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Rapid and synchronized responses of innate immune cells are an integral part of
managing viral spread in acute virus infections. In human immunodeficiency virus type 1
(HIV-1) infection, increased immune control has been associated with the expression of
certain natural killer (NK) cell receptors. Further, immune activation of monocytes/
macrophages and the presence of specific cytokines was linked to low levels of HIV-1
replication. In addition to the intrinsic antiviral capabilities of NK cells and monocytes/
macrophages, interaction between these cell types has been shown to substantially
enhance NK cell function in the context of viral infections. This review discusses the
involvement of NK cells and monocytes/macrophages in the effective control of HIV-1 and
highlights aspects of innate immune crosstalk in viral infections that may be of relevance to
HIV-1 infection.
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INTRODUCTION

The discovery of spontaneous HIV-1 control without antiretroviral therapy (ART) in people living
with HIV-1 has initiated decades of research into the biological determinants of this observation,
which - to date - have not been fully defined. Around 0.5% of all HIV-1 positive individuals belong
to this group called elite controllers (EC). They are able to limit HIV-1 RNA viral load to less than
50 viral copies per mL in peripheral blood, maintain consistently high CD4+ T cell counts, and do
not progress to develop acquired immunodeficiency syndrome (AIDS) (1).

Despite the heterogeneity of EC, their study has uncovered protective immune phenotypes and
responses linked to better viral control. It is generally accepted that host factors have a stronger
impact on HIV-1 control than viral factors (1, 2). Among these host factors are the presence of
certain human leukocyte antigen (HLA) class I variants (3) and NK cell receptors (4), the ability to
mount strong HIV-1 specific CD8+ T cell responses (5), and a limited proviral reservoir (6) in
addition to several restriction factors (7).

A critical aspect that determines later HIV-1 control in some individuals is an effective early
immune response towards the virus, restricting infection that may be mimicked by early ART
intervention (8).

Innate sensing of HIV-1 triggers an inflammatory cascade involving macrophages, monocytes,
and dendritic cells that activate T cells and other innate effectors, such as NK cells (9). The
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importance of NK cell and monocyte activation during
hyperacute phases of HIV-1 infection was outlined recently by
Kazer et al. in 2020 (10), emphasizing a potential association of
an early and consistent innate immune response with HIV-1
control. Although antiviral functions of these innate immune
cells are well described in a general context, their specific actions
during acute HIV-1 infection and subsequently their impact on
HIV-1 control demand further investigation. Here, associations
between immune responses and effective control of HIV-1 from
NK cells, monocytes, and macrophages are discussed.
Interactions and crosstalk of these innate players are often
overlooked, but may offer new perspectives on the
establishment of long-term viral control.
NK CELLS, MONOCYTES AND
MACROPHAGES IN HIV-1 CONTROL

NK Cells as Innate Effectors in
HIV-1 Control
In viral infections, NK cells are among the first immune cells to
respond. There is increasing evidence for an important role of NK
cells in HIV-1 disease progression and control (11–13). NK cells
are innate cytotoxic effector lymphocytes that express a variety of
activating and inhibitory receptors enabling them to detect virus-
infected or transformed cells. Killer immunoglobulin-like
receptors (KIR) are an NK cell receptor family that binds to
HLA class I molecules. Downregulation of HLA class I by HIV-1
on infected cells increases their susceptibility towards NK cell-
mediated killing (14–16). The detection of infected cells triggers
the release of cytotoxic granules and initiates the production of
cytokines. Furthermore, NK cells are able to mediate antibody
dependent cell-mediated cytotoxicity (ADCC) via FcgRIII (CD16).

HIV-1 disease progression has been linked to certain protective
NK cell receptors binding HLA class I (for a detailed review see Ref.
(17)). Most prominent is the genetic association between
heterozygosity of an activating KIR KIR3DS1 with HLA-B alleles
harboring a HLA-Bw4-I80 motif and slower HIV-1 disease
progression (18). Although a first report examining the expression
of protective KIRs and ligand combinations (KIR3DL1, KIR3DS1,
HLA-Bw4-I80) in EC did not detect increased frequencies (19), a
subsequent study by Tomescu et al. (20) found that NK cells from
EC with a high expressing inhibitory KIR3DL1 together with HLA-
Bw4-I80 ligands showed increased degranulation and cytokine
production towards target cells. Additionally, NK cells from
healthy donors expressing high levels of KIR3DL1 and HLA-
Bw4-I80 are highly reactive against HIV-1 infected autologous
CD4+ T cells in vitro (21). In a cohort of untreated HIV-1
controllers and non-controllers possessing the protective HLA-
B*57 allele, Martin et al. (4) found a KIR3DL1 variant with an
amino acid substitution at position 47 (I47V) that significantly
enhanced the protective effect ofHLA-B*57:01 but not that ofHLA-
B*57:03 further highlighting the importance of the KIR3DL1-HLA-
B interaction in HIV-1 control.

The description of the nonclassical HLA class I molecule HLA-F
as a high affinity ligand for KIR3DS1 (22) shed new light onto the
Frontiers in Immunology | www.frontiersin.org 2
association of KIR3DS1 with slower HIV-1 disease progression.
Infected CD4+ T cells upregulate HLA-F mRNA and are effectively
killed by KIR3DS1+ NK cell clones (22) proposing an additional
detection mechanism for HIV-1 infected cells by NK cells.

Further protective NK cell responses involve the activating
receptors NKp44 and NKG2D. NKp44 has been implicated in
the loss of CD4+ T cells and increased viral loads (23). In EC, NK
cells do not upregulate NKp44 expression after stimulation by
interleukin (IL)-2 compared to non-controllers, while still
developing an activated and mature phenotype with expression
of NKG2D and intact cytolytic function (24). The selective
tuning of the NKp44 pathway might be an additional
characteristic of NK cells that favors the maintenance of high
CD4+ T cell counts, a hallmark of elite control.

It was shown that NK cells can kill HIV-1 infected CD4+ T
cells via NKG2D (25). The action of the HIV-1 protein Vpr leads
to upregulation of NKG2D ligands. To counteract this and
escape NK cell-mediated killing, the HIV-1 protein Nef
downregulates NKG2D ligands (26). Interestingly, in a single
EC cohort study, HIV-1 Nef variants isolated from EC were
found to be ineffective at downregulating NKG2D ligands on
CD4+ T cells (27). With higher NKG2D surface expression of
NK cells in EC (28, 29) and the fact that NKG2D also serves as a
co-receptor for NK cell-mediated ADCC in HIV-1 (30), HIV-1
infected cells in EC may be particularly sensitive to NKG2D-
mediated ADCC and direct killing (27).

Early in HIV-1 infection, directly preceding peak viremia, an
extensive HIV-1 specific cytokine production is seen including
factors known to directly influence NK cell effector function,
phenotype, and/or proliferation (31, 32), such as type I
interferons and IL-15 (33). Indeed, during the hyper-acute
phase of infection, NK cells are highly active and cytolytic (10).
In the same longitudinal single cell RNA sequencing study by
Kazer et al. (10), two individuals that showed low viremia in
chronic infection possessed cytotoxic and proliferating NK
subsets (out of four persons tested). Pohlmeyer et al. (34)
identified a subset of CD56dim CD16+ NK cells in EC that
express CD11b, CD161, and Siglec-7 but not CD57. Based on
marker expression and their increased effector function after in
vitro stimulation with IL-12 and IL-18, the subset was defined as
partially mature, highly active, and cytotoxic (34). This
interestingly overlaps with findings of Kazer et al. (10) who
additionally showed that NK cells from low viremia individuals
produced the HIV-1 coreceptor CCR5 ligands CCL3 and CCL4
with anti-HIV-1 properties (35) during the early phases of
infection. Adding to this are the observations that both
chemokines are elevated in plasma of EC compared to viremic
progressors - a fact previously attributed to CD8+ T cells (36–
38). NK cells, however, are potent chemokine producers as well
(39) and potentially contribute to viral control in EC through
production of antiviral chemokines.
Myeloid Cells Relay Immune Activation,
but also Contribute to HIV-1 Persistence
Monocytes and macrophages are myeloid-derived innate
immune cells forming the first barrier against pathogens by
May 2022 | Volume 13 | Article 883728
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detecting them through pattern recognition receptors (PRR).
Pathogen recognition triggers phagocytosis and initiates cytokine
production relaying the danger signal to other immune cells (40,
41). Monocytes and macrophages then aid in tissue repair
representing highly plastic functionality through reversibly
changing their activation state (42). Both cell types are able to
detect HIV-1 nucleic acids or proteins via different surface or
intracellular Toll-like receptors (TLR) that mediate activation
into a pro-inflammatory state (43).

Monocytes circulate the peripheral blood, whereas
macrophages specialize and occupy tissues. Monocytes are
subdivided into three groups. Classical monocytes (CD14+
CD16-) form the majority, whereas pro-inflammatory
intermediate (CD14+ CD16+) and non-classical (CD14lo/-
CD16+) monocytes represent a much smaller portion of all
circulating monocytes (40). Most likely, they differentiate
linearly in the given order (classical - intermediate - non-
classical) with the last step potentially taking place outside of
circulation before re-entering the bloodstream (44). When
monocytes are activated by pathogens or inflammatory
cytokines, they are able to migrate into tissue and acquire a
macrophage-like phenotype (also referred to as infiltrating
macrophages) supporting the tissue-resident macrophage
population (41).

Macrophages are susceptible to productive HIV-1 infection
and contribute to viral persistence (45). The permissiveness to
infection, however, varies with the site and activation phenotype
of the macrophage population (46) and is reduced in monocyte-
derived macrophages of EC in vitro (47). HIV-1 infection of
macrophages skews them towards a pro-inflammatory and
dysfunctional phenotype (48, 49). Years of research indicate
that HIV-1 infected and bystander macrophages contribute
towards an inflammatory milieu and may be a driving force
behind tissue damage (46, 50).

The establishment of an HIV-1 reservoir in tissue-resident
macrophages plays an important part in viral persistence (51)
and is thought to happen early in infection (52, 53). Despite the
small size of the macrophage reservoir in HIV-1 positive
individuals on ART viral reactivation in latently infected
macrophages has the potential to cause rebound viremia (40,
52, 53). In CD4+ T cells of EC, however, it was demonstrated that
reservoir cells have distinct proviral integration sites that silence
viral genes (6, 54). However, characteristics of the macrophage
reservoir in EC have not been uncovered to this date, and it
remains to be answered whether the HIV-1 reservoir in
macrophages is differently constituted in EC.

Monocyte-derived macrophages were shown to harbor HIV-1 in
virus-containing compartments (VCC) supporting cell-to-cell spread
of virions to T cells and thereby contributing to viral spread in vitro
(55). The contribution of macrophage VCC to viral transmission in
vivo is not known, but for EC it was shown that SIGLEC1, which is
important for the formation of VCC (55), was downregulated in
peripheral blood mononuclear cells hinting at a potentially impaired
formation of VCC with better viral control (36, 46, 56).

HIV-1 infected macrophages are relatively resistant towards
killing by cytotoxic lymphocytes like NK cells and CD8+ T cells.
Frontiers in Immunology | www.frontiersin.org 3
Their killing is dependent on granzyme B-mediated apoptosis via
caspase 3, which can be affected by macrophage expression of the
granzyme B inhibitor SERPINB9 (57, 58). The inefficient killing of
macrophages was further linked to the perpetuation of possibly
damaging inflammatory processes (57, 58). Interestingly, CD4+
effector and CD8+ T cells from EC were able to inhibit viral
replication in HIV-1 infected macrophages in vitro, though only
CD8+ T cells were able to do so at a higher efficiency compared to
chronic progressors on ART (59). The efficient delivery of lytic
granules to HIV-1 infected CD4+ T cells by CD8+ T cells from EC
is associated with HIV-1 control (60). A similar mechanism may
also be involved in the increased CD8+ T cell mediated killing of
HIV-1 infected macrophages seen in EC.

HIV-1 infection of circulating monocytes, on the other hand,
has been a debated topic. There is evidence that monocytes are
infected with HIV-1 in vivo based on the detection of
intracellular HIV-1 DNA, however, the isolation of replication-
competent viruses from monocytes has not been achieved and
therefore open questions towards the nature of HIV-1 infection
in monocytes remain (40). Apart from this, a central role for a
proviral reservoir in monocytes of EC is unlikely because Spivak
et al. (61) were not able to detect significant amounts of HIV-1
DNA in circulating monocytes of elite controllers.

In the acute phases of HIV-1 infection, monocytes are
activated, expand, and show a prolonged upregulation of HLA
class II molecules responsible for antigen presentation (10, 62).
There is evidence for a polyfunctional monocyte phenotype with
the expression of antiviral as well as inflammatory gene sets
associated with low viremia in chronic infection (10).

Although the expansion of pro-inflammatory intermediate
monocytes was reported for HIV-1 controllers and non-
controllers alike, a higher frequency of non-classical monocytes
was seen in the controller group (38, 63). When comparing EC to
healthy individuals, however, one study did not see differences in
the monocyte subset composition (38), whereas Krishnan et al.
(64) detected a higher frequency of intermediate monocytes
specifically in EC. They further found monocytes from EC to
be more prone to ex vivo activation indicated by increased
production of the pro-inflammatory cytokine IL-1b upon in
vitro stimulation with the TLR4 ligand lipopolysaccharide (LPS)
(64). Soluble CD14 and CD163, markers for monocyte
activation, are associated with poor HIV-1 prognosis (65), can
persist at high levels into chronic infection despite ART (62, 66,
67) and are also detected in EC (68–70). Although plasma viral
load and monocyte activation as well as other inflammatory
markers were not correlated in EC (68), increased inflammation
may cause serious non-AIDS events, such as cardiovascular
disease (70). However, in another study, elevated levels of
sCD14 and sCD163 did not coincide with a higher prevalence
for cardiovascular disease when comparing EC to HIV-1
negative individuals (69).

Innate Immune Crosstalk
Crosstalk between the immunological first responders
(monocytes in blood, macrophages in tissue, and NK cells) is
important to orchestrate the innate immune response against
May 2022 | Volume 13 | Article 883728

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mensching and Hoelzemer NK Cells, Monocytes and Macrophages in HIV-1 Control
pathogens (71, 72). Upon pathogen recognition, monocytes and
macrophages release soluble factors and express ligands that
activate NK cells and boost their effector function (72).

It was shown that pro-inflammatory macrophages stimulated
with LPS prime NK cells in vitro for enhanced cytolytic function
and cytokine production. Bellora et al. (73) reported increased NK
activation and cytotoxicity after pro-inflammatory macrophage
co-culture to be mainly dependent on soluble factors, whereas the
production of IFNg by NK cells was dependent on NK receptors
2B4 and DNAM-1 interacting with their ligands on macrophages
in addition to IL-18 production by macrophages. The 2B4-CD48
axis was repeatedly implicated in enhanced IFNg production of
macrophage-primedNK cells (74, 75), and is additionally linked to
NK cell proliferation (74).

Soluble factors secreted by pro-inflammatory macrophages that
affect NK cell cytotoxicity were further characterized and involved
(i) IL-23 and IFN-b to upregulate NKG2D, (ii) IL-1b to increase
expression of NKp44, and (iii) the trans-presentation of IL-15 by
macrophages (75). IFN-b also increased the cis-presentation of IL-
15 by NK cells and in this way additionally triggered IFNg
production (75). In mice, it was demonstrated that monocytes, in
an IL-15 dependent way, are important for NK cell differentiation
into a more mature and cytotoxic phenotype (76). In humans, NK
cells were shown to interact with TLR-stimulated monocytes via an
activating NK receptor called NKp80 that binds CLEC2B, which
reciprocally activated both cell types and increased the lytic function
of NK cells (77). Additionally, the interaction of NK cells with
NKG2D ligands on LPS-stimulated monocytes via NKG2D was
implicated in IFNg production of NK cells while having no effect on
proliferation and cytotoxicity (78).

Virus infection of macrophages, as seen in HIV-1, may thus
impact NK cells in two ways: as a trigger for direct NK cell killing
of macrophages and as a possibly altered priming partner.

Lassa and Mopeia virus-infected macrophages, for example,
were shown to activate NK cells via contact-dependent signals and
type I interferons leading to an upregulation of NKp30 and NKp44
on NK cells, in addition to increasing NK cell proliferation and
cytotoxic function (79). Nevertheless, NK cells primed by infected
macrophages were not able to resolve macrophage infection but
instead bidirectionally enhanced the activation of infected
macrophages (79). When interacting with HIV-1 infected
macrophages, NK cells are skewed towards producing the pro-
inflammatory cytokine TNFa and seemingly switch their mode of
killing macrophages from rapid granzyme-based cytotoxicity to
slower death-receptor mediated apoptosis (57). To date, the
contribution of effective NK cell priming by macrophages to
elite control of HIV-1 infection is not understood.

DISCUSSION

A vast majority of HIV-1 positive individuals are dependent on
ART to control HIV-1 progression and in many parts of the
world the availability of treatment remains insufficient. The
study of EC has helped to uncover factors important for
natural control of HIV-1 infection (see Table 1). Nonetheless,
EC are a heterogeneous group and likely achieve viral control in
Frontiers in Immunology | www.frontiersin.org 4
different ways (1). Recent reports highlighted that although
natural control of HIV-1 replication is achievable for some, the
possibility of long-term progression towards AIDS or chronic
comorbidities in these individuals cannot be excluded (80). It is
consequently of importance to fully unravel the mechanisms
leading to long-term immune control of HIV-1.

In concordance with CD8+ T cells, increased cytolytic and
cytokine producing activity of NK cells next to certain receptor-
ligand interactions may contribute to rapidly establish viral control
in some HIV-1 positive individuals (12). The factors that influence
enhanced NK cell activity in the context of HIV-1 control remain to
be determined, but a defined cytokine milieu including IL-15 and a
mature and cytotoxic NK cell subset secreting antiviral chemokines
may be of importance. Protective HLA class I alleles in combination
with certain NK cell receptors may render infected cells more
sensitive to NK cell recognition. The involvement of cytotoxicity
mediated by NKG2D (27–29) and the selective silencing of NKp44
(24) in controllers offers further clues towards viral control. It also
indicates that the role of NK cells likely extends from the acute
phase to long-term control in chronic HIV-1 infection.

There are different characteristics of monocytes and
macrophages associated with low viremia or HIV-1 control.
Among those are early monocyte activation, polyfunctionality, and,
although conflictingly reported, specific monocyte subpopulations.

A reduced permissiveness to infection and a potentially
altered formation of the VCC in macrophages of EC may
represent ways in which macrophages directly affect viral load.

In a broader view, monocytes and macrophages are both
integral cytokine producers in HIV-1 infection (9), which can
impact adaptive responses as well as NK cell function (71).
Currently, it is not known whether monocytes and macrophages
of HIV-1 EC can prime NK cells more effectively compared to
chronic progressors, or whether the crosstalk between these innate
effectors predominantly drives inflammation. Interestingly, it was
shown that NK cells of EC express high levels of NKG2D involved
in killing of HIV-1 infected CD4+ T cells (27–29), which may be
promoted by macrophage-derived IL-23 and IFN-b (75). NK cells
from EC also have a higher sensitivity towards IL-18 in a highly
active and cytotoxic subset (34) speculatively rendering themmore
susceptible to priming by pro-inflammatory macrophages (73).

NK cell development and function highly depend on IL-15
(31). The involvement of IL-15 dependent mechanisms in the
priming of NK cells by monocytes/macrophages therefore has the
potential to boost NK cell function against HIV-1 infected cells
significantly (81). IL-15 is also one of the highest elevated
cytokines just before peak HIV-1 viremia (33). There are
currently two clinical trials ongoing (ClinicalTrials.gov Identifier:
NCT04505501; NCT04340596) evaluating the impact of an IL-15
super-agonist in HIV-1 disease progression as a potential
treatment to increase NK cell cytotoxicity, survival, and
maturation (31) and thereby enhance viral control. However,
later in infection, high IL-15 levels are linked to increasing
viremia and inflammation (82), suggesting that resolution of the
cytokine trigger is needed to prevent inflammation-associated
pathology in HIV-1 and that, with respect to IL-15 dependent
treatment options, careful assessment is required.
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Elite controllers efficiently control HIV-1 – which potentially
comes at a cost of increased inflammation driving non-AIDS-
related comorbidities. Their immune system is possibly the closest
model for functional HIV-1 cure, and therefore it is important to
continue investigating the immunological mechanisms leading to
this unique status. It remains to be further elucidated how the
interaction between monocytes/macrophages and NK cells is
orchestrated in HIV-1 infection and which aspects benefit short-
and long-term viral control.
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