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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells
generated during a series of pathologic conditions including cancer. MicroRNA (miRNA)
has been considered as a regulator in different tumor microenvironments. Recent studies
have begun to unravel the crosstalk between miRNAs and MDSCs. The knowledge of the
effect of both miRNAs and MDSCs in tumor may improve our understanding of the tumor
immune escape and metastasis. The miRNAs target cellular signal pathways to promote
or inhibit the function of MDSCs. On the other hand, MDSCs transfer bioinformation
through exosomes containing miRNAs. In this review, we summarized and discussed the
bidirectional regulation between miRNAs and MDSCs in the tumor microenvironment.
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INTRODUCTION

Tumor immune escape and metastasis are critical steps in cancer progression, which have been
implicated in the failure of cancer immunotherapies. To achieve that, cancer helper cells in the
tumor microenvironment (TME), including regulatory T cells (T-regs), tumor-associated
macrophages (TAMs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells
(MDSCs), make a great contribution to protect cancer cells from being recognized and eliminated
by the immune system (1).

Among all the immune suppressive cells in TME, MDSCs played a vital role in cancer escape
from host immune surveillance (2). MDSCs are a group of immunosuppressive cells differentiated
from myeloid cells stimulated by chronic inflammation and other pathological conditions (3).
MDSCs were characterized by different phenotypes and functions. In humans, MDSCs were divided
into two main groups named monocytic myeloid-derived suppressor cells (M-MDSCs) and
polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), also referred to as
granulocytic myeloid-derived suppressor cells (G-MDSCs) (4). These two groups of MDSCs were
defined as CD33+CD11b+HLA-DR-/loCD14+CD15- and CD33+CD11b+HLA-DR-/loCD14-CD15+,
respectively. In mice, M-MDSCs and G-MDSCs or PMN-MDSCs were defined as CD11b+Ly-6G-

Ly-6Chi and CD11b+Ly-6G-Ly-6Clo cells (4–6). Recently, some studies defined early-stage myeloid-
derived suppressor cells (e-MDSCs) characterized with the phenotype of CD3-CD14-CD15-CD19-

CD56-HLA-DR-CD33+- and reported their functions and development (7).
MicroRNA (miRNA) has been investigated in different cancers, and the evidence of its

involvement in the regulation of the tumor microenvironment has been of much interest. Some
org May 2022 | Volume 13 | Article 8836831

https://www.frontiersin.org/articles/10.3389/fimmu.2022.883683/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.883683/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.883683/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:esuperyc@163.com
https://doi.org/10.3389/fimmu.2022.883683
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.883683
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.883683&domain=pdf&date_stamp=2022-05-11


Liang et al. miRNAs and MDSCs in Tumor Microenvironment
studies found that miRNA expression could be mediated by
cancer-derived factors, MDSCs, or through direct miRNA
import via extracellular vesicles (8). miRNAs have been proven
to regulate MDSCs through various ways including disrupting
the differentiation of myeloid cells, increasing proliferation, and
affecting the immunosuppression and function of immune cells.
In the hematopoietic system, microRNAs are treated as
important regulators of myeloid lineage induction and
differentiation, and recent studies have begun to unravel the
crosstalk between miRNAs and MDSCs in TME (9).

Exosomeswerefirst found in1981 (10) as rubbish carriers to clean
degradedorwasted cell components.However,with thedeepeningof
the research, the positive function of exosomes like intracellular
communication or immune response was gradually exposed to us
(11). Although controversial, thought provoking, studies have
revealed that tumor-derived exosomes from MDSCs can carry
miRNAs that are parts of the tumor microenvironment and
protect tumor cells (9, 12). Furthermore, MDSC-derived exosomes
are alsodelivered to support progressionandmodulate the expansion
and suppressive function of MDSCs themselves (13, 14). MDSC-
derived exosomes carrying miRNAs would make MDSCs more
convenient to interact with tumor cells. On the other hand,
miRNAs transferred by tumor-derived exosomes can make a long-
distance travel in bodyfluid to regulate the expansion and functionof
MDSCs, which assist tumor angiogenesis and invasion.

To create a suitable microenvironment, tumor cells secrete
miRNAs, cytokines, and other molecules to escape from immune
surveillance. The expression of miRNAs controls the function of
MDSCs and inhibitory immune cells, such as T-regs (15). As an
essential component of tumor microenvironment, MDSCs lives
in the inflammatory environment, causing tumor progression
and helping tumors grow and suppressing immunity as well.
MDSCs also regulate miRNAs in the microenvironment. Both
MDSC and tumors can regulate miRNA expression to ease their
increment and metastasis. Furthermore, the exosomes derived
fromMDSCs and tumors can transport miRNAs locally and over
long distance, so that builds a bridge between MDSCs, tumor
cells, and the immune network.

Still, there are challenges remaining. The origin of miRNA is
complex and needs further validation, and whether the miRNA
secreted byMDSCs or tumor cells influences other immune cells in
the microenvironment should be clarified. Solving these questions
might help in finding the way blocking miRNAs specifically.

In this review, we focus on the mechanisms of how miRNAs
exert an effect on MDSC functions, the intercommunication
between miRNAs and MDSCs, their effect on the components of
the tumor microenvironment, and progress on miRNAs in the
exosomes derived from tumors and MDSCs.
MDSCs REGULATES miRNAs IN THE
TUMOR MICROENVIRONMENT

Several studies have shown that not only miRNAs regulate
MDSC function and differentiation, but MDSCs could also
modulate miRNA expression to promote cancer invasion and
metastasis (16). It was reported that MDSCs marked with the
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myeloid differentiation factor schlafen4 (SLFN4), a regulator of
myeloid cell differentiation, were identified in gastric cancer,
especially in the preneoplastic changes infected by Helicobacter
(17). miR-130b from SLFN4+MDSC promoted gastric epithelial
cell proliferation and was essential for MDSC expressing the
function of T-cell suppression (18). As for papillary thyroid
carcinoma (PTC), the PMN-MDSCs showed a great effect on
PTC progression. It decreased the expression of miR-486-3p,
which targeted the NF-kB pathway directly and thus activated
the NF-kB pathway and facilitated PTC invasion and, in turn,
increased PMN-MDSC expansion and function of repressing T
cells (15). However, the basic mechanism or the key cytokines
regulating this axis still need to be further studied.

The progression of ovarian carcinoma was investigated to be
highly correlated with MDSCs and cancer stem cells (CSCs),
which are dispensable for cancer advancement in TME. MDSCs
upregulated miR-101 expression and further repressed C-terminal
binding protein-2 (CtBP2), a corepressor gene targeting stem cell
core genes directly, and thus promoted the stemness and invasion
of cancer cells. Thus, the MDSCs-miR-101-CtBP2-cancer cell core
genes axis was therefore considered as a potential target for
antitumor immunotherapy (19).
MDSCs-DERIVED EXOSOMAL miRNAs
MEDIATE TUMOR PROGRESSION

Studies have shown that not only tumor-derived exosomes or
extracellular vehicles can mediate the expansion and suppressive
function of MDSCs by delivering miRNAs, but MDSC-derived
exosomes can also carry miRNAs, which have been certified
using next-generation sequencing (13) and exert influence on
tumor invasion and metastasis (14).

miR-143-3p in G-MDSC-derived exosomes inhibited integral
membrane protein 2B (ITM2B) and activated the PI3K/AKT
pathway, thus promoting the cell proliferation of lung cancer
(20). It was reported that MDSCs were involved in the resistance
of chemotherapy for breast cancer and identified its underlying
mechanism with doxorubicin-induced MDSCs (21). The DOX-
MDSC produced exosomal miR-126a and promoted the
induction of IL-13+Th2 T cells, which secreted IL-13 to
increase the proliferation of DOX-MDSC and exosomal miR-
126a. The study also found that the exosomal miR-126a of DOX-
MDSC repressed MDSC apoptosis and contributed to tumor
angiogenesis in an S100A8/A9-dependent way (22).

Geis-Asteggiante et al. provided evidence that MDSC-derived
exosomes carry miRNAs. Four differentially abundant miRNAs
(miR-7022, miR-7062, miR-5134, and miR-704) had predicted
mRNA targets that were part of the apoptotic pathway-inducing
Fas,whichwasalso a validated target ofmiRNA-98a (14).Another4
miRNAs in MDSC-derived exosomes included miR-9, miR-494,
miR-233, and miR-690, which were capable of affecting the cell
cycle, resulting in suppressing the differentiation of myeloid cells
and increasingMDSCproliferation (23, 24).miR-155, akeymiRNA
enriched in MDSC-derived exosomes, increases IL-10 production
in MDSC and contributes to the crosstalk between MDSCs and
macrophages (25–27). miR-155 mediates the MDSC function of
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suppression through at least two ways including SOCS1 and
inhibiting the generation of CD4+Foxp3+ regulatory T cells (28).
THE miRNAs IN THE TUMOR
MICROENVIRONMENT REGULATE
MDSCs FUNCTION BY DIFFERENT
SIGNAL PATHWAYS

JAK/STAT Pathway
The Janus kinase/signal transducers and activators for the
transcription (JAK/STAT) pathway show great influence on
cell proliferation, differentiation, and inducing inflammatory
microenvironment for cancer. The STAT family is composed
of seven members including STATs 1, 2, 3, 4, 5a, 5b, and 6 (29).
Among all these proteins, STAT3 seems to be a key protein for
the creation of cancer microenvironment and be involved in
MDSC development modulated by miRNAs (29–31). miRNAs
have been proven to interact with MDSCs, and STAT3 could be a
crucial target within it. miR-17-5p and miR-20a downregulated
the suppressive function of MDSCs by targeting the 3’UTR of
STAT3 to block its expression, which remarkably reduced the
production of reactive oxygen species (ROS) and H2O2 (32).
However, only G-MDSCs could be inhibited by miR-17-5p, and
miR-20a and M-MDSCs showed less affection. It was also
demonstrated that miR-17-5p and miR-20a were regulated by
tumor-associated factors and the transfection of these miRNAs
could be a possible treatment for tumor immunotherapy. miR-
6991-3p was markedly reduced in MDSCs from the tumor
microenvironment, which means that miR-6991-3P repressed
the MDSC expansion and function of inhibiting T-cell
proliferation. STAT3 was proved to be the direct target of mir-
66991-3p (33). On the contrary, miR-155 and miR-21
synergistically upregulated STAT3 expression indirectly by
targeting SHIP-1 and PTEN, respectively, and eventually
enhanced the function and expansion of MDSCs. Both were
identified as early indicators for predicting patients’ reactions to
glucocorticoid treatment. Both monocytic and granulocytic
MDSCs were influenced by the upregulation of miR-155 and
miR-21 (25). Studies also revealed that tumor environment-
associated factors activate STAT3 and C/EBPb to increase the
transcription of miR-21a, miR-21b, and miR-181b (34).
Increased levels of these miRNAs disrupted the mixed-lineage
leukemia (MII1)-complex and allowed the PMN-MDSCs to
exert their immunosuppressive function. The STAT3/CEBPb-
miR-21a /b /181b-MII1 ax i s p rov ided an e ff e c t i v e
immunotherapeutic manner against cancer. The M-MDSC in
the colorectal cancer (CRC) microenvironment secreted CCL17.
This chemokine was combined with CR2 and activated the JAK/
STAT3 pathway, which awakened the dormant cancer cells and
promoted cancer progression clinically (35). miR-124-3p was
demonstrated to inhibit the PD-L1 pathway and STAT3
signaling in CRC, which might indicate that miR-124-3p
mediated the MDSCs of CRC through the PD-L1/STAT3
pathway (36). This might be a potential therapeutic target to
Frontiers in Immunology | www.frontiersin.org 3
prevent MDSC accumulat ion and CRC recurrence
and metastasis.

For other STAT proteins, STAT6 is found to strengthen the
expansion of G-MDSCs while it weakens the expansion of M-
MDSCs, and STAT6 could be inhibited by the overexpression of
miR-449c and increases the accumulation of M-MDSCs (37).

SOCS Signal
Suppressor cytokine signaling (SOCS)1, a member of the SOCS
family, is an inhibitor of the JAK/STAT pathway (38), which
mediates the expansion and suppressive function of MDSCs. A
recent study reported that the expression of miR-155 was
required for the suppressive function of MDSCs and was a
necessity for the T-reg induced by MDSCs (28). miR-155
mediated MDSCs by targeting SOCS1 directly and eliminated
the inhibition of the JAK/STAT pathway conducted by SOCS1,
thus contributing to the accumulation of MDSCs and exerting
immunosuppressive function.

It is known that SOCS3 negatively mediates the expansion and
function of MDSCs via inhibiting STAT3 (39). miR-30a was
demonstrated to target SOSC3 directly and increased the
activation of STAT3, participated in MDSC proliferation and
immunosuppression by inducing Arg-1, IL-10, and ROS, thus
eventually resulting in B lymphoma deteriorated with upregulating
MDSC infiltration and suppression (40). miR-9 was also identified as
activating the JAK/STAT pathway via targeting SOCS3 and
promoted the development of eMDSCs in breast cancer. miR-9
improved and coordinated with miR-181a expression, which was
also an inhibitor of the STAT pathway by bounding to PIAS3 (41).

However, in ovarian cancer, miR-101 was reduced while
SOCS2 gene expression increased. The transection of miR-101
could remarkably downregulate SOCS2 and thus inhibit the
invasion and metastasis of ovarian cancer cells (42).

PTEN and PI3K/Akt Pathway
It is well known that PTEN is a key regulator in neutrophils’
spontaneous death (43) and the downregulation of CXCR4-
mediated chemotaxis (44). miR-494, induced by tumor-derived
factors, such as TGF-b1, is reported as an activator ofMDSCs.miR-
494 downregulates PTEN and activates the PI3K/Akt pathway to
enhance the MDSCs’ chemotaxis mediated by CXCR4 and change
the normal progress on apoptosis and cell death, which promotes
the accumulation of MDSCs in tumors (45). The activation of the
Akt pathway also facilitates tumor invasion andmetastasis. Studies
also found that miR-200c, induced by GM-CSF, showed a positive
effect on the proliferation and suppressive function of MDSCs by
targeting PTEN and friend of Gata2 (FOG2) and further activated
the PI3K/Akt and STAT3 pathways (24). miR-21 is demonstrated
to regulate MDSC expansion by targeting PTEN, which increases
the activity of the STAT3 pathway (25).

RUNX1/YAP Pathway
The classical myeloid differentiation-related gene runt-related
transcription factor 1 (Runx1) is modulated during the
differentiation and maturation of MDSCs. RUNX1 is one of
the core-binding family transcriptional factors and is essential to
May 2022 | Volume 13 | Article 883683
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hematopoietic l ineage and myeloid expression and
differentiation (46, 47). Recently, miR-9 has been demonstrated
to be inversely correlated with the expression of RUNX1 in lung
cancer and miR-9 would inhibit MDSC differentiation and
aggravate the suppressive function of MDSCs. Direct injection
of miR-9 successfully repressed tumor development. However,
further clinical studies were needed to verify whether the miR-9
inhibitor was an effective anti-tumor immunotherapy (46). It was
also found that miR-21 maintains the accumulation of MDSCs in
the microenvironment of lung cancer via inhibiting the
expression of RUNX1 (48). In addition, RUNX1 was found to
downregulate the expression of yes-associated protein (YAP) to
deteriorate tumor progression (49). Thus, the miR-21/RUNX1/
YAP axis could be another underlying mechanism for miR-21
mediating MDSCs and tumor growth.

Targeting CCAAT Enhancer-Binding Protein
CCAAT enhancer-binding protein (CEBP) transcription factors
show a significant effect on the proliferation and differentiation
of myeloid cells (50). miR-486 was considered as a regulator of
myeloid cell differentiation and apoptosis by targeting CEBPa,
and the expression between miR-486 and CEBPa was inversely
correlated in tumor-induced M-MDSCs (TM-MDSCs). TM-
MDSCs are a group of cells involved in tumor angiogenesis
and immunity escape by suppressing the function of T cells.
However, either miR-486 or CEBPa overexpression would
inhibit the differentiation of myeloid cells, indicating that both
miR-486 and CEBPa were involved in the expansion of TM-
MDSCs in tumors (51). Based on the suppressive function of
MDSCs in tumor-bearing mice, △9-tetrahydrocannabinol
(THC)-induced MDSCs were used to confirm that miR-690
had great potential on maintaining the immunosuppression of
MDSCs via decreasing the expression of CEBPa and decaying
their terminal differentiation (23). Although some studies
utilized miR-155 as a promoter for the induction of MDSCs in
tumors and the lack of miR-155 led to the deterioration of solid
tumor (52), Kim et al. found that miR-155 negatively correlated
with the expression of MDSCs and identified CEBP as a target of
the miR-155-mediating recruitment of MDSCs (53).
Other Targets
Hypoxia-inducible factor 1a (HIF-1a) plays a major role in
converting MDSC differentiation and function in the tumor
microenvironment with hypoxia (54). Under hypoxia, miR-210,
elevated by HIF-1a, affected Arg1, IL-16, and CXCL12 expression
and further exacerbated the function of MDSCs, promoting the
development of tumors (55). HIF-1a, a direct target of miR-155,
was upregulated inmiR-155-deficientMDSCs, which increased the
expression of chemokines and further accelerated MDSC
infiltration in TME (56). Other miRNAs also presented the
function of tumor-inhibiting, for instance, miR-233 remarkably
slowed the progression of the tumor by repressing myeloid cell
differentiation toMDSCs via targetingmyocyte enhancer factor 2C
(MEF2C) (57).
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miR-34a contributes to the expansion of MDSCs by
suppressing the expression of N-myc. Instead of promoting
MDSC proliferation, miR-34a reduces the apoptosis of MDSCs
without an effect on progenitor cell differentiation to increase
their infiltration (58). miR-34a was also demonstrated to be the
driver of MUC1, promoting C-Myc expression in AML-related
EVs and the expansion of MDSCs (59). Moreover, miR-34 was
confirmed to have a synergistic effect on MDSCs with TWIST
(60), a transcription factor of the bHLH family, and contributes
to cancer progression and immune resistance (61).

It was elaborated that the PEG2/miR-10a/AMPK axis played
an undeniable role in chemotherapy-resistant breast cancer. The
PEG2 released by doxorubicin-resistant cancer cells stimulated
miR-10a expression, which was the activator of the AMPK
pathway, thus leading to the upregulation of MDSC
immunosuppression (62). Further studies of this axis would
provide a silver lining for treating chemotherapy-resistant tumors.

It is known that CXCR4 plays an essential role in recruiting
MDSCs and promoting the progression and metastasis of CRC
(63). miR-133a-3p was proven to be involved in this process by
activating RhoA/ROCK signal and was mediated by lncRNA
XIST (64).

Zhao et al. came up with a prognostic model of 4-circulating
miRNAs (miR-21, miR-130b, miR-155, and miR-28) to predict
the outcome of diffuse large B-cell lymphoma and tested its
validity with a cohort study. They also revealed the association
between the 4-circulating miRNA model and the RAS signal
pathway and how the tumor environment affects lymphoma. In
tumor progression, the alteration of these miRNAs led to RAS
pathway activation and MDSC upregulation (65).

Tumor-Derived Exosomes and
Extracellular Vesicles
Exosomes and extracellular vehicles (EVs) can carry and deliver
miRNAs to MDSCs and contribute to the regulation of MDSCs
as miRNAs secreted in situ. Tumors produce EVs and exosomes
as a manner of augmenting the immunosuppression of MDSCs
in the tumor microenvironment and assisting their invasion and
escape from surveillance of immune cells (66, 67). miR-9 and
miR-181a in exosomes derived from breast cancer were
identified to target SOCS3 and PIAS3, respectively, and further
activated the JAK/STAT pathway, thus promoting the
amplification and development of eMDSC (41). The miR-21a
in exosomes from Lewis lung carcinoma cells accelerates tumor
growth through targeting programmed cell death protein 4
(PDCD4) through activating the autocrine production of IL-6
and phosphorylation of the STAT3 signaling pathway and thus
enhances the expansion of MDSCs and tumor growth (68).
Furthermore, miR-21 in oral squamous cell carcinoma (OSCC)
enhanced the immunosuppressive function of MDSCs through
an miR-21/PTEN/PD-L1 axis (69) and in esophageal squamous
cell carcinoma (ESCC), miR-21 activated the STAT3 pathway
carried by cancer-associated fibroblast (CAF)-secreting
exosomes, which upregulated the induction of M-MDSC
corporate with IL-6 (70). Has-miR-494-3p and has-miR-1260a
May 2022 | Volume 13 | Article 883683
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in pancreatic ductal adenocarcinoma (PDAC)-derived exosomes
mediated the suppressive function of MDSCs in an Smad4-
dependent way (71). miR-10a and miR-21a carried by
hypoxia-stimulated glioma-derived exosomes (H-GDEs)
showed a more aggressive mediating MDSC suppression on
CD8+T cells than N-GNEs did. Both miRNAs in exosomes
regulated MDSCs separately through miR-10a/Rora/IkBa/NF-
kB and miR-21/PTEN/PI3K/AKT pathways (72). The transfer of
miR-29a and miR-92a showed similar effects like miR-10a and
miR-21a in glioma with the hypoxia tumor environment.
Hypoxia-induced glioma produced exosomes to carry miR-29a
and miR-92a and transferred them to promote the differentiation
of functional MDSCs (73). MiR-107 in the gastric cancer-derived
exosomes was caught by MDSCs and inhibited the expression of
DICER1 and PTEN genes, thus increasing the expansion of
MDSCs and ARG1 expression, respectively (74). miR-1246 in
glioma-derived exosomes was demonstrated to mediate MDSC
differentiation and activation in a dual-specificity phosphatase 3
(DUSP3)/extracellular signal‐regulated kinase (ERK)-dependent
mechanism. The expression of exosomal miR-1246 was
correlated with glioma recurrence (75). The main signal
pathways of MDSCs that interacted with microRNAs in the
tumor microenvironment are illustrated in Figure 1.

Tumor-derived extracellular vesicles serve as a communication
tool for the crosstalk between cells by carrying proteins, RNAs,
and DNAs (76). EV-carried miRNAs could mediate the expansion
and suppressive function of MDSCs via targeting different points
or pathways in the tumor microenvironment (77, 78). CLL-
derived EVs contributed to MDSC accumulation by transferring
miR-155 and could be inhibited by vitamin D (79). A line of
miRNAs (miR-146a, miR-155, miR-125b, miR-100, miR-125a, let-
7e, miR-146b, miR-99b) in the EVs derived from melanoma was
Frontiers in Immunology | www.frontiersin.org 5
associated with the accumulation of MDSCs and the
immunotherapy of checkpoint inhibitors (67).
PERSPECTIVE

Although MDSCs have been studied for decades, the bidirectional
regulation between microRNA and MDSCs still needs further
investigation. The first question is where the miRNAs are from.
MicroRNA can be secreted by various cells, including MDSCs
themselves. The origin of miRNA is complex and needs further
validation. The next question is whether the miRNA secreted by
MDSCs influences other immune cells in the microenvironment.
Immune regulation is a network, regulated by cytokines, miRNAs,
and other molecules. It is well known that MDSCs and cancer cells
secrete exosomes, which contain many miRNAs, and regulate
other immune cell functions. Catherine Fenselau et al. used next-
generation sequencing, identifying more than 1,400 miRNAs in
MDSC-derived exosomes, and 24% of them were related toMDSC
(13). Therefore, using advanced technologies, such as the third-
generation sequencing, will help us investigate more information
about miRNAs in exosomes. In the future, targeting specific
miRNA could block or enhance MDSC function. Through
systemic or carrier-loaded delivery, it might regulate MDSC
function using miRNA-based drugs.
CONCLUSION

Immune escape and chemotherapy resistance are tough
problems for the treatment of tumors. However, with
continuous studies of factors in the tumor microenvironment,
FIGURE 1 | Main signal pathways interacted with microRNAs in tumor microenvironment. MicroRNAs in tumor microenvironment exert positive or negative effect on
MDSCs targeting different signal pathways. PTEN, Phosphatase and tensin homolog; SHIP-1, Src Homology 2-containing inositol phosphatase-1; CEBP, CCAAT/
enhancer binding protein; JAK-STAT3, Janus kinase-signal transducer and activator of transcription; PD-L1, Programmed death-ligand 1; SOCS3, suppressor
cytokine signaling 3; RUNX1, runt-related transcription factor 1; MEF2C, MADS box transcription enhancer factor 2, polypeptide C.
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great progress has been made on miRNAs and MDSCs. Multiple
studies have elaborated that miRNAs mediate MDSC expansion
and function via targeting pathways or transcriptional factors
including STAT, PTEN, RUNX1, SOCS, CEBP, and other target
points. It was also described that MDSCs regulated miRNA
expression to facilitate their proliferation and create favorable
conditions for tumor growth and invasion. Other than the
mechanisms of direct interaction between miRNAs and
MDSCs, studies tried to figure out if there were some indirect
ways to achieve the same outcome as their counterparts did. The
exosomes and extra vehicles secreted from cancer cells and
MDSCs carried miRNAs and made a difference in the tumor
microenvironment. However, more studies are needed to verify
the accuracy and feasibility of the results and data existing.
Frontiers in Immunology | www.frontiersin.org 6
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