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Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off
the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of
glycolipids and glycoproteins. A rapidly growing body of literature indicates that in
addition to their metabolic functions, NEUs also regulate the activity of their
glycoprotein targets. The simple post-translational modification of NEU protein
targets—removal of the highly electronegative sialic acid—affects protein folding, alters
protein interactions with their ligands, and exposes or covers proteolytic sites. Through
such effects, NEUs regulate the downstream processes in which their glycoprotein targets
participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-
translational modification contributes to regulation of disease processes. In this review, we
focus on the regulatory roles of NEU-modified MUCs as coordinators of disease
pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special
attention is placed on the most abundant and best studied NEU1, and its recently
discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in
disease pathogenesis is discussed, along with regulatory contributions from other MUCs
and other pathophysiologically important NEU targets.
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INTRODUCTION

Protein glycosylation is a biologically ubiquitous, enzymatic post-translational modification
involving the attachment of one or more carbohydrate moieties to a protein molecule, typically
at the nitrogen atom of the side chain amide group of an Asn residue (N-linked glycosylation) or the
oxygen atom of the side chain hydroxyl group of a Ser or Thr residue (O-linked glycosylation).
Glycosyltransferases catalyze the transfer of the glycan to the protein acceptor, while glycosidases
catalyze the reverse reaction. Sialyltransferases and neuramindases (NEUs), also known as
sialidases, are subclasses of glycosyltransferases and glycosidases, respectively, that specifically
add or remove sialic acids to/from the terminal position of glycan chains (Figure 1). Sialic acids
comprise a family of more than 50 closely related, but structurally diverse, nine-carbon
monosaccharides (1–3). N-acetylneuraminic acid (Neu5Ac or NANA) is the predominant sialic
acid in most mammalian cells and is often used interchangeably with sialic acid. Most commonly,
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the C-2 carbon atom of the a-anomer of Neu5Ac forms a
covalent bond with the C-3 hydroxyl group of galactose (Gal),
or the C-6 hydroxyl group of Gal or N-acetylgalactosamine
(GalNAc), to form a(2,3)- and a(2,6)-linked structures. In a
small number of proteins, polysialic acid has been identified as a
unique, a(2,8)-linked homopolymer of up to 150 sialic acid
residues that confers an exceptionally high electronegative
charge (4). With their terminal location and negative charge at
physiological pH, sialic acids are strategically positioned to
influence intermolecular and intercellular interactions through
steric hindrance and/or electronic effects. Consequently, sialic
acids, and the enzymes that add or remove them from glycan
chains, influence protein tertiary conformation, bioactivity,
and proteolysis.
NEUs – GENERAL FEATURES

As early as 1960, mammalian sialidase activity was detected in
fractioned human serum (5). Later, crude sialidase activity was
reported in a variety of eukaryotic cell and tissue extracts (6–11).
Prior to isolation and characterization of mammalian NEU
genes, the biochemical characterization and enrichment/
Frontiers in Immunology | www.frontiersin.org 2
purification of these various sialidases demonstrated the
presence of enzymes with different molecular weights,
subcellular localization, substrate specificities, and pH
optimums in vitro (12). Klotho, a protein originally associated
with senescence and aging, also has been reported to exhibit
sialidase activity, although it lacks conserved structural domains
characteristic of canonical NEU proteins (13).

NEUs are found in organisms of diverse evolutionary lineages,
from viruses to mammals, and functional consequences of their
enzymatic activity across and within taxa are remarkably broad and
complex. There are four mammalian NEUs, NEU1 – NEU4, and
they are all exosialidases, meaning that they remove the terminal
sialic residues from the glycan moieties of glycoproteins and
glycolipids. Mammalian NEUs are differentially expressed across
tissues and differentially distributed at the subcellular level. Their
relative expression levels are usually different, with NEU1 being the
predominant isoform, often closely followed by the relatively
abundant NEU3, whereas NEU2 and NEU4 are commonly
expressed minimally if at all; this generalization is not always
supported as it may be hindered by specifics of a particular
disease process, tissue involved, or differentiation state of the cells
engaged. Based on their catalytic function, NEUs are primarily
metabolic enzymes; mutations of the NEU1 gene lead to ametabolic
FIGURE 1 | Opposing catalytic activities of sialyltransferases and sialidases. In the reaction catalyzed by sialyltransferases, sialic acid is transferred from its activated
nucleotide sugar donor, cytidine 5’-monophosphate (CMP)-sialic acid, to the penultimate galactose (illustrated here) or N-acetylgalactosamine residue of a glycan
chain, thereby releasing free CMP. The resulting sialic acid-galactose disaccharide is illustrated in an a(2-3) linkage. In the sialidase-catalyzed reaction, the sialic acid-
galactose/N-acetylgalactosamine covalent bond is hydrolyzed to released release free sialic acid.
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disorder, sialidosis (14). The research of the past two decades has
revealed that NEUs also regulate important biological functions and
are involved in disease pathogenesis (12, 15–17). This is not
surprising, considering that many homeostatic mediators involved
in metabolic regulation, development, reproduction, and immune
tolerance, as well as pathophysiological regulators involved in
immune and inflammatory diseases, fibrosis, atherosclerosis,
cancer, and other diseases are sialylated glycoproteins. NEU
targets and binding partners include multiple glycoproteins
known to play important roles in the mechanisms of immunity,
inflammation and fibrosis (Table 1).

At the mechanistic level, the downstream effects of
desialylation are substantially defined by the properties of sialic
acid, which is a highly electronegative sugar. Desialylation affects
the charge of the target molecules and even the often much
sialylated cell surface. At the molecular level, desialylation can
directly unmask or mask glycoproteins’ bindings sites for their
molecular partners. Desialylation can also affect intramolecular
interactions and, subsequently, protein folding, again revealing
or sequestering binding sites for low molecular weight ligands or
high molecular weight interactors, thus affecting the target
glycoproteins’ functions as enzymes, receptors, or signal
transducers. More specifically, several mechanistic pathways
can be envisioned and have been experimentally validated (12,
15–17) through which neuraminidases control their glycoprotein
targets and their downstream functioning. Desialylation also
affects the target glycoproteins’ folding, thus additionally
regulating protein-protein interactions. Desialylation of the
entire cell surface has far-going consequences for cell-cell
Frontiers in Immunology | www.frontiersin.org 3
interactions, thus affecting pathophysiological processes on the
large scale. Such changes in folding may induce transitions
between functionally active and inactive states of enzymes,
attenuation or augmentation of ligand binding by receptors,
and masking or unmasking of proteolytic sites. On a more
direct level, siglecs bind to sialic acid of glycoproteins, whereas
galectins bind to Gal residues which become exposed following
desialylation, as Gal is typically the subterminal carbohydrate to
which the terminal sialic acid is attached in the glycan portions of
glycoproteins and glycolipids. Thus, NEU-mediated desialylation
diminishes siglec binding and allows for galectin binding to
glycoproteins, affecting such interactions that are known to
regulate immunity and inflammation.

Originally, the four mammalian NEUs were characterized by
their characteristic subcellular localization, including lysosomal
NEU1, cytosolic NEU2, plasma membrane NEU3, and lysosomal,
mitochondrial, and endoplasmic reticular NEU4 (12). In the
lysosome, NEU1 is associated with its chaperone/transport
protein, protective protein/cathepsin A (PPCA), and b-
galactosidase (60). It became quickly recognized that in addition
to such predominant localization, each NEU may be distributed
more broadly. For example, in addition to the predominantly
membrane-targeted NEU3, the other NEUs can be found on the
cell surface, including NEU1 (20, 41, 44–47, 53, 55, 56, 60–75),
NEU2 (76–78), and NEU4 (79, 80). NEU1 on the plasma
membrane has been reported either in the presence (62, 64–66,
72, 75) or absence (68, 71) of PPCA. Membrane localization allows
NEUs to act as structural and functional modulators of extracellular
soluble and membrane-bound molecules (17). Further information
TABLE 1 | Selected confirmed and putative glycoprotein substrates of NEUs and NEU interactors with regulatory contributions to immune, inflammatory, and fibrotic
processes.

Glycoprotein NEU Isozyme References

ApoB100 NEU1, NEU3 (18)
ATG5 NEU2 (19)
CD5 NEU1 (20)
CD18 (ITGB2) NEU1, NEU3 (21–24)
CD31 (PECAM1) NEU1 (22, 25)
CD36 NEU1 (22)
CD42b (GPIba) NEU1, NEU3 (26, 27)
CD44 NEU1 (28–30)
CD54 (ICAM1) NEU1 (23)
CD64 (FCgR) NEU1 (31)
CD104 (ITGB4) NEU1 (32)
CD107a/b (LAMP-1, LAMP-2) NEU1 (33, 34)
CD140 (PDGFR) NEU1 (35)
CD220 (insulin receptor) NEU1 (36–39)
CD221 (IGF-1R) NEU1 (35, 36)
EGFR NEU1, NEU3 (40–42)
HGFR/Met NEU1 (43)
MMP9 NEU1 (22, 41, 44–47)
MUC1 NEU1 (40, 48–51)
TGF-b/LAP NEU3 (52)
TLR2 NEU1 (22, 53)
TLR3 NEU1 (53)
TLR4 NEU1 (45, 47, 53–58)
TLR7 NEU1 (44)
TLR9 NEU1 (44)
TrkA NEU1 (46, 59)
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on the subcellular, cellular, and tissue distribution, substrate
specificity, catalytic properties, and amino acid homologies of the
four mammalian NEUs can be found in prior review articles (12, 15,
81–87).
MUCs – GENERAL FEATURES

Mucus is a complex mixture of ions, salts, peptides, proteins,
glycoconjugates, and water covering the surface of mucosal tissues.
The primary protein component of mucus are mucins, high
molecular weight, extensively glycosylated proteins containing
variable numbers of tandem repeats (VNTRs) in which Ser, Thr,
and Pro amino acids are highly enriched. Mucin glycosylation
primarily occurs through O-glycosidic linkages between the first
GalNAc residue of the oligosaccharide side chains and Ser and Thr
amino acids of the polypeptide backbone. More than 20 mucin
glycoproteins have been identified and are broadly subdivided into
secreted and cell membrane-tethered molecules (88, 89). Secreted
mucins are further subdivided into gel-forming and non-gel-
forming mucins. Examples of membrane-bound mucins include
MUC1, MUC3A, MUC3B, MUC4, MUC13, and MUC16, while
secreted mucins include MUC2, MUC5AC, MUC5B, MUC6,
MUC7, MUC19, and MUC20.

MUC1 is the prototype membrane-tethered mucin. The MUC1
glycoprotein consists of a large extracellular ectodomain (MUC1-
ED), a single-pass transmembrane domain, and an intracellular
cytoplasmic domain (MUC1-CD) (90–92). The MUC1-ED is
primarily composed of varying numbers (25–125) of highly O-
glycosylated, 20-amino acid VNTRs, with the number of repeats
being a polymorphic genetic trait. TheMUC1-CD containsmultiple
Ser, Thr, and Tyr residues as potential phosphorylation sites. MUC1
is initially synthesized as a single polypeptide chain, but
autoproteolytic cleavage at a Gly-Ser peptide bond in the
endoplasmic reticulum generates two subunits that are together
transported to the cell surface. The larger subunit (> 250 kDa) is
derived frommost of theMUC1-ED and the smaller subunit (20-30
kDa) contains a juxtamembrane region of the MUC1-ED, the
membrane-spanning domain, and the MUC1-CD (93). MUC1
autoproteolysis occurs within its SEA (sea urchin sperm protein,
enterokinase, agrin) domain, a 120-amino acid region highly
conserved in glycosylated, mucin-like proteins (94, 95). While the
two autoproteolytic cleavage fragments constitute separate
polypeptide chains, they remain tightly associated on the cell
surface, although they are not linked through disulfide bonds, and
are only separated under extreme dissociating conditions, for
example in the presence of sodium dodecyl sulfate (96). However,
the MUC1-ED can be untethered from the cell surface under
physiologic conditions by additional proteolytic cleavage by
proteases such as neutrophil elastase (97, 98), TNF-a converting
enzyme (TACE) (99), matrix metalloprotease-14 (MMP-14) (100,
101), and g-secretase (102). Finally, an extracellular form of the
MUC1-ED, MUC1-SEC, can be produced through alternative
splicing of the MUC1 mRNA to introduce a translation stop
codon prior to its transmembrane region (103).

The 72-amino acid MUC1-CD contains 9 Ser, 6 Thr, and 7
Tyr residues as potential phosphorylation sites. Many of these
Frontiers in Immunology | www.frontiersin.org 4
residues are located within consensus sequence binding motifs
for signaling kinases and adapter proteins. Among the most well-
characterized of these are phosphatidylinositol 3-kinase (PI3K),
Shc, phospholipase Cg (PLCg), protein kinase Cd (PKCd),
glycogen synthase kinase-3b (GSK3b), c-Src, epidermal growth
factor receptor (EGFR), b-catenin, and Grb-2 (104–107). The
pattern of MUC1-CD Tyr phosphorylation is similar to that of
some cytokine and growth factor receptors, but unlike cytokine/
growth factor receptors, the MUC1-CD is not capable
of autophosphorylation.

Carbohydrate analysis of MUC1 glycans reveals a high
content of sialic acid (108, 109). Because MUC1 is the major
membrane-bound mucin expressed in the airways and NEU1 is
the major sialidase expressed in the respiratory tract (40), studies
were performed to determine the molecular relationship
between NEU1 and MUC1 in airway epithelial cells. By
immunohistochemical staining, airway expression of NEU1
matches with that seen for MUC1 in these same tissues, i.e. at
the superficial surface of airway epithelia, including the brush
border of the trachea and bronchus, but not in subepithelial
tissues (40, 110, 111). Overexpression of NEU1 in cultured
human airway epithelial cells increased its association with
MUC1 and decreased the sialic acid content of the MUC1-ED
as assessed by lectin blotting with the sialic acid-reactive lectin,
Maakia amurensis lectin (40). In contrast, NEU1 silencing in
these cells had the opposite effects. Thus, the MUC1-ED is a
substrate for NEU1. However, it is unknown whether NEU1
desialylates MUCs other than MUC1, and whether NEUs other
than NEU1 desialylate MUC1.

NEU1 desialylates not only MUC1, but also EGFR (40).
Because MUC1 forms a molecular complex with EGFR (112–
114), and NEU1 plays a role in programmed cell death (115,
116), studies were performed to examine the relationship
between NEU1, MUC1, and EGFR in autophagy (117).
Immunohistochemically, human triple-negative breast cancer
cells expressed high levels of EGFR, but low levels of MUC1
and NEU1. The levels of two autophagy pathway proteins, PI3K
and beclin-1, were positively correlated with both NEU1 and
MUC1-ED levels, while only PI3K correlated with the MUC1-
CD. These results led to the authors to speculate that a NEU1 –
MUC1 – EGFR axis is dysregulated in breast cancer cells
exhibiting reduced autophagy.
KL-6

In 1988, a mouse monoclonal antibody, Krebs von den Lungen-6
(KL-6) (from the German “cancer from the lungs”) was
described that was raised against human pulmonary
adenocarcinoma cells (118). In addition to the immunizing
cells, the KL-6 antibody reacted with normal human type 2
alveolar pneumocytes and bronchiolar epithelial cells, and with
an unidentified high molecular weight mucin-like serum
glycoprotein whose levels were increased in patients with lung
adenocarcinoma. The epitope on the KL-6 antigen recognized by
the KL-6 antibody was initially defined as a sialylated glycan
because treatment of the purified antigen with sialidase
April 2022 | Volume 13 | Article 883079
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diminished its reactivity with the cognate antibody (118).
Carbohydrate analysis identified Gal, GalNAc, and Neu5Ac
(sialic acid) in the KL-6 epitope (119). Subsequently, Ohyabu
et al. (120) reported that the minimal antigenic structure of the
KL-6 epitope consisted of the glycan, Neu5Aca2,3Galb
1,3GalNAca, attached to the Thr residue in the peptide, Pro-
Asp-Thr-Arg-Pro-Ala-Pro (Figure 2). This carbohydrate
structure also is referred to as the 2,3-sialyl T antigen of the
core 1-type O-glycan. More recent analysis suggests that the KL-
6 antibody also recognizes a 6′-sulfo-Gal/GalNAc glycan epitope
(121). Interestingly, the KL-6 epitope only is expressed in
humans and apes and not other mammals (122).

On the basis of flow cytometric and immunohistochemical
studies, KL-6 was initially categorized as a Cluster 9/MUC1
antigen in the lung tumor and differentiation antigen
classification system (123). Biochemical analysis of purified
KL-6 established its identity with MUC1 (119). Amino acid
analysis indicated a relatively high content of Pro (19.1 mol
%), Thr (13.7%), and Ser (12.3%), while carbohydrate analysis
revealed enrichment of Neu5Ac (30.2% per weight), Gal
(18.9%), and GalNAc (11.9%). Most convincingly, in
Western blot analysis the purified KL-6 glycoprotein reacted
with the established MUC1 antibody, DF3. Because the KL-6
antibody reacts with the surface of type II pneumocytes and
bronchiolar epithelial cells , and KL-6 is present in
bronchoalveolar lavage fluid (BALF) and serum, the
mechanism through which KL-6 is transported between the
cell – BALF – blood compartments has been speculated (124,
125). While it is unclear how KL-6 is released from the cell
surface into the alveolar fluid that is collected as BALF, the
identification of two established MUC1-ED sheddases, MMP-
14 and g-secretase, in airway epithelial cells (51) suggests a
proteolytic mechanism of KL-6 shedding.
Frontiers in Immunology | www.frontiersin.org 5
NEUs AND MUCs IN PULMONARY
FIBROSIS

Exaggerated, often irreversible, and sometimes relentless
scarring, known as fibrosis, can affect any organ or tissue.
Excessive activation of fibroblasts, manifesting as their
transdifferentiation into collagen-depositing, apoptosis-
resistant, myofibroblasts underlies fibrosis. The ensuing
replacement of the functional parenchyma with the scar tissue
can become functionally and cosmetically debilitating in the skin
or outright deadly when fibrosis develops in the lung, heart,
kidney, or liver. There is no cure for fibrosis, and existing
therapies do not consistently prevent fibrosis progression. The
mechanistic involvement of NEUs in fibrosis has been suggested
relatively recently, mostly in the lungs, where NEU activation
promotes fibrosis (48, 52, 126–130); but also heart, with reports
suggesting a profibrotic role for NEU1 (131) and an antifibrotic
role for NEU3 (132). Mucins have also been suggested as
mechanistic contributors to pulmonary fibrosis and,
furthermore, NEUs and MUCs interplay mechanistically, as
reviewed in detail below. Therefore, the following discussion
focuses mostly on pulmonary fibrosis. The mechanisms of
fibrosis are highly diverse, complex, redundant, and organ-
specific, yet there are numerous unifying features across organ-
and tissue-specific fibroses. In relevance to pulmonary fibrosis,
these mechanisms include, but are not limited to, activation of
transforming growth factor-b (TGF-b) (133, 134), changes in the
levels of other cytokines regulating both inflammation and
fibrosis (135–142), oxidative stress (143, 144), coagulation
disturbances (145, 146), changes in biomechanical forces (147,
148), cellular senescence (149–155), defective autophagy (156,
157), and dysregulated epithelial cell – fibroblast crosstalk
(158–161).

Pulmonary fibrosis is usually considered in the context of
interstitial lung disease (ILD), an umbrella entity that comprises
a large and diverse group of human disorders characterized by
variously proportioned pulmonary inflammation and scarring.
Idiopathic pulmonary fibrosis (IPF) represents the most severe,
debilitating, and poorly understood ILD (162, 163). Connective
tissue disease related ILD, especially in patients with scleroderma
and rheumatoid arthritis, also poses a serious biomedical
problem (164–166). Although the roles for NEU contributions
to ILD have been suggested recently, early indications were
observed in the past. Lambré et al. (167) first reported sialidase
activity in the BALF from patients with IPF, while BALF from
healthy subjects and serum from both IPF patients and controls
had no such activity. Later, NEU1 mRNA and protein levels were
shown to be increased in lung epithelial and endothelial cells, and
fibroblasts, of IPF patients compared with healthy controls (128).
In the same study, NEU1 overexpression in cultured lung
fibroblasts increased the levels of collagen types I and III and
MMP-14 degradation products, while NEU1 overexpression in
mice increased lung collagen and TGF-b levels and promoted
lung leukostasis of CD8+, and to a lesser extent CD4+, T cells. A
later report from the same group demonstrated that selective
pharmacological inhibition of NEU1 using C9-butyl-amide-2-
FIGURE 2 | Proposed minimal antigenic structure of the KL-6 epitope based
on Ohyabu et al. (120).
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deoxy-2,3-dehydro-N-acetylneuraminic acid (C9-BA-DANA),
attenuated collagen accumulation in the lungs and pulmonary
lymphocytosis in the acute and chronic bleomycin models of
lung fibrosis (48). Taken together, these results indicated that
NEU1 plays a central role in the pathogenesis of pulmonary
fibrosis and NEU1-selective inhibition may offer a potential
therapeutic intervention for pulmonary fibrotic diseases. Other
studies have implicated a role for NEU3 in IPF pathogenesis (52,
126, 127, 129, 130).

NEU1 – MUC1 Axis in ILD
Kohno and colleagues (168) reported that serum levels of the KL-
6 antigen positively correlated with disease activity in patients
with interstitial pneumonitis, including IPF, hypersensitivity
pneumonitis, and sarcoidosis. Elevated levels of KL-6 also were
observed in the BALF of patients with ILD and there was a
positive correlation between KL-6 serum and BALF levels (125,
169). Serum KL-6 levels were demonstrated to be proportionally
higher in interstitial pneumonitis patients compared with other
biomarkers of disease activity, such as type III procollagen N-
terminal peptide (PIIIP) and type IV collagen 7S (7S collagen),
while the latter two were more sensitive markers of alveolar
pneumonia (170). In subsequent investigations, elevated serum
levels of KL-6 were shown to be present in a greater proportion
of patients with ILD compared with other reported disease
biomarkers, including sialyl-Lewis a (sLea), sialyl-Lewis x
(sLex), surfactant protein-A, surfactant protein-D, monocyte
chemoattractant protein-1 (MCP-1), and C-C motif chemokine
ligand 18 (CCL18) (171–174). In addition to its value as a
diagnostic biomarker of ILD, KL-6 serum levels have been
reported to be of prognostic value for predicting disease
severity, acute exacerbations, and patient survival (125, 175,
176). Further, the value of KL-6 as a biomarker for ILD
extends to diverse ethnic populations throughout the world,
despite the fact that polymorphisms in the MUC1 gene affect
serum levels of KL-6 (177–179). Based on these collective studies,
KL-6 has been approved by the Japanese Health Insurance
Program as a clinical diagnostic biomarker for ILD (124).
Several relevant review articles can be consulted for further
information on the diagnostic and prognostic value of KL-6 in
IPF/ILD (125, 180–183).

KL-6 has been implicated in the pathogenesis of IPF. Purified
KL-6 increased the chemotaxis of human lung and skin
fibroblasts in vitro, which was augmented by fibronectin (119).
KL-6 also promoted lung fibroblast proliferation and migration,
and inhibited apoptosis, which were synergized by TGF-b (184).
In a mouse model of bleomycin-induced pulmonary fibrosis,
administration of anti-KL-6 antibody following bleomycin
administration reduced the number of BALF inflammatory
leukocytes, diminished the content of hydroxyproline in lung
tissues, reduced the expression of collagen type I, TGF-b, and
KL-6, increased hepatocyte growth factor (HGF) expression, and
inhibited airway epithelial cell apoptosis (185). Bleomycin-
induced lung fibrosis was decreased in MUC1-deficient mice,
and in vitro silencing of MUC1 expression diminished fibroblast
proliferation (186). In vitro cultures of lung fibroblasts and
epithelial cells treated with the antifibrotic drug, pirfenidone,
Frontiers in Immunology | www.frontiersin.org 6
had reduced TGF-b-induced MUC1-CD phosphorylation at
Thr-42 and Tyr-46, and decreased nuclear translocation of the
MUC1-CD/SMAD3/b-catenin complex (187). MUC1-ED levels
were increased in the BALF of bleomycin-challenged mice, and
the NEU1-selective inhibitor, C9-BA-DANA, dose-dependently
inhibited bleomycin-induced increases in MUC1-ED levels (48).
Further, MUC1-ED in BALF of bleomycin-challenged mice was
desialylated, and C9-BA-DANA reduced bleomycin-provoked
MUC1-ED desialylation. Transgenic mice expressing human
MUC1 had increased serum KL-6 levels following bleomycin
challenge (122). Serum KL-6 levels were positively correlated
with BALF albumin levels indicating that increases in serum KL-
6 after bleomycin administration were associated with disruption
of the alveolar-capillary barrier. In an experimental model of
silica-induced pulmonary fibrosis using mice expressing the
human MUC1 transgene, BALF and serum levels of MUC1
were increased compared with saline controls (188).
Unexpectedly, however, MUC1 knockout mice had increased
lung collagen deposition and pulmonary inflammation
compared with wild type littermates. Collectively, these studies
have led us to propose a NEU1 – MUC1 axis as a central
component of the pathogenesis of pulmonary fibrotic diseases.

Several unanswered questions remaining concerning the roles
of KL-6/MUC1 and NEU1 in the pathogenesis of IPF/ILD. 1) Do
all secreted/extracellular forms of MUC1 that arise from different
proteolytic cleavages (elastase, TACE, MMP-14, g-secretase)
and/or alternative mRNA splicing (MUC1/SEC) contribute to
the appearance of KL-6? 2) Do genetic polymorphisms that
dictate the number of MUC1-ED tandem repeats influence the
development of IPF? 3) Are KL-6/MUC1 molecules in the serum
and BALF of IPF patients desialylated to a similar extent? 4) Do
pharmacologic inhibitors that target protease-mediated MUC1-
ED shedding inhibit IPF development? 5) And ultimately, what
is the molecular mechanism through which NEU1-induced, KL-
6/MUC1 desialylation contributes to the profibrotic,
proinflammatory phenotype that characterizes IPF?

Increased KL-6 levels in BALF of ILD patients likely reflects
the presence of high glycoprotein levels on the surface of
regenerating type II pneumocytes (168, 189). Upregulation of
MUC1-ED sheddases in these cells during disease manifestation
remains an alternative possibility, and elevated levels of MMP-14
have been described in pulmonary fibrosis (190, 191). High KL-6
levels in serum also may be causally related to increased
regenerating pneumocytes and/or greater alveolar capillary
permeability to proteins following disruption of the alveolar-
capillary barrier (124).

Mucins as Substrates for NEU2, NEU3,
and NEU4
NEU2 mRNA and sialidase activity were detected in the acellular
mucin-enriched capsule of the equine pre-implantation
conceptus (192). Recombinant human NEU2, expressed in
Escherichia coli and purified to homogeneity, exhibited
sialidase activity against bovine submaxillary gland mucin
(BSM) (193). Although the particular mucin expressed by the
bovine submaxillary gland has yet to be fully characterized,
cDNA sequence analysis shows it to be highly similar to
April 2022 | Volume 13 | Article 883079
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MUC19 (194–196). A human NEU4 cDNA, expressed in
monkey COS-7 cells, desialylated BSM to a greater extent
compared with other NEU substrates, including 4-MU-NANA,
sialyllactose, and mixed bovine gangliosides (197). By contrast,
while recombinant NEU3 desialylated BSM to a greater extent
than 4-MU-NANA, BSM was an inferior NEU3 substrate
compared with sialyllactose and bovine gangliosides.
Recombinant cDNAs of both the short and long isoforms of
human NEU4 (NEU4-S and NEU4-L), expressed in COS-7 cells,
also exhibited in vitro sialidase activity against BSM (198).
NEU4-S expressed in human embryonic kidney 293T
(HEK293T) cells, but not NEU1, NEU2, or NEU3, desialylated
the sLea mucin-expressing antigen (79). NEU4-S also exhibited
enzymatic activity against the sLex antigen, while NEU3 was
moderately active and NEU1 and NEU2 were unreactive against
sLex. Compared with untreated controls, treatment of human
THP-1 macrophages with the phytochemical, thymoquinone,
stimulated an increase in endogenous NEU4 activity that
exhibited sialidase activity against BSM (80, 199). Therefore, in
addition to the established role of NEU1 in desialylating MUC1,
as discussed previously, other NEUs are capable of desialylating
other MUCs. Several such mucins—potential desialylation
targets of mammalian NEUs—have been suggested or
demonstrated to play a role in ILD. A specific single nucleotide
polymorphic (SNP) MUC2 gene variant was significantly
associated with IPF (200), and the expression levels of MUC2
protein were decreased in patients with IPF (201). Similarly, a
specific SNP variant of the MUC5AC gene was associated with
IPF (202). However, the expression of MUC5AC was reported to
be either increased (203) or decreased (201, 204) in patients with
pulmonary fibrosis. In a mouse model, overexpression of
MUC5AC protected against inflammation and fibrosis through
several mechanisms (205). These apparent discrepant results
might be explained, in part, by differences in disease etiologies,
patient demographics, and/or lung sampling techniques between
the various studies (201, 203, 204). The expression levels of
MUC4 and MUC16 were elevated in patients with IPF, with
evidence for each MUC4 and MUC16 promoting the fibrotic
process in collaboration with TGF-b (206–209). Of particular
prominence is a strong association of a gain-of-functionMUC5B
gene promoter variant (rs35705950) with pulmonary fibrosis
(210–215). To date, the MUC5B rs35705950 SNP remains the
strongest and most reproducible risk factor for development of
IPF. It should be expected that specific details of the interplay
between NEU isozymes and these MUCs might transpire in
the future.
NEUs AND MUCs IN INFECTIOUS
DISEASES

NEU1 and MUC1 in Pseudomonas
aeruginosa Infection
P. aeruginosa is a Gram-negative, motile, opportunistic pathogen
responsible for a wide range of human infections (216). In the
respiratory tract, P. aeruginosa contributes to the morbidity and
Frontiers in Immunology | www.frontiersin.org 7
mortality of cystic fibrosis, chronic obstructive pulmonary
disease, and bronchiectasis. P. aeruginosa bacteria isolated
from the airway secretions of cystic fibrosis patients are tightly
bound to mucins (217–219). In in vitro cell adhesion assays, the
MUC1-ED bound to P. aeruginosa through bacterial flagellin,
the major structural protein of the flagellar filament (220, 221).
Flagellin binding to the MUC1-ED stimulates two distinct
molecular events, Tyr phosphorylation of the MUC1-CD
leading to activation of the extracellular signal-regulated kinase
1/2 (ERK1/2) signal transduction pathway and NEU1-catalyzed
MUC1-ED shedding from the cell surface as a soluble decoy
receptor (40, 49, 51, 222). MUC1-CD diminishes the host
inflammatory response to P. aeruginosa lung infection through
a mechanism involving EGFR-catalyzed Tyr phosphorylation of
the MUC1-CD and inhibition of TLR signaling (104, 105, 107,
112, 223–229). As discussed above, EGFR and TLRs are
established NEU1 substrates, but it is unclear to what extent
NEU1-mediated desialylation of EGFR and/or TLRs impacts P.
aeruginosa-initiated, MUC1-CD-inhibited airway inflammation.

Overexpression of NEU1 in cultured human airway epithelial
cells increased P. aeruginosa adhesion to MUC1-expressing airway
epithelia, and promoted MUC1-ED desialylation and flagellin-
stimulated, MUC1-dependent ERK1/2 phosphorylation, while
NEU1 silencing had the opposite effects (40). To extend these
results to a physiologically relevant context, additional studies were
performed to assess whether P. aeruginosa flagellin, the MUC1
ligand, might regulate NEU1-mediated MUC1-ED desialylation
and/or P. aeruginosa adhesion to airway epithelial cells (51).
NEU1 overexpression in cultured human airway epithelial cells
increased MUC1-dependent adhesion of flagellin-expressing P.
aeruginosa to the cells, but not the adhesion of a flagellin-
deficient P. aeruginosa isogenic mutant (fliC¯). Treatment of these
cells with purified P. aeruginosa flagellin dose-dependently
increased bacterial adhesion, which was abolished by NEU1
silencing. In coimmunoprecipitation assays, P. aeruginosa flagellin
increased MUC1 association with both NEU1 and the NEU1
chaperone, PPCA, in a dose-dependent manner. Airway epithelial
cells treated with P. aeruginosa flagellin also dose-dependently
increased MUC1-ED desialylation, which was abrogated by NEU1
knockdown. Because sialic acid residues can mask protease
recognition sites (230), additional studies were conducted to
assess the role of NEU1 and P. aeruginosa flagellin in MUC1-ED
shedding from the cell surface (51). NEU1 overexpression and
flagellin stimulation dose-dependently increased shedding of
desialylated MUC1-ED into the supernatants of cultured airway
epithelial cells. Moreover, the desialylated MUC1-ED that was shed
in response to flagellin stimulation decreased P. aeruginosa
adhesion to airway epithelial cell-associated MUC1-ED. Thus, the
MUC1 ligand, P. aeruginosa flagellin, increased MUC1 association
with NEU1, leading to desialylation and shedding of the MUC1-ED
from the airway epithelial cell surface, and the shed MUC1-ED
competitively blocked P. aeruginosa adhesion to MUC1-ED
residing on the cell surface.

Using an intact, physiologically relevant, mouse model of P.
aeruginosa pneumonia, further studies were performed to assess
whether P. aeruginosa-derived flagellin might stimulate NEU1-
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dependent MUC1-ED desialylation and shedding (49). Mice
administered intranasally with viable bacteria or purified
flagellin exhibited both dose- and time-dependent increases in
shed MUC1-ED in their BALF. No increases in BALF levels of
MUC1-ED were evident in mice administered with the flagellin-
deficient P. aeruginosa fliC¯ mutant strain. P. aeruginosa lung
infection of mice also increased NEU1-MUC1 and PPCA-MUC1
association andMUC1-ED desialylation, and inhibition of NEU1
activity in vivo with the NEU1-selective inhibitor, C9-BA-DANA
(231), abrogated both of these effects. Shed, desialylated MUC1-
ED purified from the BALF of P. aeruginosa-infected mice
diminished both flagellin and bacterial binding to cultured
airway epithelial cells, and a similar effect was observed using a
nonglycosylated recombinant MUC1-ED protein expressed in E.
coli. Co-administration of the recombinant MUC1-ED protein
with P. aeruginosa to mice also decreased bacterial lung burden,
diminished BALF levels of keratinocyte-derived chemokine (KC)
and tumor necrosis factor-a (TNF-a), inhibited pulmonary
leukostasis, and increased 5-day mouse survival from 0% to 75%.

To extend these results to an in vivo human setting, studies
were conducted to determine whether shed MUC1-ED levels
might be elevated in BALF of patients with P. aeruginosa lung
infection, and whether the recombinant MUC1-ED protein might
influence in vitro parameters of the host proinflammatory
response to bacterial infection (232). BALF from patients with
P. aeruginosa pneumonia contained higher levels of MUC1-ED,
compared with either BALF from noninfected patients or patients
infected with microorganisms other than P. aeruginosa, and shed
MUC1-ED in the BALF of P. aeruginosa-infected patients was
desialylated, presumably from the action of NEU1. P. aeruginosa-
derived flagellin also was detected in the BALF of P. aeruginosa-
infected patients, and a positive correlation existed between BALF
levels of MUC1-ED and flagellin. Finally, E. coli-expressed
recombinant MUC1-ED dose-dependently decreased P.
aeruginosa motility and biofilm formation, diminished P.
aeruginosa-stimulated interleukin-8 (IL-8) production by airway
epithelial cells, and promoted neutrophil-mediated bacterial
phagocytosis. Taken together, these results indicate that not only
do BALF levels of shedMUC1-ED provide a diagnostic biomarker
of P. aeruginosa lung infection, but that NEU1-mediated
desialylation of the MUC1-ED generates a flagellin-targeting
releasable decoy that provides a protective component of the
proinflammatory response to P. aeruginosa at the human airway
epithelial surface (Figure 3).

In subsequent studies, coimmunoprecipitation and glutathione-
S-transferase (GST) pull down assays were performed to identify the
biochemical mechanism through which NEU1 associates with
MUC1 (233). Unexpectedly, NEU1 associated with the MUC1-
CD, but not with the sialic acid-containingMUC1-ED. Inhibition of
NEU1 enzymatic activity using C9-BA-DANA did not affect
NEU1-MUC1-CD association. The NEU1 binding site was
localized to the membrane-proximal 36 amino acids of the
MUC1-CD, while the MUC1-CD binding site was mapped to
NEU1 amino acids 1-139. NEU1-MUC1-CD association was
direct and did not require the NEU1 chaperone protein, PPCA.
NEU1-mediated MUC1-ED desialylation in response to
Frontiers in Immunology | www.frontiersin.org 8
P. aeruginosa flagellin was equivalent in cells either expressing or
not expressing the MUC1-CD, indicating that NEU1-MUC1-CD
interaction was not required for MUC1-ED desialylation. Finally,
overexpression of NEU1 in airway epithelial cells reduced MUC1-
CD association with PI3K and diminished downstream Akt
phosphorylation. These results indicate that NEU1 associates with
the juxtamembrane region of the MUC1-CD to inhibit PI3K-
Akt signaling.

Several unanswered questions remain concerning the NEU1 –
MUC1 axis. 1) What is the molecular mechanism through which
engagement of P. aeruginosa flagellin by the MUC1-ED leads to
recruitment of NEU1? 2) Do other flagellated respiratory
pathogens other than P. aeruginosa activate the flagellin –
MUC1 – NEU1 axis? 3) Can the E. coli-expressed recombinant
MUC1-ED offer a clinically useful therapeutic intervention to
treat P. aeruginosa lung infections either alone or in combination
with anti-pseudomonal antibiotics? 4) Can measurement of
MUC1-ED and/or flagellin levels in BALF be developed into a
dependable and rapid diagnostic assay to identify patients with P.
aeruginosa lung infections without the need for bacterial culture
or genotyping techniques?

NEUs and MUCs in Other
Bacterial Infections
In mouse models of E. coli-induced sepsis or S. enterica serovar
Typhimurium-induced colitis, or in mice administered
intraperitoneally with E. coli lipopolysaccharide (LPS),
circulating levels of both NEU1 and NEU3 were increased
compared with saline controls (234). No increases in NEU1 or
NEU3 were observed in TLR4 knockout mice. Streptococcus
pneumoniae-induced murine sepsis also increased serum NEU1
andNEU3 levels, but these increases were similar in both wild type
and TLR4-deficient mice, suggesting an effect of the bacterial-
encoded neuraminidase, NanA. Mechanistic studies revealed that
increased NEU1/NEU3 levels promoted desialylation and
clearance of alkaline phosphatase by the Ashwell-Morell
receptor, thereby decreasing LPS dephosphorylation and
increasing TLR4-dependent host inflammatory responses. In
other studies, repeated gastric administration of S. enterica
Typhimurium or LPS increased intestinal sialidase activity and
NEU3 mRNA and protein levels in the gut in a TLR4-dependent
manner with a corresponding increase in alkaline phosphatase
desialylation and decrease phosphatase activity (235). Oral
administration of zanamivir (Relenza), an influenza virus NEU
inhibitor, blocked the bacterial-induced increased intestinal NEU
activity, maintained alkaline phosphatase sialylation, and
prevented disease. No increases in intestinal sialidase activity,
NEU expression, or alkaline phosphatase desialylation were seen
following gastric administration of S. enterica Typhimurium to
NEU3 knockout mice (236). NEU3-deficient, S. enterica
Typhimurium-infected mice also demonstrated decreases in LPS
phosphorylation, intestinal levels of proinflammatory cytokines,
and gut infiltration of CD3+ T cells, Gr1+ neutrophils, and F4/80+

monocyte/macrophages, and protected against the development of
bacterial colitis. The NEU inhibitor oseltamivir (Tamiflu),
originally developed against influenza virus NEU, but also active
April 2022 | Volume 13 | Article 883079
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against NEU1 (41, 237–239), reduced murine lung neutrophil
infiltration, IL-17 and TNF-a levels in BALF and serum, and
mortality in both experimental E. coli sepsis and the cecal ligation
puncture model of sepsis (240).

MUC1 serves as a cell surface receptor for Helicobacter pylori in
gastric epithelia (100, 241–246). Here, theMUC1-ED is released as a
soluble decoy receptor to limit H. pylori infection (100, 247, 248),
but the role of NEU1 inH. pylori-stimulatedMUC1-ED shedding is
unclear. MUC1 expression downregulates H. pylori-driven gastric
inflammation (244, 249–256). MUC1 expression also influences a
variety of other human bacterial infections, including those by E.
coli, S. enterica Typhimurium, S. pneumoniae, Staphylococcus
aureus, Bacillus subtilis, Campylobacter jejuni, and Haemophilus
influenzae (257–267). Based on these studies and the documented
role of the NEU1 – MUC1 axis in regulating airway inflammation
in response to P. aeruginosa (40, 49, 51, 232), it is likely that this
same pathway impacts the interaction of a broad array of
Frontiers in Immunology | www.frontiersin.org 9
pathogenic microorganisms with the human host. In summary,
these collective studies suggest that NEUs and MUCs play
important roles in regulating bacterial infections.

NEUs and MUCs in Viral Infections
DNA methylation analysis of primary nasal epithelial cells from
children with or without asthma implicated NEU1 in the host
immune response to human rhinovirus-16 infection (268).
Compared with non-asthmatic controls, NEU1 mRNA levels
were decreased in asthma subjects with rhinovirus-16 infection,
and a positive correlation between NEU1 gene methylation and
NEU1 transcript levels was observed. The hepatitis B virus core
protein (HBc) increased NEU1 gene promoter activity through
NF-kB binding sites, leading to activation of ERK1/2 and NF-kB
signaling pathways, and increased HBc-mediated migration and
proliferation of hepatoma cells (269). Knockdown of NEU2
expression in monkey Vero or human HEp-2 cells increased
FIGURE 3 | Hypothetical model for Pseudomonas aeruginosa flagellin-induced, NEU1-mediated MUC1-ED desialylation and shedding. Step 1. P. aeruginosa
flagellin engages cell-associated MUC1-ED in the airway epithelium. Step 2. NEU1 is recruited to the MUC1-CD. Step 3. NEU1 desialylates the MUC1-ED. Step 4.
Desialylated, cell-associated MUC1-ED binds to P. aeruginosa through its flagella. Step 5. The P. aeruginosa-MUC1-ED complex is proteolytically released from the
cell surface. Step 6. The P. aeruginosa-MUC1-ED complex is removed from the lungs by the combined actions of neutrophil phagocytosis and mucociliary
clearance. Image of the pseudostratified columnar epithelium from Anatomy and Physiology, Chapter 4: The Tissue Level of Organization, Section 4.2: Epithelial
Tissue by OpenStax College, Rice University (https://openstax.org/details/books/anatomy-and-physiology) and used under Creative Commons Attribution 4.0
International (CC BY) license/Modified from the original.
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hepatitis A virus replication by up to 200-fold, however the
mechanism was not elucidated (270). Overexpression of mouse
NEU3 in COS-7 cells diminished Newcastle Disease Virus
(NDV) infection and propagation through cell-cell fusion
(271). Because reduced cell surface levels of GD1a also were
decreased upon NEU3 overexpression, this ganglioside was
suggested to constitute an NDV receptor on host cells. The
expression of NEU1, but not NEU3 or NEU4, was increased in
upper and lower respiratory tract cells, and in lung infiltrating
neutrophils, of SARS-CoV-2-infected patients (240).
Interestingly, two recent reports have documented increased
MUC1 protein levels in the airways of SARS-Cov-2-infected
patients compared with healthy controls (272, 273). MUC1 also
has been shown to play a critical role in several other virus
infections, including those by respiratory syncytial virus,
adenovirus, influenza virus, and human immunodeficiency
virus (274–280). Future studies are needed to elucidate the role
of NEUs, if any, in regulating the MUC1-dependent responses to
virus infections. In conclusion, these investigations reveal that a
variety of human and animal virus infections are impacted by the
expression and activity of NEU1, NEU2, NEU3, and MUC1.

NEU1 in Parasite Infections
In vitro infection of mouse J774.A1 macrophage cells with the
obligate intracellular protozoan parasite, Leishmania donovani,
reduced cell surface expression of NEU1 compared with
uninfected controls (55). Parasite infection enhanced TLR4
sialylation and reduced TLR4-NEU1 and TLR4-MyD88
association. NEU1 overexpression in L. donovani-infected
murine macrophages increased TLR4 desialylation, TLR4-
NEU1 and TLR4-MyD88 association, activation of the JNK,
ERK1/2, p38, and NF-kB pathways, and expression of IL-12,
interferon-g (IFN-g), and inducible nitric oxide synthase (NOS)
proinflammatory mediators, while decreasing expression of IL-4,
IL-10, and TGF-b and reducing parasite burden, all
compared with mock-transfected cells. In other studies, NEU1
overexpression in L. donovani-infected mouse macrophages
reduced TLR4 ubiquitination and TLR4-siglec-E and siglec-E-
SHP1 association, but increased IL-1b, IL-6, and TNF-a levels
compared with nontransfected cells (281).
NEUS IN INNATE AND ADAPTIVE
IMMUNITY

NEUs and TLRs
Toll-like receptors (TLRs) are cell surface sialoglycoproteins that
recognize broadly-distributed pathogen-encoded molecules to
initiate MyD88- and TRIF-dependent intracellular signaling
pathways that activate host innate immune responses (282). It
is now established that sialidases, principally NEU1, regulate
TLR-dependent innate immunity (Table 2).

TLR ligands, including LPS, poly(I:C), Mycobacterium
butyricum, and zymosan, induced sialidase activity in mouse
BMC-2 and primary bone marrow macrophages that was
associated with NF-kB activation and the production of nitric
Frontiers in Immunology | www.frontiersin.org 10
oxide, IL-6, and TNF-a (53). In these same studies, NEU1, but
not NEU2, NEU3, or NEU4, colocalized with TLR2, TLR3, and
TLR4 on the cell surface of unstimulated mouse macrophages,
which increased following stimulation with zymosan, poly(I:C),
or LPS, respectively. NEU1 knockout mice had reduced
granulocyte-colony stimulating factor (G-CSF), IL-1Ra, IL-6,
KC, and macrophage inflammatory protein-2 (MIP-2)
production in response to LPS administration compared with
NEU1-expressing mice. In other studies, NEU1- and NEU4-
deficient macrophages had reduced LPS-induced TLR4-MyD88
complex formation and NF-kB activation compared with wild
type littermates (57, 80, 199). Following LPS stimulation of
mouse dendritic cells (DCs), NEU1 translocated from the
lysosome to the cell surface where it associated with and
desialylated TLR4, and NEU1 silencing diminished LPS-
stimulated TNF-a production (70). In these same studies,
NEU1 deficiency in murine hematopoietic cells or in vivo
treatment with the sialidase pharmacologic inhibitor, 2-deoxy-
2,3-dehydro-N-glycolylneuraminic acid (Neu5Gc2en), protected
mice against lethal LPS challenge. NEU1 silencing in mouse 3T3-
L1 adipocytes increased TLR4 sialylation and decreased LPS-
stimulated NF-kB nuclear translocation and IL-6 and monocyte
chemoattractant protein-1 (MCP-1) production (54). NEU1
pharmacologic inhibition with oseltamivir decreased LPS-
stimulated IL-6, granulocyte-macrophage colony-stimulating
factor (GM-CSF), and MIP-1a production in mouse primary
renal mesangial cells through a TLR4 ! p38/ERK pathway
(283). Treatment of mouse RAW264.7 macrophages with LPS
decreased NEU1 levels on the cell surface, and NEU1 silencing
promoted LPS-induced tolerance, while NEU1 overexpression
had the opposite effect (73). Finally, treatment of RAW264.7 cells
with TLR7 or TLR9 agonists promoted TLR7-NEU1 and TLR9-
NEU1 association, NF-kB activation, and TNF-a and MCP-1
production, all of which were reversed by NEU1 silencing or
pharmacologic inhibition with oseltamivir (44).

In human studies, NEU4 was identified as the strongest locus
associated with TLR4 stimulation in a genetic analysis comparing
LPS-treated primary monocytes with untreated cells (299).
Overexpression of NEU1, but not NEU3, in HEK293T cells dose-
dependently increased LPS-stimulated, TLR4-mediated NF-kB
activation and treatment with the broad spectrum sialidase
inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid
(Neu5Ac2en or 2-deoxy-NANA) reduced NF-kB activation (58).
Mechanistically, it was proposed that NEU1-mediated desialylation
of TLR4 unmasked TLR dimerization sites to promote receptor
activation and initiation of the host proinflammatory response (53,
57). Additional studies revealed that NEU1,MMP-9, and G protein-
coupled receptors (GPCRs) formed a multiprotein complex on the
cell surface wherein GPCR agonists activated GPCR signaling to
stimulate MMP-9-dependent NEU1 activation through removal of
the elastin-binding protein, thereby allowing for TLR desialylation
and initiation of host inflammation (44, 45, 47). Further
investigations revealed NEU1 – MMP-9 cross-talk in combination
with the GPCR agonist, neuromedin B, as necessary for EGFR
activation and downstream intracellular signaling (41). LPS
activation of mouse microglial BV-2 cells and rat primary
April 2022 | Volume 13 | Article 883079
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microglia increased cell surface sialidase activity and desialylation of
the cell surface (300, 301), which was abolished by NEU1
knockdown (56). NEU1 knockdown in microglia also reduced
LPS-stimulated IL-6 and MCP-1 expression, while NEU1
overexpression had the opposite effects (56). Using a cell surface
biotinylation assay, NEU1 and TLR4 were localized in close
proximity (within 100 nm) on the cell surface of LPS-activated
BV-2 cells, and LPS treatment of the cells increased TLR4
desialylation. Collectively, studies in both human and mouse
experimental systems indicate that NEU1, and to a lesser extent
Frontiers in Immunology | www.frontiersin.org 11
NEU4, regulate TLR-driven intracellular signaling and host
innate immunity.

NEUs and PMNs
Polymorphonuclear leukocytes (PMNs) are blood-borne leukocytes
that play a critical role in the host innate immune response to
infectious pathogens through microbial phagocytosis, release of
soluble anti-microbial compounds, and generation of neutrophil
extracellular traps (NETs) (302). Sialidase activity was identified in
the primary and secondary granules of human PMNs as well as on
TABLE 2 | NEU-associated cells, signaling pathways, and cytokine responses for selected immune/inflammatory processes.

Immune/Inflammatory
Process

NEU
Isozyme

Cells Signaling Pathways Cytokine Responses References

TLR2, TLR3 activation NEU1 Macrophages NF-kB ND (53)
TLR4 activation NEU1 Macrophages NF-kB ↑ IL-6, TNF-a (53, 57)
TLR4 activation NEU1 Adipocytes NF-kB ↑ IL-6, MCP-1 (54)
TLR4 activation NEU1 Kidney mesangial cells ERK, p38 ↑ IL-6, GM-CSF, MIP-1a (283)
TLR4 activation NEU1 HEK293T cells NF-kB ND (58)
TLR4 activation NEU1 Microglia ND ↑ IL-6, MCP-1 (56)
TLR4 activation NEU3 Dendritic cells ND ↑ IL-6, IL-12, TNF-a (66)
TLR4 activation NEU4 Macrophages NF-kB ↑ IL-1b, IL-6, TNF-a, IFN-g (80, 199)
TLR7, TLR9 activation NEU1 Macrophages NF-kB ↑ TNF-a, MCP-1 (44)
PMA activation NEU1 Macrophages ND ↑ IL-1b, IL-6, TNF-a (64)
Staph. aureus, E. coli infection NEU1 Macrophages FcgR, Syk kinase ND (31)
Leishmania donovani infection NEU1 Macrophages JNK, ERK, p38, NF-kB ↑ IFN-g, IL-12 ↓ IL-4, IL-10,

TGF-b
(55)

Salmonella enterica Typhimurium
infection

NEU3 T cells, Neutrophils,
Macrophages

ND ↑ IL-1b, TNF-a, IFN-g, IL-10,
TGF-b

(236)

Pseudomonas aeruginosa
infection

NEU1 Airway epithelial cells PI3K, Akt ND (233)

Hepatitis B virus infection NEU1 Hepatoma cells ERK, NF-kB ND (269)
Concanavalin A activation NEU1 T cells ND ND (284, 285)
Anti-CD3 antibody activation NEU1 CD4+ T cells ND ↑ IL-2, IL-4 (286)
Anti-CD3/CD28 antibody
activation

NEU1,
NEU3

CD4+ T cells ND ND (287)

Anti-CD3/CD28 antibody
activation

NEU1 CD4+ T cells ND ↑ IL-2, IL-4, IL-13, IFN-g (288)

Anti-CD3/CD28 antibody
activation

NEU3 CD4+ T cells ND ↑ IL-2, IL-13, IFN-g (288)

Anti-CD3/CD28 antibody
activation

NEU1 T cells ND ↑ IFN-g (65)

Dermatophagoides farinae
activation

NEU1 CD4+ T cells ND ↑ IL-4, IL-5, IL-13 (30)

Ovalbumin activation NEU3 FoxP3+ T cells ND ND (289)
Obesity-induced insulin
resistance

NEU1 FoxP3+, Th17+ T cells ND ND (290)

Systemic lupus erythematosus NEU1 Kidney mesangial cells ND ↑ IL-6, MCP-1 (291)
Rheumatoid arthritis NEU2,

NEU3
CD19+ B cells, CD138+

plasma cells
ND ND (292)

Type 1 diabetes NEU1 Liver, Muscle cells Insulin receptor kinase, Akt ND (39)
Type 1 diabetes NEU1 Liver cells p38, Akt ND (38)
Type 1 diabetes NEU1 Hepatoma cells Insulin receptor, Insulin receptor

substrate-1
ND (293)

Type 1 diabetes NEU3 Adipocytes, Muscle cells Insulin receptor, Insulin receptor
substrate-1, Grb-2

ND (294)

Type 1 diabetes NEU3 Liver cells Insulin receptor substrate-1, PPARg ND (295)
Type 1 diabetes NEU3 Adipocytes Akt ND (296)
Diabetic cardiomyopathy NEU1 Cardiomyocytes AMPK, SIRT3 ND (131)
Inflammatory bowel disease NEU3 Intestinal mucosa ND ND (297)
Inflammatory bowel disease NEU1 Peripheral blood

mononuclear cells
ND ND (298)
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the plasma membrane, and PMN activation induced translocation
of the enzymatically-active sialidase from the granules to the cell
surface (303). In addition, PMN homotypic aggregation and
adhesion to nylon or plastic surfaces was inhibited by 2-deoxy-
NANA. In other studies, a rabbit antibody prepared against the
Clostridium perfringens NEU cross-reacted with a sialidase
expressed on the surface of IL-8-stimulated human PMNs, but
not on unstimulated cells, and with sialidase proteins in PMN
lysates and granule preparations (304). This same antibody
inhibited human PMN sialidase activity in vitro and diminished
both pulmonary leukostasis in mice administered with cobra venom
factor and intrapulmonary transendothelial migration of PMNs into
the bronchoalveolar compartment of IL8-administered mice. In
subsequent experiments, the sialidase antibody was shown to
recognize recombinant human NEU3, but not NEU1, and
inhibited NEU3 sialidase activity against the synthetic fluorogenic
substrate, 4-MU-NANA (305). In other studies, NEU1, NEU2, and
NEU3 mRNAs were detected in unstimulated murine PMNs and
IL-1b stimulation of human PMNs increased NEU1 and NEU2, but
not NEU3, expression (288). LPS-stimulated human PMNs had
decreased amounts of sialic acid on their surface that was inhibited
by oseltamivir and zanamivir (240). Both NEU1 inhibitors also
reduced PMN-mediated phagocytosis and killing of E. coli, LPS-
driven PMN activation, phorbol 12-myristate 13-acetate (PMA)-
stimulated reactive oxygen species production, and LPS-mediated
NET formation.

Utilizing the NEU3 cross-reactive antibody, Sakarya et al.
(306) reported reduced, antibody-dependent PMN adhesion to
pulmonary vascular endothelial cell monolayers in vitro, which
was associated with PMN activation. Preincubation of
endothelial cell monolayers with activated PMNs rendered the
cells hyperadhesive for freshly added PMNs via PMN sialidase-
dependent autodesialylation. Desialylation of both the CD11b
and CD18 protein subunits of b2-integrin, through mobilization
of an endogenous PMN sialidase, unmasked activation epitopes
on both proteins and increased binding to intracellular adhesion
molecule-1 (ICAM-1) (21). NEU1 was expressed on the surface
of PMNs and colocalized with CD18, the latter being increased
following PMN activation. Desialylation of immobilized ICAM-1
increased leukocyte arrest in vivo and treatment with 2-deoxy-
NANA diminished LPS-stimulated leukocyte adhesion to
ICAM-1. Taken together, these results indicate that NEU1,
NEU2, and NEU3 regulate the activities of PMNs.

NEUs and Monocytes, Macrophages, and
Dendritic Cells
Macrophages isolated from NEU1 knockout mice exhibited
reduced phagocytosis of Gram positive (S. aureus) and Gram
negative (E. coli) bacteria and phosphorylation of FcgR and Syk
kinase, and treatment of cultured NEU1-deficient macrophages
with purified mouse NEU1 restored their phagocytic activity (31).
NEU1-knockout macrophages displayed increased lysosomal
exocytosis as a consequence of reduced NEU1-mediated
desialylation of lysosomal-associated membrane protein-1
(LAMP-1) (34). High levels of NEU1 mRNA were detected in
unstimulated human monocytes, while NEU2 and NEU3 were
Frontiers in Immunology | www.frontiersin.org 12
expressed at much lower levels (288). In vitro stimulation of
human monocytes with GM-CSF to promote differentiation into
macrophages temporally increased sialidase activity for the 4-MU-
NANA substrate up to 14-fold after 7 days in culture (307).
Correspondingly, NEU1 and NEU3, but not NEU4, mRNAs
and proteins were increased following monocyte-to-macrophage
differentiation. Following PMA-stimulated differentiation of
human primary monocytes and the THP-1 monocyte cell line to
macrophages, NEU1, but not NEU3, protein levels increased and
NEU1 translocated from the lysosomes to the plasma membrane
(64). NEU1 silencing reduced E. coli phagocytosis by PMA-
induced macrophages and diminished their production of IL-1b,
IL-6, and TNF-a. Differentiation of human monocytes into DCs
following in vitro culture in the presence of GM-CSF and IL-4
increased sialidase activity and elevated the mRNA and protein
levels of NEU1 and NEU3, but not NEU4 (66). Further,
monocyte-to-DC differentiation in the presence of zanamivir or
2-deoxy-NANA to inhibit NEU1 and NEU3 activities
decreased LPS-stimulated IL-6, IL-12, and TNF-a production.
Overexpression of NEU1 in THP-1 macrophages increased IL-1b
and TNF-a production while NEU1 silencing had the opposite
effect (308). In these same studies, NEU1 silencing in human
primary M1 macrophages suppressed IL-1b and TNF-a
production. PMA-induced differentiation of THP-1 cells to M0
macrophages increased intracellular sialidase activity and
diminished sialoglycoconjugate levels on the cell surface (308).
However, further polarization of M0 macrophages into M1 or M2
macrophages did not affect the amount of sialic acid on the
cell surface.

NEU1 expression was increased in human circulating
monocytes isolated from patients with myocardial infarction
compared with healthy controls, and high NEU1 levels were
observed in macrophages isolated from atherosclerotic plaques
(308). In an animal model of atherosclerosis, NEU1-deficient
mice exhibited reduced monocyte and lymphocyte infiltration
into atherosclerotic lesions compared with NEU1-sufficient mice
(309). Reductions in serum and liver nonhigh-density
lipoprotein (nonHDL) cholesterol levels, atherosclerotic lesion
size, and lesion macrophage numbers were observed in
apolipoprotein E (ApoE) knockout mice expressing
hypomorphic levels of NEU1 (NEUhypo) compared with
ApoE-/- littermates (310). NEU1hypo ApoE knockout mice also
had reduced circulating PMNs, but increased numbers of M2
macrophages, compared with ApoE knockout mice expressing
normal NEU1 levels. Finally, treatment of ApoE-/- mice with the
general sialidase inhibitor, 2-deoxy-NANA, reduced liver
nonHDL cholesterol levels and atherosclerotic lesion size,
compared with saline controls. In another study, recombinant
human NEU1 and NEU3 desialylated apolipoprotein B 100 in
human low-density lipoprotein (LDL) in vitro, and ApoE-NEU1
and ApoE-NEU3 double knockout mice, or ApoE knockout mice
treated with pharmacologic inhibitors of NEU1 or NEU3,
exhibited reduced atherosclerosis compared with ApoE single
knockout mice or ApoE null mice treated with vehicle control
(18). In a mouse model of ischemia/reperfusion (I/R) cardiac
injury, elevated sialidase activity, and NEU1, PPCA, and b-
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galactosidase mRNA and protein levels, were seen in the heart
compared with sham controls (311). These authors also reported
that NEUhypo mice subjected to I/R injury had diminished
proinflammatory and increased anti-inflammatory macrophage
numbers compared with controls. Further, cardiomyocyte-
specific NEU1 overexpression in vivo was associated with
cardiac hypertrophy, but no changes in cardiac inflammation,
following I/R injury compared with wild type littermates.
Binding of pro-atherogenic elastin-derived peptides (EDP) to
the elastin receptor complex (ERC), a heterotrimeric association
of NEU1, PPCA, and the elastin binding protein, a splice variant
of b-galactosidase (312), led to NEU1-mediated desialylation of
the CD36 scavenger receptor and augmented uptake of oxidized
LDL by human macrophages in vitro (22). In a subsequent
report, EDP binding to the ERC also promoted NEU1-b2-
integrin association and NEU1-driven b2-integrin desialylation
in human monocytes, as well as NEU1-ICAM-1 association and
NEU1-mediated ICAM-1 desialylation in human umbilical vein
endothelial cells (23). As a result, EDP binding to the ERC
promoted monocyte adhesion to and migration across
endothelial cell monolayers through NEU1. In conclusion,
these studies strongly suggest that NEU1 regulates monocyte,
macrophage, and DC differentiation and function (Table 2).

NEUs and Lymphocytes
Landolfi and coworkers (284) reported that mouse T
lymphocytes possess an endogenous sialidase activity that
increased following in vitro stimulation with the T cell
mitogen, concanavalin A, and sialidase activity was controlled
by the NEU1 locus in the murine major histocompatibility
complex. Mouse strains carrying the H-2v haplotype (SM/J,
B10.SM) exhibited reduced sialidase activity compared with
other haplotypes. Previously, the SM/J mouse strain had been
reported to possess deficient sialidase activity (313). Subsequent
analysis revealed that a point mutation in the NEU1 gene,
resulting in a Leu-to-Ile substitution, was responsible for the
deficient sialidase activity in the SM/J stain (314). Increased
sialidase activity following T cell activation was associated with
desialylation of cell surface glycoproteins (285). Mouse T cell
activation through a mixed lymphocyte reaction (MLR) with
allogeneic B cells also resulted in increased sialidase activity and
desialylation of T cell surface glycoproteins (315). Wipfler et al.
(316) reported that total sialidase activity was greatest in
unstimulated human peripheral blood lymphocytes (PBLs),
intermediate in thymic T cells, and lowest in tonsillar T and B
cells. At the mRNA level, NEU1 was expressed at approximately
2.5-fold greater levels in PBLs compared with thymocytes and
tonsillar T and B cells, while NEU3 was expressed at up to 125-
fold greater levels in thymic T cells compared with PBLs and
tonsillar T and B cells. In a different study, NEU1 and NEU3
transcripts were identified in murine thymic T cells (20). Crude
membrane fractions of mouse thymocytes had sialidase activity
that was inhibited by 2-deoxy-NANA and the NEU1-specific
inhibitor, C9-BA-DANA. CD5 was identified as a substrate for
thymocyte cell surface NEU1 by peanut agglutinin (PNA) lectin
blotting and anti-CD5 antibody immunoprecipitation studies.
Frontiers in Immunology | www.frontiersin.org 13
A subpopulation of murine thymic lymphocytes was identified
that co-expressed surface IgG, b2-integrin, and NEU1 (Neu-
medullocytes) (317, 318). Real-time PCR studies revealed that
NEU2 was the major sialidase expressed in Neu-medullocytes
with NEU1 detected at low levels (319). Of five NEU2 mRNAs
arising as a result of alternative mRNA splicing (variants A, B, C,
D, N), only variant B was identified in murine thymocytes (320).
Up to 40% of NEU2 variant B sialidase activity was found in the
membrane fraction of transfected COS-7 cells. An analysis of
mouse thymic lysates prepared with different detergents
suggested that NEU2 was a peripheral membrane protein,
rather than a transmembrane or GPI‐anchored protein, with
enzymatic activity at pH 7.0 but not pH 4.5 (78). It should be
noted that other studies have established NEU2 as a cytosolic
enzyme with a pH optimum of 6.0-6.5 and an amino acid
sequence lacking protein domains typical of transmembrane or
GPI-anchored proteins (12, 84, 85).

The levels of IL-2 and a T helper 2 (Th2) cytokine, IL-4, were
increased following in vitro anti-CD3 antibody stimulation of
murine spleen cells, and reduced levels of IL-4, but not IL-2 or
IFN-g, were seen upon anti-CD3 antibody activation of SM/J
splenocytes (286). Addition of exogenous IL-4 during CD4+ T cell
activation enhanced NEU1 sialidase activity and cell surface levels of
asialoGM1 ganglioside, while activation of T cells in the presence of
2-deoxy-NANA diminished IL-4 production. In other studies,
treatment of IL-4-primed CD4+ T cells with the GM3 ganglioside
diminished IL-4, IL-5, and IL-13 production, but had no effect on
IL-2 or IFN-g, through a mechanism involving mobilization of
intracellular calcium (321). Further, anti-CD3 antibody stimulation
of NEU1-deficient B10.SM strain CD4+ T cells reduced intracellular
calcium levels compared with unstimulated cells. A COOH-
terminal tetrapeptide, Tyr-Gly-Thr-Leu, was suggested to
constitute an internalization signal in the NEU1 protein that
targets it to the lysosome in human lymphocytes, fibroblasts, and
COS-7 cells (62). Upon Tyr phosphorylation of the tetrapeptide in
activated lymphocytes, NEU1 sialidase activity was unchanged, but
the sialidase was redistributed from the lysosome to the cell surface.
NEU1 and NEU3 enzyme activities and mRNA levels were
increased in human CD4+ T cells activated with anti-CD3 and
anti-CD28 antibodies (288). NEU3 was the major sialidase
expressed in the activated T cells. Overexpression of NEU1 in
human Jurkat T cells increased IL-2, IL-4, IL-13, and IFN-g
expression following CD3/CD28 costimulation, while these same
cytokines, with the exception of IL-4, were produced in NEU3-
overexpressing cells. CD3/CD28 costimulation of human primary T
cells increased IFN-g production, which was inhibited by zanamivir
and 2-deoxy-NANA (65). CD3/CD28 costimulation also increased
NEU1 mRNA levels and sialidase activity with minimal increase in
NEU3 activity, heightened NEU1 and PPCA cell surface expression,
and increased the levels of desialylated cell surface glycoconjugates,
all compared with unstimulated cells. While these studies suggested
that NEU1, and possibly NEU3, might be linked to Th2 immunity,
they also highlight the apparent contradiction to the studies
reviewed above implicating NEU1 in the Th1 response (65, 66, 308).

Altered expression of surface sialoglycoconjugates is a
characteristic feature of apoptosis (287). Treatment of Jurkat
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T cells with the proapoptotic drug, etoposide, increased sialidase
activity and desialylated cell surface glycoconjugates during the
early phase of apoptosis, which was reversed by 2-deoxy-NANA
(322). In subsequent studies, etoposide-induced apoptosis was
associated with increased cell surface GM3, reduced GD3, and
increased NEU3, but not NEU1, mRNA levels (323). Changes in
GM3, GD3, and NEU3 levels were blocked by caspase inhibition.
Phytohemagglutinin/IL-2-induced human T cell blasts
undergoing UV- or staurosporine-induced apoptosis exhibited
decreased surface staining for terminal a2,3- and a2,6-linked
sialic acids (324). Desialylation of surface glycoconjugates also
was observed on microparticles derived from apoptotic
lymphoblast membranes. Plasma membrane-derived apoptotic
microparticles had increased sialidase activity on their surface
(325). Treatment of viable Jurkat cell lysates with caspase-3
increased sialidase activity to the same degree as that of
apoptotic cell lysates, consistent with a predicted caspase-3
proteolytic cleavage site at Asp-135 in the NEU1 protein.
Further, the caspase inhibitor, zVAD, decreased sialidase
activity in etoposide-induced apoptotic Jurkat cells. Not only
was cell surface NEU1 responsible for desialylating Jurkat T cell
surface glycoconjugates in a cis-acting manner, but also in trans
on the surface of co-incubated human erythrocytes (67).

In a mite allergen model of allergic asthma, in vitro exposure
of Dermatophagoides farinae (Derf)-sensitized CD4+ T cells
to the antigen increased desialylation of cell surface
glycoconjugates, augmented binding of hyaluronic acid (HA)
to its cognate receptor, CD44, and heightened NEU1, but not
NEU2 or NEU3, transcript levels (30). In NEU1-deficient cells
from SM/J mice, CD44 receptor activity for HA was reduced, as
were reductions in BALF eosinophil and Th2 cell numbers, Th2
cytokine levels, and airway hyperresponsiveness following Derf
challenge, compared with cells expressing normal NEU1 levels.
Subsequent studies using in vitro-differentiated ovalbumin-
specific CD4+ T cells revealed that NEU1 and NEU3 mRNA
levels were greater in Th2, compared with Th1, cells (326).
Collectively, these studies indicated that NEU1 is required for
HA-CD44 interaction and development of acute asthmatic
inflammation, and suggested that NEU1-mediated desialylation
of CD44 on CD4+ T cells alters the ability of CD44 to interact
with HA (28). In subsequent studies, analysis of mouse CD4+ T
cell subsets revealed that while NEU1 mRNA was expressed at
approximately equal amounts in Th1, Th2, Th17, and induced
regulatory T (iTreg) cells, NEU3 transcript levels were greater in
iTreg cells compared with the other cell subsets (289). CD4+

activated Treg (FoxP3+CD62L−) spleen cells expressed higher
levels of NEU3 transcripts compared with resting Treg
(FoxP3+CD62L+) and FoxP3− cells, and overexpression of
NEU3 in naïve CD4+ T cells upregulated FoxP3 expression. In
a mouse model of obesity-induced insulin resistance, the
percentages of CD4+FoxP3+ Treg cells and NEU1 levels were
decreased, while the percentages of CD4+Th17+ cells and the
levels of the NEU1-targeting microRNA, miR-23b-3p, were
increased, all compared with nonobese controls (290).
Administration of the anti-obesity phytochemical, acacetin,
reversed these effects, while administration miR-23b-3p
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exacerbated the outcomes. Co-administration of acacetin and
miR-23b-3p restored the obesity-related downregulated levels of
NEU1, while NEU1 overexpression offset the effects of miR-23b-
3p on the Treg/Th17 cell ratio. The authors concluded that
acacetin reverses insulin resistance in obese model mice by
regulating the Treg/Th17 cell balance through a miR-23b-3p –
NEU1 axis. Finally, in human studies, differential gene
expression analysis identified 7 genes related to the lysosomal
pathway, including NEU1, that were downregulated in the
airways of asthma patients compared with healthy controls,
suggesting that lymphocyte lysosomal dysfunction might be
involved in the pathogenesis of allergic asthma (327).

Vitamin D is a potent immunomodulator (328).Vitamin D-
binding protein (DBP), also referred to as the group-specific
component (Gc) protein in humans, is the main transporter of
vitamin D in the circulation. Part of the immune-modulating
effects of vitamin D are mediated through the conversion of Gc/
DBP to macrophage activating factor (MAF) (329). In humans,
the Gc protein contains a mucin-type O-linked trisaccharide
composed of Thr-linked GalNAc with dibranched sialic acid and
Gal termini, while MAF contains only the Thr-linked
monosaccharide GalNAc (330). A two-step sequential action of
b-galactosidase on the surface of B cells followed by surface-
expressed NEU1 on T cells was identified as being responsible for
the conversion of Gc to MAF (331–333). In mice, DBP is not
sialylated and only the action of b-galactosidase on the Gal-
GalNAc disaccharide was required to deglycosylate DBP to
MAF. Taken together, these results indicate that NEU1, and to
a lesser extent NEU3, play in important role in regulation of
adaptive immunity through their effects on T and B
lymphocytes (Table 2).
NEUs AND MUCs IN AUTOIMMUNE
DISEASES

Autoimmune diseases comprise a diverse collection of
pathological conditions originating from a dysregulated
immune response to a self tissue or organ. As discussed above,
NEUs play a critical role in the activity of Treg cells (289, 290)
suggesting the possible involvement of NEUs in the pathogenesis
of autoimmunity. Further, MUC1 has been suggested as a
checkpoint inhibitor on T cells (334), implicating MUC1, and
possibly other membrane-bound mucins, in the development of
autoimmune diseases. This section reviews the role of NEUs and
MUCs in the context of four selected autoimmune diseases,
systemic lupus erythematosus (SLE), rheumatoid arthritis
(RA), type 1 diabetes (T1D), and inflammatory bowel
disease (IBD).

Systemic Lupus Erythematosus
SLE is an autoimmune disease typically characterized by the
presence of anti-nuclear antibodies (ANA) and anti-extractable
nuclear antigen (anti-ENA) antibodies with immune complex
deposition in multiple organs, particularly the kidneys (335). A
growing body of evidence suggests a role for NEU1 in the
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pathogenesis of lupus nephritis (283, 336–338). More
specifically, NEU1 expression and catalytic activity were
increased in the kidneys of MRL/lpr lupus mice (339), and
kidney mesangial cells from NEU1-haplodeficent mice had
reduced cytokine expression and secretion in response to LPS
or lupus serum (LS) compared with NEU1-expressing mice
(340). In other studies, overexpression of NEU1 in cultured
mouse MES13 kidney mesangial cells dose-dependently
increased spontaneous IL-6 and MCP-1 production and
treatment of primary mesangial cells from MRL/lpr lupus mice
with heat-aggregated IgG (HA-IgG), a mimic of immune
complex deposition, increased NEU1 expression (291).
Moreover, pharmacologic inhibition of NEU1 activity with
oseltamivir reduced HA-IgG- or LS-stimulated IL-6 and
MCP-1 production. In human studies, proteomic analysis of
renal tissues comparing patients with proliferative lupus
nephritis vs. healthy controls revealed NEU1 as the greatest
up-regulated protein of 48 identified proteins (341). NEU1
immunohistochemical staining and urinary excretion were
significantly elevated in lupus nephritis patients compared with
controls. Finally, flow cytometric analysis of human B cells from
SLE patients revealed a positive correlation between the cell
surface ratio of sialyltransferase ST3Gal-1 and NEU3 with
disease severity (342).

SLE patients with serositis had greater MUC16 levels and
disease duration compared with SLE patients without serositis
(343). Pseudo–pseudo Meigs’ syndrome is a rare manifestation
in SLE patients presenting with ascites, pleural effusion, and
elevated serum MUC16 levels unrelated to malignancy (344–
346). MUC20 transcript levels were increased with the
progression of lupus in the kidneys of MRL/lpr lupus-prone
mice (347). Interestingly, mouse NEU1 (348) and mouse and
human MUC20 (347) are highly expressed in kidneys compared
with other organs, but it is unknown whether MUC20 might be a
NEU1 substrate.

Rheumatoid Arthritis
RA is an autoimmune disease of unknown etiology characterized
by synovitis and bone erosion (349). A positive correlation
between B cell surface ST3Gal-1/NEU3 ratio and RA disease
severity was seen in patients with mild or high disease activity,
but not patients in non-remission (342). In a follow-up study, B
cell surface NEU3 levels were found to positively correlate with
RA disease activity (350). NEU1 catalytic activity was increased
in the blood and liver of rats with Freund’s adjuvant-induced RA
(351). In a mouse model of bovine collagen type II-induced RA,
pharmacologic inhibition of NEU2 and NEU3 activity with
zanamivir dose-dependently diminished CD19+ B cells and
CD138+/TACI+ plasma cells numbers, anti-collagen type II
autoantibody levels, disease activity, and total sialidase activity
in arthritic joints (292). Corresponding, increased sialylation of
circulating IgG and a2,3-linked surface sialylation of CD138+/
TACI+ plasma cells was noted.

MUC1 protein levels were elevated on T cells isolated from
the joint fluid of a patient with RA (352). The combination of
lung ultrasound and serum MUC1 levels, in addition to current
markers, was proposed for screening and following patients with
Frontiers in Immunology | www.frontiersin.org 15
ILD associated with RA (353). A greater number of RA patients
expressed MUC3 protein in synovial lining cells and synovial
macrophages compared with normal controls (354). The
MUC5B gene promoter variant rs5705950 was linked to an
increased susceptibility to pulmonary fibrosis in RA patients
(213, 215, 355). Increased salivary MUC7 sulfation was detected
in RA patients compared with healthy controls (356). Synovial
fluid cells from RA patients contain a distinct population of
MUC18-positive T cells (357), and these cells were identified as a
biomarker for synovial membrane angiogenesis in RA
patients (358).

Type 1 Diabetes
T1D is an autoreactive disease arising from immune destruction of
insulin-producing pancreatic b cells (359). Both NEU1 and NEU3
have been implicated in the pathogenesis of T1D. NEU1 transcript
levels and catalytic activity were diminished in two strains of
diabetes-prone mice compared with nondiabetic littermates (360).
Treatment of cultured rat L6 myoblasts with purified mouse
NEU1 promoted desialylation of both the insulin receptor (IR)
and insulin-like growth factor-1 receptor (IGF-1R) compared with
untreated controls (36). Mice deficient in NEU1 activity and fed a
high fat diet (HFD) developed glucose intolerance and insulin
resistance compared with mice expressing normal levels of NEU1,
and HEK293 cells overexpressing both NEU1 and the insulin
receptor kinase (IRK) exhibited increased IRK-NEU1 association
and NEU1-mediated IRK desialylation (39). Liver andmuscle cells
from NEU1-deficient, HFD-fed mice had decreased IR
phosphorylation and downstream Akt activation, and treatment
of HEK293 cells overexpressing IR andNEU1 promoted IR-NEU1
association and NEU1-mediated IR desialylation. Administration
of EDPs to normal mice expressing the NEU1-containing ERC
increased IR-NEU1 association and NEU1-mediated IR
desialylation in muscle tissues, both of which were reversed by
2-deoxy-NANA (37). Murine hepatocytes treated with EDPs in
the context of nonalcoholic steatohepatitis linked to insulin
resistance had decreased hepatic growth factor receptor (HGFR)
phosphorylation as a consequence of NEU1-mediated HGFR
desialylation (43). Overexpression of NEU1 in HEK293 cells
increased IR desialylation and dimerization, and NEU1
overexpression in human HepG2 liver cells reversed palmitate-
induced insulin resistance (38). In these same studies,
pharmacologic upregulation of NEU1 expression and activity
with ambroxol in mice led to desialylation of the IR, increased
IR Tyr phosphorylation and Akt signaling, and improved glucose
tolerance and insulin resistance in mice exposed to a HFD. NEU1
expression was increased in the spleen, liver, and kidneys of
streptozotocin (STZ)-treated diabetic rats (361). Similarly, NEU1
protein levels were increased in cardiomyocytes in the STZ mouse
model of diabetic cardiomyopathy, and NEU1 silencing protected
against STZ-induced cardiomyopathy and myocardial fibrosis,
inflammation, and apoptosis through an AMPK-SIRT3 pathway
(131). Inhibition of NEU1 activity with anti-NEU1 antibody or
oseltamivir reduced insulin-stimulated IGF-1R and insulin
receptor substrate-1 (IRS-1) phosphorylation in human
fibroblasts, and promoted IR-NEU1 association in rat HTC
hepatoma cells (69). Further, pharmacologic inhibition of
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MMP-9 in HTC cells dose-dependently reduced insulin-
stimulated NEU1 sialidase activity, and treatment of NEU1-
deficient human fibroblasts with olanzapine, an antipsychotic
drug associated with insulin resistance, increased NEU3 sialidase
activity, both compared with vehicle controls. Finally, a variety of
different G protein-coupled receptor agonists dose-dependently
increased NEU1 sialidase activity, IR activation, and IR and IRS-1
phosphorylation in human IR-overexpressing HTC cells (293).

NEU3-overexpressing mouse 3T3-L1 adipocytes and L6
myocytes, and muscle tissue from human NEU3 transgenic mice,
had decreased insulin-stimulated IR signaling, and administration
of insulin to NEU3 transgenic mice induced NEU3 Tyr
phosphorylation and NEU3-Grb-2 association (294). In vivo
overexpression of NEU3 in the livers of insulin-sensitive or
insulin-resistant mice increased hepatic levels of glycogen,
triglycerides, peroxisome proliferator-activated receptor g
(PPARg), ganglioside GM1, and IRS-1 phosphorylation,
compared with control mice, suggesting that NEU3 regulates
hepatic insulin sensitivity and glucose tolerance (295). Obese
strain rats fed a HFD had reduced NEU3 expression in adipose
tissue through an intracellular palmitate-driven, Akt-dependent
pathway (296). Glucose-stimulated insulin release by rat INS-1D
pancreatic b cells was increased by 2-deoxy-NANA, and blood
insulin levels were greater in NEU3-deficient mice compared with
wild type controls (362). The relationship between insulin resistance
and intestinal hypoxia was explained, in part, by the activation of
hypoxia-inducible factor-2a (HIF-2a) in hypoxic, HFD-fed mice
leading to NEU3 activation (363).

MUC1 downregulation is necessary for human and mouse
fetal-uterine implantation, and diabetic mice expressed increased
MUC1 mRNA and protein levels at fetal-uterine implantation
sites compared with nondiabetic controls (364). STZ-induced
diabetic mice administered with sodium hyaluronate eye drops
for treatment of diabetic ocular surface disease exhibited
increased MUC5AC expression in the conjunctival epithelium
compared with saline controls (365). STZ-induced diabetic
rats had decreased MUC10 protein levels in salivary
submandibular glands compared with nondiabetic controls
(366). Transcriptome analysis of nucleolar protein p120
(NOP2)-deficient vs. NOP2-expressing human colon cancer
cells identified the MUC19 gene as significantly upregulated,
and T1D as a gene pathway most significantly affected, by NOP2
silencing (367). Future studies are needed to determine whether
NEUs regulate MUC-associated diabetes.

Inflammatory Bowel Disease
IBD comprises a collection of idiopathic, intestinal autoimmune
diseases, the most common being Crohn’s disease (CD) and
ulcerative colitis (UC) (368). CD typically affects the small and
large intestines, while UC primarily involves the colon and
rectum. Elevated expression of intestinal NEU3 (297) was
correlated with diminished levels of intestinal alkaline
phosphatase (IAP) in patients with colitis (369), and human
genetic deficiency of IAP is associated with IBD (370), suggesting
that NEU3 may play a role in the pathogenesis of IBD.
Compared with controls, a 2.0-fold increase in GM3
ganglioside levels and an 8.3-fold increase in NEU3 protein
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levels were reported in the intestine of IBD patients (297).
Because NEU3 is responsible for the conversion of disialylated
GD3 to monosialylated GM3, the authors speculated that
increasing dietary GD3 intake may be beneficial for treatment
of IBD patients. A SNP, rs4947331, encoding a minor T allele
located in the 3’ untranslated region of the NEU1 gene was
significantly associated with the presence of CD in North Indian
and Dutch populations (298). It was suggested that the NEU1
pharmacologic inhibitor, oseltamivir, might be applicable to treat
CD patients. Serum sialic acid levels were increased, presumably
as a consequence of increased NEU catalytic activity, and
positively correlated with established markers of disease
activity, in CD patients (371, 372). Meta-analysis of six
genome-wide association studies in CD patients identified the
MUC1 gene as a candidate for disease susceptibility (373).
Elevated expression of multiple mucin gene products,
including MUC1, MUC4, and MUC13, were reported in IBD
patients compared with controls (374–376). By contrast, another
study reported decreased expression of these MUCs in IBD
patients (377). MUC1 knockout mice had more severe forms
of Th1- and Th2-induced colitis and increased Th17 cell-
mediated responses in the colon, compared with MUC1-
expressing mice (378). Studies in both human and animal
model systems indicated that MUC1 regulates the progression
of IBD to colon cancer (379–384). Alterations in MUC2
intestinal expression and glycosylation were reported in IBD
patients (385, 386). MUC2 knockout mice had greater intestinal
inflammation and reduced body weight gain compared with
MUC2-expressing mice, despite equal food intake, and exhibited
intestinal microbiome, short chain fatty acid, and inflammatory
cytokine profiles similar to that of IBD patients (387, 388). The
Winnie mouse strain possessing a MUC2 gene point mutation
encoding a Cys-to-Tyr missense mutation develops spontaneous
colitis with many of the same pathologic features seen in UC
patients (389). Other MUCs associated with CD and UC disease
include MUC3, MUC5AC, MUC5B, MUC6, MUC16, MUC19,
and MUC20 (390–394). Additional studies are needed to
establish a causal link between the expression and catalytic
activity of NEUs with MUCs in IBD. In summary, the
development and progression of SLE, RA, T1D, and IBD are
influenced by both NEUs (Table 2) and MUCs.
DISCUSSION

In this review, we have attempted to summarize historical and
recent research on the roles of mammalian NEUs and MUCs,
both individually and together, in the context of fibrotic and
immune-mediated human diseases. First, general features of the
20-member MUC family and 4-member NEU family were
summarized, including an updated tabulation of selected
known and putative NEU1 glycoprotein substrates relevant to
fibrotic and inflammatory processes. Particular attention was
paid to the KL-6 glycoprotein, a soluble form of the membrane-
bound MUC1-ED. The concept of a NEU1 –MUC1 axis in IPF/
ILD was presented. Evidence supporting the NEU1 –MUC1 axis
included publications demonstrating that NEU1 regulates
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pulmonary collagen deposition, lymphocytosis, and fibrosis in
human and mouse models of IPF (128), KL-6 serves as a
diagnostic and prognostic biomarker for, and mediator of,
IPF/ILD (125, 180–183), and most importantly, NEU1
pharmacologic inhibition reverses bleomycin-induced increases
in MUC1-ED desialylation and shedding from the cell surface
(48). Finally, the influence of NEU1 on human infections by
bacterial, viral, and parasitic pathogens, and the impact of NEUs
and MUCs on four selected human autoimmune diseases
was discussed.

A limitation of our analysis was that the expanse and
complexity of this field prevented us from an in-depth
exploration of the broader NEU/MUC biology. We utilized a
reductionist approach, which on the one hand, allowed for a
focused analysis, but on the other hand, limited the scope by
excluding related topics. Only mammalian NEUs and MUCs
were considered. Bacterial or viral exosialidases, endosialidases,
or trans-sialidases were not discussed despite their direct
relevance to disease processes. We did not consider catalytic
mechanisms of NEU activity but instead emphasized the
functional consequences relevant to health and disease. Further
reducing the complexity and sharpening the focus of this review,
only the immune-, inflammation-, and fibrosis-related functions
of mammalian NEUs and MUCs were discussed; the effects on
other processes, e.g., atherosclerosis, diabetes, or cancer, were
mentioned as far as they related to the immune, inflammatory, or
connective tissue aspects of those processes. Moreover, the
complexity of the mechanisms controlling NEU1 elevation or
decline in the diseases were not considered. We only reviewed
the functional consequences of glycoprotein desialylation, with
substantially less attention devoted to desialylation of another
major group of NEU substrates, glycolipids, and its functional
sequelae. We did not reflect on the balancing action of
sialyltransferases, which covalently attach sialic acid to glycans
in contrast to NEUs, which remove it. The biological effects of
free sialic acid were not considered either. An important topic
that was not discussed in depth relates to recent developments in
discovery and characterization of mammalian NEU isozyme-
specific inhibitors; these have been considered here only to the
Frontiers in Immunology | www.frontiersin.org 17
extent that helps in reviewing NEU function. We refer the reader
interested in those aspects of NEUs excluded here to numerous
review articles that illuminate these topics (12, 15, 17, 81, 395).
Even with such reductions, the information summarized in this
review is rather voluminous and complicated, yet we hope that it
is sufficiently focused thematically to be useful.

In summary, human NEUs and MUCs, particularly NEU1
and MUC1, contribute alone, and in symphony, to the
development and progression of a variety of fibrotic,
inflammatory, and fibro-inflammatory human pathologies.
Future studies focusing on the details of the NEU1 – MUC1
relationship are expected provide new insights into the
mechanisms of selected disease processes characterized by
dysregulated fibrosis and inflammation that may someday lead
to novel bedside therapeutic interventions for the benefit
of humankind.
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