating a B
cell response and for germinal center adaptive immune cell
development. Id proteins also orchestrate developmental
progression of Treg cells (178, 179). Upon depletion of Id2 and
Id3 expression in Treg cells mice readily develop Th2-cell
mediated inflammatory disease (178–180). Collectively these
studies revealed that E and Id proteins modulate the
development of an ensemble of distinct peripheral CD4+ T
cells to combat infection and suppress the development of
autoimmune disease.

Id2 and Id3 also regulate E protein activity to instruct CD8+ T
cell development. Naïve CD8+ T cells stimulated by the
appropriate antigen readily elevate E-protein DNA binding
(181). A series of elegant studies revealed that the E-Id protein
axis also controls the developmental progression of CD8+
effector and memory T cells (175, 182–186). High levels of Id2
expression are required to instruct CD8+ effector T
differentiation while suppressing the development of CD8+
memory cells (182, 183, 185). Conversely, upregulated Id3
expression promoted the development of Cd8+ memory cells
(175). Id proteins further perform a key role in orchestrating the
development of long-lived resident memory (Trm) cells (187). In
summary, E and Id proteins play critical roles in orchestrating
the development of an ensemble of immune cell types that act
collectively to combat infection.
TRANSCRIPTIONAL BURSTING AND RNA
DECAY PATHWAYS DICTATE E2A AND
E2-2 mRNA HETEROGENEITY

Very early studies revealed that E47 protein abundance is noisy
in naïve B cells. While a small proportion of naïve B cells express
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detectable levels of E47, E47 abundance is uniformly high in
activated B cells (90). Consistent with these observations, more
recent studies showed that E47 mRNA abundance varied across
the naïve B cell population while heterogeneity in E47 mRNA
levels in activated B cells was low (188). These findings raised the
question as to how such differences in mRNA abundance and
heterogeneity are established. Quantitative studies have
addressed this question (188). E2A and E2-2 bursting
frequencies and mRNA life-times differ between naïve and
activated B cells. In naïve B cells, E2A and E2-2 bursting
frequencies are low and mRNA life-times are short. Conversely
in activated B cells E2A and E2-2 bursting frequencies are high
and mRNA life-times are long (188). These findings bring into
question how alterations in E2A and E2-2 mRNA life-times are
established. One possible mechanism involves miRNA instructed
fine-tuning of E2A and E2-2 mRNA abundance, and it will be
important to identify potential miRNAs that target HLH genes.
Finally, we would like to consider a role for heterogeneity in E2A
and E2-2 mRNA abundance in instructing lymphocyte
activation. We suggest that upon interacting of the BCR with
invading pathogens, E2A and E2-2 heterogeneity in mRNA
abundance permits a swift and clonal response. In such a
scenario, the few B naïve cells that are actively bursting across
the B cell population are primed to readily undergo CSR or
rapidly develop into differentiating plasma cells. Conversely,
increased E2A and E2-2 bursting frequencies and lower mRNA
decay rates in activated B cells may decrease heterogeneity in
E2A and E2-2 abundance to orchestrate B cell maturation. We
propose that similar mechanisms instruct the immune response
in T cells. Upon viral or tumor encounters the decision to
differentiate into effector or memory T cell fate is similarly
dictated by the combined alterations in E2A, E2-2 and HEB
bursting frequencies and mRNA life-times.
CONCLUSION

Over three decades of research have highlighted critical functions
of E- and Id-proteins in instructing adaptive immune
development. E-proteins activate B- and T-lineage specific gene
programs to specify B and T cell fate. They promote the assembly
of antigen receptor loci to generate a diverse antibody and TCR
repertoire. In maturing thymocytes, the E- and Id-proteins
promote thymocyte selection. In peripheral B and T cells,
the rise and fall in E- and Id-proteins orchestrate the
development of an array of regulatory, effector and memory
cell types. In mechanistic terms, E-proteins sequester histone
acetyltransferases across the enhancer landscape to promote
the deposition of H3K27Ac. The deposition of H3K27Ac, in
turn, initiates loop extrusion to assemble a wide ensemble of
loops across antigen receptor loci and down-stream target
genes. We suggest that these proteins also assemble loop
domains into nuclear condensates to regulate antigen receptor
loci rearrangement and lineage specific programs of gene
expression. Finally, we propose that alterations in HLH
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bursting frequencies and mRNA life-times increase and/or
narrow heterogeneity in mRNA abundance to establish B or T
cell identity, thereby instructing the developmental progression
of peripheral effector and memory lymphocytes in response to
invading pathogens.
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