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Allogeneic CD8+ T cells are prominently involved in allograft rejection, but how their effector
differentiation and function are regulated at a transcriptional level is not fully understood.
Herein, we identified the basic leucine zipper ATF-like transcription factor (BATF) as a key
transcription factor that drives the effector program of allogeneic CD8+ T cells. We found
that BATF is highly expressed in graft-infiltrating CD8+ T cells, and its ablation in CD8+ T
cells significantly prolonged skin allograft survival in a fully MHC-mismatched
transplantation model. To investigate how BATF dictates allogeneic CD8+ T cell
response, BATF–/– and wild-type (WT) CD8+ T cells were mixed in a 1:1 ratio and
adoptively transferred into B6.Rag1–/– mice 1 day prior to skin transplantation.
Compared with WT CD8+ T cells at the peak of rejection response, BATF–/– CD8+ T
cells displayed a dysfunctional phenotype, evident by their failure to differentiate into
CD127–KLRG1+ terminal effectors, impaired proliferative capacity and production of pro-
inflammatory cytokines/cytotoxic molecules, and diminished capacity to infiltrate allografts.
In association with the failure of effector differentiation, BATF–/–CD8+ T cells largely retained
TCF1 expression and expressed significantly low levels of T-bet, TOX, and Ki67. At the
memory phase, BATF-deficient CD8+ T cells displayed impaired effector differentiation
upon allogeneic antigen re-stimulation. Therefore, BATF is a critical transcriptional
determinant that governs the terminal differentiation and memory responses of
allogeneic CD8+ T cells in the transplantation setting. Targeting BATF in CD8+ T cells
may be an attractive therapeutic approach to promote transplant acceptance.

Keywords: BATF, CD8+ T cells, effector differentiation, allograft rejection, transplantation, memory
Abbreviations: AP-1, activator protein-1; BATF, basic leucine zipper ATF-like transcription factor; dLN, draining lymph
node; LCMV, lymphocytic choriomeningitis virus; MFI, mean fluorescence intensity; MST, mean survival time; PMA, phorbol
12-myristate 13-acetate; STx, skin transplantation; TCR, T cell receptor; Th, T helper; WT, wild-type.
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INTRODUCTION

Alloreactive CD8+ T cells play an essential role in transplant
rejection (1). In the clinical settings, recent studies have found
that the increase of some CD8+ T cell effector subpopulations in
peripheral is positively correlated with higher allograft rejection
rates and worse transplant outcomes (2–4). In the laboratory
settings, WT B6 recipients reject the minor histocompatibility
antigen-mismatched heart allografts, but CD8+ T cell-deficient
recipients fail to do so (5). Moreover, we and others have
demonstrated previously that lymphopenic mice reconstituted
with CD8+ T cells alone acutely reject MHC fully mismatched
allografts (6, 7), suggesting that the adoptively transferred CD8+ T
cells differentiate into cytotoxic effector T cells and sequentially
drive the rejection of allografts in these lymphopenic recipients (7).

The proper differentiation of alloreactive CD8+ T cells into
functional effectors is essential for allograft rejection. Following
alloantigen stimulation, T cell receptor (TCR) signals trigger
allogeneic CD8+ T cell activation, proliferation, and differentiation
into cytotoxic effector T cells (8, 9). The cytotoxic effector T cells
infiltrate allografts, produce cytotoxic molecules and pro-
inflammatory cytokines, and cause allograft damage (4). We have
demonstrated previously that low transplant antigen load induces
effector differentiation of anti-graft CD8+ T cells and transplant
rejection, whereas high transplant antigen load promotes the
exhaustive differentiation of CD8+ T cells and transplant
acceptance in a male-to-female skin transplantation model (10). To
prevent transplant rejection and promote transplant acceptance, it is
critical tounderstand thebasicmolecularmechanismsunderlying the
effector differentiation of CD8+ T cells.

The differentiation of CD8+ T cells into cytotoxic effector T
cells is delicately controlled by some transcriptional networks.
For instance, transcription factors IRF4 (11, 12), T-bet (13),
ID2 (14), and ZEB2 (13, 15) promote effector T cell
differentiation, whereas TCF1 (16), ID3 (17, 18), and
BACH2 (19) restrain effector T cell differentiation and
function. Of note, our recent works have demonstrated an
essential role for IRF4, a pioneer factor induced by TCR
signals (20), in terminal effector T cell differentiation and
transplant rejection (7, 21). However, the transcriptional
programs that control the alloreactive CD8+ T cell responses
remain poorly defined.

BATF belongs to the activator protein-1 (AP-1) family, and it
is expressed predominantly in hematopoietic cells (22, 23). BATF
is induced upon T cell activation and it plays an essential role in
T cell differentiation and function (24). In CD4+ T cells, BATF is
critical for T helper (Th) cell lineage commitment, including
Th2 (25), Th9 (26), Th17 (27), and Tfh (28) cell differentiation.
In CD8+ T cells, BATF has been shown to promote and sustain
effector T cell differentiation and function against cancers
(29, 30) and infections (24, 31, 32). However, the role of BATF
in allogeneic CD8+ T cell responses remains unclear.

Wehave foundpreviously that a singleMHCclass II-mismatched
B6-bm12 heart allografts did not develop chronic cardiac allograft
vasculopathy and were accepted by BATF–/– recipients (33). Herein,
we investigated the role of BATF in allogeneic CD8+T cell responses.
B6.Rag1–/–micewere reconstitutedwith eitherWTorBATF–/–naïve
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CD8+T cells, followed by Balb/c skin transplantation.We found that
BATF deficiency in CD8+ T cells significantly prolonged the skin
allograft survival upon adoptive transfer into lymphopenic mice.
Moreover, BATF-deficient CD8+ T cells displayed lower frequencies
in peripherals, barely infiltrated skin allografts, lost cytokine and
cytotoxic molecule production, and failed to differentiate into
CD127–KLRG1+ terminal effectors. Mechanistically, BATF
deficiency in CD8+ T cells may perturb transcriptional networks
that control the effector programs of CD8+ T cells. At the memory
phase, BATF deficiency in CD8+ T cells impaired their memory
responses againstdonor-type skinallografts.Hence,BATF inCD8+T
cells might serve as a potential target to develop new therapeutic
approaches to prevent allograft rejection.
MATERIALS AND METHODS

Mice
C57BL/6 (B6), B6.SJL CD45.1 congenic, B6.Rag1–/–, Balb/c, and
BATF–/– mice were purchased from the Jackson Laboratory (Bar
Harbor, MA), and were housed in a specific pathogen-free
facility at Houston Methodist Research Institute in Houston,
Texas. Six- to Ten- week-old mice were randomly assigned to all
the experiments. All animal-related experiments were approved
by the Houston Methodist Animal Care Committee in
accordance with the institutional animal care and use
guidelines with IACUC protocol number IS00005481.

Reconstitution of B6.Rag1–/– Mice With
Naïve CD8+ T Cells
As previously described (7), CD8+ T cells were isolated from the
spleens and lymph nodes of WT or BATF–/– mice using the
Dynabeads untouched mouse CD8 cells kit (Thermo Fisher
Scientific). To obtain CD44low naïve CD8+ T cells, the Depletion
Dynabeads (Thermo Fisher Scientific) and Anti-CD44mAb (clone
IM7, Biolegend) were used to further purify the isolated CD8+ T
cells. The purity of the isolated CD8+ T cells was around 95% prior
to cell transfer. B6.Rag1–/– mice were adoptively transferred with
either 1 x 106WTnaïveCD8+T cells or 1 x 106BATF–/–naïveCD8+

T cells 1 day prior to skin transplantation.

Adoptive Co-Transfer of CD8+ T Cells
In the co-transfer experiments, 0.5 x 106 WT naïve CD8+ T cells
and 0.5 x 106 naïve BATF–/– CD8+ T cells were mixed in a 1:1
ratio and adoptively transferred into B6.Rag1–/– mice via tail
veins. These mice were transplanted with Balb/c skin allografts 1
day later. On day 11 post skin transplantation, the phenotypes of
the adoptively transferred CD8+ T cells were determined by an
LSR II or Fortessa flow cytometer (BD Biosciences).

Murine Skin Transplantation
As previously described (7), ~1.0 x 1.0 cm skin allografts from
Balb/c mice were transplanted onto the backs of either WT B6 or
B6.Rag1–/– recipients. A gauze pad and a secure doubled-up
bandage were used to protect the transplanted skins from
irritating agents until day 7 post skin transplantation. On day 7
post-skin grafting, the sutures, gauzes, and bandages were removed
April 2022 | Volume 13 | Article 882721
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by sterile scissors. Skin graft survival was monitored daily until 50
days post skin grafting. Allograft rejection was considered when
necrosis of the donor skin tissue was > 90%.

Isolation of Skin Allograft-Infiltrating Cells
Skin allografts were harvested, cut into small pieces, and incubated
in a solution containing 450 U/ml collagenase I (Thermo Fisher
Scientific) and 60 U/ml DNase-I (Thermo Fisher Scientific) in
Dulbecco’s Modification of Eagle’s Medium (DMEM, Corning) at
37°Cfor45min.After the incubation, the cellswerepressed through
a 40 mm filter, and further purified using the 44% Percoll (Cytiva)
gradient by centrifugation. The isolated cells were counted, stained
with fluorescence-conjugated antibodies, and analyzed by anLSR II
or Fortessa flow cytometer.

T Cell Proliferation Assay
WTandBATF–/–naïveCD8+T cells (total 1 x 106 cells) weremixed
in a 1:1 ratio, stained with CellTrace Violet (CTV, Thermo Fisher
Scientific) according to themanufacturer’s protocol, and adoptively
transferred into B6.Rag1–/– mice that received Balb/c skins 1 day
later. On day 7 post skin grafting, the CTV fluorescence of CD8+ T
cells in spleens and draining lymph nodes (dLNs) was determined
by an LSR II or Fortessa flow cytometer.

Flow Cytometric Analysis
Fluorochrome-conjugated antibodies specific for mouse CD8 (clone
53-6.7), CD3 (17A2), CD45 (30-F11), CD45.2 (104), CD62L (MEL-
14), CD44 (IM7), CD45.1 (A20), CD127 (A7R34), CX3CR1
(SA011F11), granzyme A (3G8.5), granzyme B (QA16A02), Ki67
(16A8), KLRG1 (2F1/KLRG1), IFN-g (XMG1.2), PD-1 (29F.1A12),
T-bet (4B10), TCR-b (H57-597), and TNF-a (MP6-XT22) were
purchased fromBioLegend.Goat anti-rabbit IgG (CatalogA-21244),
purified antibody specific for BATF (D7C5), and fluorochrome-
conjugatedantibodyspecific forTCF1(C63D9)werepurchased from
Cell Signaling Technology. A fluorochrome-conjugated antibody
specific for TOX (REA473) was purchased fromMiltenyi Biotec.

Flow cytometric analysis was performed as previously described
(21). In brief, cells from spleens, dLNs, and skin allografts were
stained with the Zombie Aqua Fixable Viability Kit (BioLegend)
first, then incubated with the above antibodies, and analyzed on an
LSR II or Fortessa flow cytometer later. To determine the
intracellular expression of cytokines and cytotoxic molecules, cells
were stimulated with 50 ng/ml phorbol 12-myristate 13-acetate
(PMA; Sigma-Aldrich) and 500 ng/ml ionomycin (Sigma-Aldrich)
in the presence of GolgiStop (BD Biosciences) for 4 hours, then were
determined by Cytofix/Cytoperm solution (BD Biosciences) as
previously described (21). The expression of transcription factors
was determined by the Foxp3/Transcription Factor Staining Buffer
Set (Thermo Fisher Scientific) as previously described (21). Data
were processed using the FlowJo v10 software (Tree Star, Inc.).

Statistical Analysis
Data were represented as mean ± SD and analyzed with Prism
version 8 (GraphPad Software). The p values of the survival of
skin allografts were determined with the Mann-Whitney test.
Differences were calculated by the unpaired Student’s t-test. p <
0.05 was considered as statistically significant.
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

Graft-Infiltrating CD8+ T Cells Express
High Levels of BATF, and BATF Ablation
in CD8+ T Cells Prolongs Skin
Allograft Survival
To investigate the role of BATF in allograft rejection, we first
determined its expression levels in allogeneic T cells following
transplantation. WT B6 mice were transplanted with Balb/c skin
allografts or left untransplanted.Onday8post skin transplantation,
the BATF expression levels in splenic and graft-infiltrating CD8+ T
cells were determined by flow cytometric analysis (Figure 1A).
Supplementary Figure 1 showed the gating strategy to detect the
live graft-infiltratingCD8+T cells (Supplementary Figure 1A).We
found that splenic CD8+ T cells from skin grafted recipients
expressed a higher level of BATF than those from naïve B6 mice.
Of note, compared with splenic CD8+ T cells from naïve mice and
skin grafted recipients, graft-infiltrating CD8+ T cells from skin
grafted recipients expressed a significantly higher level of BATF
(Figures 1B, C). The higher expression levels of BATF were
associated with the higher Ki67 and PD-1 expression in graft-
infiltrating CD8+ T cells (Supplementary Figures 1B, C).

To investigate whether BATF deficiency in CD8+ T cells affects
transplant outcome, B6.Rag1–/– mice were reconstituted with 1 x
106 WT CD8+ T cells or 1 x 106 BATF–/– CD8+ T cells on day –1,
and were transplanted with Balb/c skin allografts on day 0
(Figure 1D). B6.Rag1–/– mice do not contain T cells or B cells
and did not reject skin allografts without cell transfer (Mean
survival time [MST] > 50 days; n = 5). B6.Rag1–/– mice adoptively
transferred with WT CD8+ T cells acutely rejected skin allografts
in 14 days (MST = 12.4 ± 1.14 days; n = 5). In contrast, BATF
deficiency in CD8+ T cells significantly prolonged skin allograft
survival in B6.Rag1–/– recipients (MST = 38.2 ± 16.2 days; n = 5)
(Figure 1E). Figure 1F showed the representative images of the
acutely rejected skin allograft in B6.Rag1–/– mice that were
transferred with WT CD8+ T cells (left image), and the accepted
skin allografts in B6.Rag1–/– mice that were reconstituted with
BATF–/– CD8+ T cells at indicated days post skin transplantation
(middle and right images) (Figure 1F).

Taken together, BATF is highly expressed in graft-infiltrating
CD8+ T cells, and BATF deletion in CD8+ T cells prolongs skin
allograft survival.
BATF-Deficient CD8+ T Cells Display a
Defect in Proliferation and Barely Infiltrate
Into Skin Allografts
To investigate the mechanisms by which BATF deficiency in CD8+ T
cells impairs their ability to reject skin allografts, we performed a co-
transfer experiment, in which CD45.2+ BATF–/– CD8+ T cells and
CD45.1+WTCD8+Tcells (withorwithoutCTVlabeling)weremixed
ina1:1 ratio, andwereadoptively transferred intosyngeneicB6.Rag1–/–

hosts. Balb/c tail skin allografts were transplanted onto these hostmice
1 day later. The cell states of the transferred T cells were analyzed on
days 7 and 11 post skin transplantation (Figure 2A).

The gating strategies were used to identify the adoptively
transferred CD45.2+ BATF–/– and CD45.1+ WT CD8+ T cells
April 2022 | Volume 13 | Article 882721
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(Figure 2B and Supplementary Figure 2A). In this co-transfer
setting, the majority of WT CD8+ T cells completely lost CTV
fluorescence, whereas ~60% of the BATF–/– CD8+ T cells did
not completely lose CTV fluorescence in both spleens and
dLNs, indicating the impaired proliferation of BATF–/– CD8+

T cells (Supplementary Figure 2A). The percentages of the
transferred BATF–/– CD8+ T cells were significantly lower than
their WT counterparts in spleens and dLNs. Importantly, the
Frontiers in Immunology | www.frontiersin.org 4
out-competition of BATF–/– CD8+ T cells by their WT
counterparts was shown in skin allografts. The percentage of
the transferred WT CD8+ T cells in the skin allografts was
approximately 99%, whereas the transferred BATF–/– CD8+ T
cells only accounted for 1% (Figures 2C, D). In line with the
low frequencies, BATF–/– CD8+ T cells exhibited significantly
lower absolute cell numbers in the spleens, dLNs, and allografts
compared to WT CD8+ T cells (Figures 2E–G). Hence, our
A

B

D

E

F

C

FIGURE 1 | Graft-infiltrating CD8+ T cells highly express BATF, and BATF deficiency in CD8+ T cells prolongs skin allograft survival. Wild-type B6 recipients were
transplanted with Balb/c skin allografts or left untransplanted on day 0. The expression levels of BATF in CD8+ T cells in these recipients were detected by flow
cytometry on day 8 post skin grafting. All plots were gated on live CD8+ T cells. (A) Schematic of the experimental design. (B, C) Representative plots and bar
graphs display the BATF expression levels in CD8+ T cells from spleens and skin allografts. Data represent the mean ± SD (n = 3-4). **p < 0.01, ***p < 0.001;
(unpaired Student’s t-test). B6.Rag1–/– hosts were adoptive transferred with either 1 x 106 WT CD8+ T cells or 1 x 106 BATF–/– CD8+ T cells, followed by Balb/c skin
transplantation. (D) Schematic of the experimental design. (E) % skin allograft survival (n = 5). **p < 0.01; (Mann-Whitney test). (F) Representative images of the skin
allografts on B6.Rag1–/– recipients at indicated days post skin grafting.
April 2022 | Volume 13 | Article 882721
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results showed that BATF deficiency in CD8+ T cells impairs
their infiltration into skin allografts.
BATF-Deficient CD8+ T Cells Fail to
Differentiate Into Terminal Effector Cells in
Response to Alloantigen Stimulation
We next identified the effector phenotypes of the transferred
CD8+ T cells in B6.Rag1–/– recipients at day 11 post skin
transplantation. In response to alloantigen stimulation, a great
Frontiers in Immunology | www.frontiersin.org 5
proportion of WT CD8+ T cells differentiated into CD127–

KLRG1+ terminal effector cells, while most BATF-deficient
CD8+ T cells maintained a CD127+KLRG1– memory precursor
phenotype in both spleens and dLNs (Figures 3A–C). CX3CR1
is an important chemokine receptor that is associated with the
degree of CD8+ T cell effector differentiation (34). We found that
most WT CD8+ T cells expressed high levels of CX3CR1 and
differentiated into CD62L–CX3CR1+ effector cells in spleens and
dLNs. In contrast, BATF–/– CD8+ T cells did not upregulate
CX3CR1 expression and largely retained CD62L+CX3CR1–
A

B

D E F G

C

FIGURE 2 | BATF-sufficient CD8+ T cells outcompete their BATF-deficient counterparts in infiltration into skin allografts. B6.Rag1–/– recipients were adoptively
transferred with a mixture of 0.5 x 106 CD45.1+ WT CD8+ T cells plus 0.5 x 106 CD45.2+ BATF–/– CD8+ T cells, followed by Balb/c skin transplantation. The
frequencies of the transferred CD8+ T cells were determined on day 11 post skin grafting. (A) Schematic of the experimental design. (B) Gating strategy for detecting
live WT and BATF–/– CD8+ T cells. (C, D) Representative plots and bar graphs show the percentages of the CD45.1+ WT and CD45.2+ BATF–/– cells among live
CD8+ T cells. (E–G) Bar graphs display the absolute cell numbers of WT and BATF–/– CD8+ T cells. Data represent the mean ± SD (n = 4). **p < 0.01, ***p < 0.001,
****p < 0.0001; (unpaired Student’s t-test).
April 2022 | Volume 13 | Article 882721
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naïve-like phenotypes (Figures 3D, E). Taken together, BATF
deficiency in CD8+ T cells abrogates their terminal effector
differentiation in response to alloantigen stimulation.

BATF Deficiency in CD8+ T Cells
Diminishes the Production of Effector
Cytokines and Cytotoxic Molecules in
Lymphopenic Recipients
The production of pro-inflammatory cytokines and cytotoxic
molecules is one of the effector features of CD8+ T cells. We thus
analyzed the production of effector cytokines and cytotoxic
molecules of the adoptively transferred CD8+ T cells in B6.Rag1–/
– recipients. We found that BATF–/– CD8+ T cells expressed
significantly lower levels of IFN-g than did WT counterparts in
spleens and dLNs (Figures 4A, B). Upon recognition of allograft
Frontiers in Immunology | www.frontiersin.org 6
parenchymal cells, allogeneic effector CD8+ T cells produce
Granzymes, induce parenchymal cell death, and thus cause graft
failure (35).We found thatWTCD8+T cells produced significantly
higher levels of granzyme A and granzyme B than did BATF–/–

CD8+ T cells in both spleens and dLNs (Figures 4C–E).
Collectively, BATF deficiency in CD8+ T cells impairs their ability
to produce proinflammatory cytokines and cytotoxic molecules in
lymphopenic recipients.

BATF Deficiency may Perturb
Transcriptional Networks That Control the
Effector Program of CD8+ T Cells
Several transcriptional factors have been shown to play key roles in
controlling the effector programs of CD8+ T cells. Transcriptional
factors T-bet (13), TOX (36), and Ki67 (37) are positively involved
A

B

D

E

C

FIGURE 3 | BATF-deficient CD8+ T cells fail to differentiate into terminal effector cells in recipients. The effector phenotypes of the transferred CD8+ T cells in B6.Rag1–/–

recipients were analyzed on day 11 post skin transplantation. (A–C) Representative plots and bar graphs show % CD127–KLRG1+ terminal effector cells and %
CD127+KLRG1– cells. (D, E) Representative plots and bar graphs show % CD62L–CX3CR1+ effector cells. Data represent the mean ± SD (n = 4). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001; (unpaired Student’s t-test).
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in the effector programs of CD8+ T cells, whereas TCF1 is highly
expressed in naïve T cells, directly represses transcription factors
involved in effector programs, and restrains their effector function
and differentiation (38). In response to allograft simulation, most
WT CD8+ T cells lost TCF1 expression and upregulated the
expression of inhibitory receptor PD-1, displaying a TCF1–PD1+

effector phenotype. By contrast, BATF–/– CD8+ T cells retained
high expression levels of TCF1, expressed low levels of inhibitory
receptor PD-1, and largely displayed a TCF1+PD-1– compromised
phenotype (Figures 5A–C). In addition, the expression levels of
T-bet, TOX and Ki67 in BATF-deficient CD8+ T cells were
Frontiers in Immunology | www.frontiersin.org 7
significantly lower than those in WT counterparts (Figures 5D–
G). Hence, BATF deficiency may perturb transcriptional networks
that control the effector program of CD8+ T cells.

BATF Is Required for Memory Responses
Against the Allogeneic Transplant Antigens
We next investigated the role of BATF in allogeneic memory
responses. A mixture of 0.5 x 106 CD45.2+ BATF–/– plus 0.5 x 106

CD45.1+ WT CD8+ T cells was adoptively transferred into
B6.Rag1–/– mice that received Balb/c skins 1 day later. The
Balb/c skin allografts were rejected within 16 days post initial
A

B

D

E

C

FIGURE 4 | BATF deficiency in CD8+ T cells impairs their expression of proinflammatory cytokines and cytotoxic molecules. The production of the effector cytokines
and cytotoxic molecules of the adoptively transferred CD8+ T cells in recipients were analyzed on day 11 post skin grafting. All plots were gated on live CD8+ T cells.
(A, B) Representative plots and bar graph display % IFN-g+ cells in spleens and dLNs. (C–E) Representative plots and bar graphs display % Granzyme A+ cells and
% Granzyme B+ cells. Data represent the mean ± SD (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; (unpaired Student’s t-test).
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transplantation (data not shown). On day 60 post initial
transplantation, these mice were re-transplanted with Balb/c
skins. The cell states of the CD8+ T cells were determined by
flow cytometry on day 67 post-initial transplantation (Figure 6A).

As shown in Figures 6B–D, most WT CD8+ T cells lost
CD62L expression and developed into CD62L–CD44+ effector
memory-like cells. By contrast, BATF–/– CD8+ T cells largely
maintained CD62L expression, and barely developed into
CD62L–CD44+ cells in both spleens and dLNs (Figures 6B–D).
Upon allogeneic antigen re-stimulation, WT CD8+ T cells
mounted a more robust response, evident by the higher
Frontiers in Immunology | www.frontiersin.org 8
expression levels of Granzyme A, Granzyme B, IL-2 and
KLRG1, than did BATF-deficient counterparts (Figures 6E–I).
Therefore, BATF deficiency in CD8+ T cells impairs their
memory response against allogeneic antigen re-stimulation.
DISCUSSION

T cells are necessary and sufficient to mediate allograft rejection
(39). However, the transcriptional regulation of the effector
programs in allogeneic CD8+ T cells has not been fully elucidated.
A

B

D

E F G

C

FIGURE 5 | BATF deficiency may perturb the transcriptional networks that control the effector programs of CD8+ T cells. B6.Rag1–/– mice were reconstituted with a
mixture of WT and BATF–/– CD8+ T cells, and were transplanted with Balb/c skins 1 day later. The expression levels of several transcription factors were determined
on day 11 after skin transplantation. All plots were gated on live splenic CD8+ T cells. (A–C) Representative plots and bar graphs show the expression levels of TCF1
and PD-1 of the transferred WT and BATF–/– CD8+ T cells. (D–G) Representative histograms and bar graphs display the expression levels of T-bet, TOX and Ki67 in
the transferred CD8+ T cells. Data represent the mean ± SD (n = 4). *p < 0.05, ****p < 0.0001; (unpaired Student’s t-test).
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In the current study, we found that the BATF deletion in CD8+ T
cells impaired their abilities to reject allografts upon adoptive
transfer into immunocompromised recipients. Co-transfer
experiments showed that BATF-deficient CD8+ T cells
displayed a defect in proliferation, lost the production of
proinflammatory cytokines and cytotoxic molecules, failed to
differentiate into terminal effector cells, and showed an inferior
capacity to infiltrate into allografts. Mechanistically, BATF
deletion may perturb the interplays between BATF and some
Frontiers in Immunology | www.frontiersin.org 9
key transcription factors that govern the effector differentiation
of CD8+ T cells. Hence, BATF deficiency in CD8+ T cells disrupts
their differentiation into terminal effector cells and prolongs
transplant survival.

BATF is a crucial transcription factor required for effector
differentiation of CD8+ T cells. Upon TCR stimulation, T cells
upregulate BATF expression and initiate a transcriptional
reprogramming that promotes effector differentiation (24, 31).
We found that BATF expression was upregulated in splenic and
A

B

D

E

F G IH

C

FIGURE 6 | BATF-deficient CD8+ T cells display impaired memory responses upon allogeneic antigen re-stimulation. B6.Rag1–/– mice were reconstituted with a
mixture of WT and BATF CD8+ T cells–/– (in a 1:1 ratio) on day -1, transplanted with Balb/c skins on day 0, and re-transplanted with Balb/c allografts on day 60
post-initial transplantation. On day 7 post-secondary transplantation, the cell states of the transferred CD8+ T cells were determined by flow cytometry. All the
representative plots are gated on live CD8+ T cells. (A) Schematic of the experimental design. (B–D) Representative plots and bar graphs show % CD44+CD62L–

cells. (E–I) Representative plots and bar graphs display the expression of Granzyme A, Granzyme B, IL-2, and KLRG1. Data represent the mean ± SD (n = 3).
ns, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001; (unpaired Student’s t-test).
April 2022 | Volume 13 | Article 882721

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. BATF Ablation Alleviates Transplant Rejection
graft-infiltrating CD8+ T cells from recipient mice compared with
that in splenic CD8+ T cells from naïve mice, indicating a role for
BATF in reprogramming allogeneic T cell response upon
alloantigen stimulation. Indeed, BATF is required at the earliest
stages of effector CD8+ T cell differentiation (24). Shortly after
activation, BATF is able to directly bind to and promote the
transcription of lineage-specific genes required for effector
differentiation (24). In the setting of infections, the impaired
effector differentiation and function of BATF-deficient CD8+ T
cells eventually results in the defeats to eliminate lymphocytic
choriomeningitis virus (LCMV) infections (24, 31, 32). The
requirement of BATF family transcription factors in effector
differentiation is also demonstrated in other settings (40–42).
Consistent with these findings, our data showed that BATF-
deficient CD8+ T cells exhibited a compromised effector
phenotype and lost the capacity to mediate transplant rejection.
The inability to acquire effector features of CD8+ T cells is likely to
be a major determinant of the prolonged allograft survival. Other
than the impaired effector differentiation, there are several reasons
that may contribute to the prolonged allograft survival. For
instance, deletion of BATF in CD8+ T cells may impair their
homeostatic proliferation and increase their apoptosis upon
transfer into lymphopenic hosts. Of interest, BATF is required
for the expression of gut-homing receptors of T cells, and BATF-
deficient T cells fail to induce colitis (43). In the setting of
transplantation, BATF may be also required for the expression
of some skin-homing receptors on CD8+ T cells. Thus, BATF
deletion in CD8+ T cells may impair their migration to skin
allografts and their capacity to mediate skin allograft rejection.

The interplays between BATF and several key transcription
factors coordinately regulate the effector differentiation of CD8+ T
cells. For example, TCF1 is highly expressed in naïve T cells,
maintains their stem-like properties, and restrains their effector
differentiation (44).Danilo et al. have demonstrated previously that
TCF1 repression via IL-12-induced STAT4 activation facilitates the
effector differentiation of CD8+ T cells (44). A similar role of TCF1
has also been found in anti-viral response. Tiemessen et al. have
found previously that TCF1 deficiency promotes the generation of
anti-viral effector CD8+ T cells, and thus, enhances virus clearance
(16). In contrast to the role of TCF1 in restraining effector
differentiation, T-bet plays an essential role in promoting effector
T cell differentiation, especially in Th1, and Tc1 cell differentiation
(45, 46). T-bet-deficient T cells display compromised effector
function against infections (13, 47), and tumors (48, 49). TOX
and Ki67 expression levels have been shown to reflect an activated
and proliferative T cell state (36, 50, 51). Of interest, we found that
BATF-deficient CD8+ T cells retained TCF1hi expression and did
not upregulate T-bet, TOX, and Ki67 expression upon alloantigen
stimulation. Hence, BATF deficiency may disturb the coordinate
regulation betweenBATF and other key transcriptional factors that
control the effector program in allogeneic CD8+ T cells.

BATF regulates T cell effector differentiation via epigenetic
remodeling, metabolic reprogramming, or direct binding to
lineage-specific genes, among which the transcriptional
regulation fundamentally determined the expression of lineage-
specific genes and sequentially the cell fate decisions (52). Of
Frontiers in Immunology | www.frontiersin.org 10
interest, the binding affinities of BATF to the target genes are
significantly impaired in the absence of IRF4, a cooperating
binding partner of BATF (53). BATF forms a trimeric complex
with Jun family proteins and IRF4, binds to AP1–IRF composite
elements, and regulates the transcription of genes related to cell
fate decisions (53, 54). Recent studies have found that BATF and
IRF4 cooperate to directly bind to and regulate gene expressions
in T cells, such as Tcf7 and Tbx21 (encoding TCF1 and T-bet,
respectively) (24, 55). Of note, we have found previously that the
deletion of IRF4 in T cells promotes transplant acceptance (21),
and that IRF4-deficient CD8+ T cells fail to differentiate into
effectors upon transfer into immunocompromised recipients (7).
The cooperation between BATF and IRF4 appears to be essential
in allogeneic T cell fate decisions.

It is also essential to recognize several limitations in our current
study. First, it remained unclear whether the impaired effector
differentiation of BATF-deficient CD8+ T cells was specific for the
allo-reaction. In our study, polyclonal but not allogeneicCD8+T cells
were used, and lymphopenia in the immunodeficient hosts may also
drive their effector differentiation.However, our results indicated that
neither skin transplantation, nor lymphopenia-induced homeostatic
proliferation drives the effector differentiation of BATF–/– CD8+ T
cells. Second,we currentlydidnot include any translational or clinical
studies. These studies are important to solidify our findings and will
be explored in the future. Third, the mechanism by which BATF
controls the CD8+ T-cell memory program is complicated and
remains largely unclear. How BATF controls the formation,
maintenance, and recall response of memory CD8+ T cells is
important and will be carefully addressed in our future studies.

In summary, we found that BATF-deficient CD8+ T cells
displayed a compromised effector phenotype and exhibited a
suppressed ability to mediate allograft rejection upon adoptive
transfer into lymphopenic recipients. Thus, we proposed that
targeting BATF in T cells represents an attractive approach to
prevent transplant rejection.
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