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Background: Organ transplantation is currently an effective method for treating organ
failure. Long-term use of immunosuppressive drugs has huge side effects, which severely
restricts the long-term survival of patients. Schistosoma can affect the host’s immune
system by synthesizing, secreting, or excreting a variety of immunomodulatory molecules,
but its role in transplantation was not well defined. In order to explore whether
Schistosoma-related products can suppress rejection and induce long-term survival of
the transplant, we used soluble egg antigen (SEA) of Schistosoma japonicum in mouse
skin transplantation models.

Materials and methods: Each mouse was intraperitoneally injected with 100 mg of SEA
three times a week for four consecutive weeks before allogenic skin transplant. Skin
transplants were performed on day 0 to observe graft survival. Pathological examination of
skin grafts was conducted 7 days post transplantation. The skin grafts were subjected to
mRNA sequencing. Bioinformatics analysis was conducted and the expression of hub
genes was verified by qPCR. Flow cytometry analysis was performed to evaluate the
immune status and validate the results from bioinformatic analysis.

Results: The mean survival time (MST) of mouse skin grafts in the SEA-treated group was
11.67 ± 0.69 days, while that of the control group was 8.00 ± 0.36 days. Pathological
analysis showed that Sj SEA treatment led to reduced inflammatory infiltration within skin
grafts 7 days after allogenic skin transplantation. Bioinformatics analysis identified 86
DEGs between the Sj SEA treatment group and the control group, including 39
upregulated genes and 47 downregulated genes. Further analysis revealed that Sj SEA
mediated regulation on cellular response to interferon-g, activation of IL-17 signaling and
chemokine signaling pathways, as well as cytokine–cytokine receptor interaction. Flow
cytometry analysis showed that SEA treatment led to higher percentages of CD4+IL-4+ T
cells and CD4+Foxp3+ T cells and decreased CD4+IFN-g+ T cells in skin transplantation.
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Conclusion: Sj SEA treatment suppressed rejection and prolonged skin graft survival by
regulating immune responses. Sj SEA treatment might be a potential new therapeutic
strategy to facilitate anti-rejection therapy and even to induce tolerance.
Keywords: Schistosoma japonicum, soluble egg antigen, skin graft, gene expression, cytokine–cytokine
receptor interaction
INTRODUCTION

Solid organ transplantation is an effective treatment for patients
with organ failure. In the past two decades, the rapid development
of new immunosuppressive agents and various monoclonal
antibody drugs has greatly improved the short-term survival rate
of transplants, but the rejection has not been completely overcome,
and the long-term survival of transplanted organs has not been
significantly improved (1). At the same time, long-term use of
immunosuppressive drugs led to high risks of side effects such as
drug toxicity, life-threatening infection, and tumors, significantly
limiting the long-term survival of patients (2). Thus, there is an
urgent need to develop novel immunosuppressant.

Helminths and their secreted products are capable of
regulating host immune responses to achieve their ongoing
survival, as well as to provide benefit to the host with allergy
or autoimmune disorders (3, 4). Recent studies showed that the
immunomodulating effect of helminths provided an unintended
benefit to the host with allergy or autoimmune disorders, while
emerging lines of evidence suggested that helminth-induced
immunomodulation has potential in suppressing allograft
rejection and promoting transplant tolerance (5, 6).
Schistosoma is one of the most important parasites in the
world, showing high capacity of promoting graft survival in
both humans and murine experimental models. In a remarkable
clinical study, patients with advanced Schistosoma mansoni
infection showed significantly prolonged allogenic skin grafts
survival when compared with the healthy control group. The
mean survival time of allogenic skin grafts in Schistosoma-
infected patients was 22.25 ± 6.46 days, about 2.21-fold of that
in the non-infected group, 10.06 ± 3.21 days (7). Furthermore, no
signs of allograft rejection were observed in the remaining 3
patients with schistosomiasis 60 days post allogenic skin
transplantation (7). Also, fully allogenic skin transplantation in
S. mansoni-infected mice demonstrated allograft protection from
Schistosoma infection. Skin grafts in infected recipients survived
50% longer than those in the control group, when the skin
transplantation was performed 60 days post infection (8).
Moreover, further analysis indicated a positive correlation
between skin graft survival and the burden of live parasites
within recipient mice (8). Thus, Schistosoma infection exerts a
protective role in suppressing rejection and promoting graft
survival. Schistosoma-derived products represent a potential
novel immunosuppressant. However, the active components
and the underlying mechanism remain unknown.

Schistosoma japonicum, as the main schistosome species in
Asia, belongs to the same genus as S. mansoni. Although they
have a similar capability in regulating host immune responses,
org 2
the effect of S. japonicum infection in transplantation remains to
be elucidated. S. japonicum eggs and egg-derived products are
the main mediators capable of regulating immunological
activities; however, its role and the underlying mechanism in
transplant immunopathology require further study. In this study,
we investigated the therapeutic efficacy of Sj soluble egg antigen
(SEA) in a fully allogenic skin transplant model in mice. We
focused on the immunomodulation effects of Sj SEA and
explored the related mechanisms via bioinformatics analysis
and flow cytometry analysis.
MATERIALS AND METHODS

SEA Preparation
Snails infected by S. japonicum was provided by the Institute of
Schistosomiasis Control, Hunan Province, China. New Zealand
white rabbits were infected with cercariae in the snails. After 45
days, the animals were euthanized to obtain and purify mature
eggs in the liver (9). Eggs were stored in a concentration of 106

eggs/ml at −80°C. Take 1 ml of worm eggs and add 3–5 ml of PBS
to fully grind with liquid nitrogen. After repeated freezing and
thawing and homogenization, centrifuge at 4°C, 10,000 × g for
60 min. Extract the supernatant SEA and store at a constant
concentration of 0.5 mg/ml at −80°C.

Animal and Experimental Design
Male C57BL/6 and BALB/c mice aged 6–8 weeks were purchased
from Hunan Slack Jingda Experimental Animal Company. Mice
were housed in the Experimental Animal Center of Central
South University, free of specific pathogens, in ventilated cages.
The experimental protocol was approved by the Animal
Experiment Ethics Committee of Central South University, and
all animals received human care according to the principles of
laboratory animal care. Before surgery, the recipients (C57BL/6
mice) were pretreated with 100 mg of SEA for 28 days (3 times a
week for 4 weeks), and the control group was intraperitoneally
injected with PBS. Before skin transplantation, the same batch of
C57BL/6 recipient mice and BALB/c donor mice were
anesthetized with isoflurane. After the mouse was completely
anesthetized, the outer ear (1.0–1.5 cm (2)) of the BALB/c donor
mice was cut off with sterile scissors and put into a glassware
containing DPBS, and then sterile forceps was used to remove
the epidermis and cartilage during ear organization separation.
The epidermal layer was placed on a clean gauze and the excess
water was dried, and then the epidermal layer was placed with
the hair side up and the smooth side down on the transplant bed
on the back of the C57BL/6 recipient mice prepared in advance.
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The transplanted skin should cover the entire transplant bed and
there should be no gaps. The skin grafts were fixed with
petroleum jelly gauze and sterile bandages, which will be
removed for observation after 5 days. The survival of the graft
was monitored by daily visual inspection. Rejection was defined
as 80% necrosis and dry shrinkage of the grafted skin surface. On
the 7th day after the operation, the skin grafts were
cryopreserved in liquid nitrogen for genetic analysis. The
degree of graft rejection was evaluated on the 9th day
after surgery.

Histology
Skin grafts were removed on the 7th day after transplantation.
The tissues were fixed with 10% phosphate buffered formalin,
embedded in paraffin, cut into 5-mm sections, and stained with
hematoxylin and eosin standard techniques.

RNA Extraction, Library Construction, and
Sequencing
According to the manufacturer’s protocol, use the Trizol kit
(Tiangen Biochemical Technology Co., Ltd) to extract total RNA
from frozen skin graft tissue. Use Agilent 2100 bioanalyzer
(Agilent Technologies, CA, USA) to evaluate the quality and
purity of RNA. The library building kit used in the library
construction is Illumina NEBNext® UltraTM RNA Library
Prep Kit. The mRNA with polyA tail is enriched by Oligo (dT)
magnetic beads, and then the resulting mRNA is randomly
interrupted with divalent cations in NEB Fragmentation Buffer.
Use fragmented mRNA as a template to synthesize cDNA. The
purified double-stranded cDNA undergoes end repair, A-tailing,
and sequencing. AMPure XP beads (Beckman Coulter, Beverly,
USA) are used to screen 200-bp cDNA for PCR amplification
and purification of PCR products, and finally a library is
obtained. After the library is qualified, the different libraries
are pooled according to the effective concentration and target
offline data volume and then sequenced by Illumina, and a 150-
bp paired-end reading is generated.

Assemble and Process the Original Data
for Sequencing
By removing reads with adapters, removing reads containing N
(N means the base information cannot be determined), and
removing low-quality reads (Qphred ≤ 20 bases account for the
entire read length more than 50% of the reads), we get clean
readings. Use HISAT2 v2.0.5 to construct the index of the
reference genome, and use HISAT2 v2.0.5 to compare the
paired-end clean reads with the reference genome. Use
StringTie for new gene prediction (10). FeatureCounts is used
to calculate the reads mapped to each gene. Then, calculate the
FPKM of each gene based on the length of the gene, and calculate
the reads mapped to that gene.

Differential Expression Analysis
Use DESeq2 R software (1.16.1) to perform differential
expression analysis between two comparative combinations (3
biological replicates in each group). DESeq2 provides statistical
Frontiers in Immunology | www.frontiersin.org 3
procedures for determining differential expression in digital gene
expression data using models based on the negative binomial
distribution. The method of Benjamini and Hochberg was used
to adjust the p-value to control the false discovery rate. DESeq2
genes with an adjusted p-value of <0.05 were assigned as
differentially expressed genes (DEGs).

Enrichment Analysis of DEGs
The GO enrichment analysis of DEGs and the statistical
enrichment of DEGs in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway were realized by the clusterProfiler R
software, which corrects the gene length deviation. Consider that
GO terms with corrected p-values less than 0.05 are significantly
enriched by DEGs. In order to understand the biological
functions and pathways of DEGs in the skin grafts of the SEA-
treated mice, we used the novemagic cloud platform integrated
with annotation and visualization to analyze and visualize the
biological functions and pathways of DEGs. Gene set enrichment
analysis (GSEA) can be clearly applied to various datasets (11). In
this study, GSEA was performed to explore the alteration of
potential biological signaling pathways and different biological
processes with GSEA software (version 4.1.0). GO and KEGG
were used for analysis for the potential altered pathways in SEA-
mediated protection on skin graft. We identified the number of
random sample permutations as 1,000, and enriched gene sets
with a nominal p < 0.05 were defined as significant.

Protein–Protein Interaction Analysis and
Network Modules
Protein–protein interaction (PPI) was performed by retrieving a
network search tool interacting protein (STRING) database. An
interaction score with a median confidence of 0.4 is the standard
termination criterion. Subsequently, based on the functional
analysis information, the Cytoscape software platform was
used to visualize the network. In Cytoscape, cytoHubba was
used to identify the hub gene, and Molecular Complex Detection
(MCODE) was used for modular analysis. The parameters of
cytoHubba used in this study are as follows: the top 15 nodes
sorted by degree. The MCODE parameters used in this study are
as follows: the degree of cutoff, 2; cluster finding, haircut; node
score cutoff, 0.2; k-core, 2; and the maximum depth was 100.

RT-PCR Analysis
In order to verify the results of RNA-seq analysis, the qPCR
method was used to validate the gene expression with SEA-
treated and control skin graft samples (n = 3), and GAPDH was
used as the internal reference. The primer sequence was
presented in Supplementary Table 1. The 10-ml reaction
system included 1 ml of cDNA, 0.1 ml of each primer, 5 ml 2 ×
SYBR Green qPCR SuperMix (Roche), and 3.8 ml of dH2O, and
the reaction conditions were as follows: 95°C for 10 min, 94°C for
10 s, 60°C for 20 s, and 60°C for 20 s plate read for 40 cycles
followed by melting curve analysis (60°C to 94°C). The 2−△△Ct

method was used to determine the relative amount of mRNA,
and the measurement was performed at least 3 times
independently for each sample.
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Flow cytometry
The following fluorochrome-conjugated antibodies were used for cell
surface molecules and flow cytometric analysis: anti-CD4 and anti-
CD25. All antibodies were used according to the manufacturer’s
instructions. For intracellular staining, spleen cells were restimulated
for 4 h with phorbol 12-myristate 13-acetate (50 ng/ml) and
ionomycin (550 ng/ml) in the presence of Golgi-Stop. Cells were
fixed and made permeable with Cytofix/Cytoperm solution or Foxp3
staining buffer set and were stained with fluorochrome-conjugated
anti-Foxp3, anti-IL-4, anti-IL-17, and anti-IFN-g. All antibodies were
used according to the manufacturer’s instructions. All samples were
acquired with BD FACS Canto II and data were analyzed with BD
FACSDiva software.

Statistical Analysis
Kaplan–Meier analysis method was used to compare the survival
rate of grafts. The results were expressed as mean ± standard
deviation. All statistical analysis was performed using
GraphPadPrism8 software. The t-test was used to determine
the differences between 2 groups, and p < 0.05 was considered
statistically significant.
RESULTS

Sj SEA Suppresses Allograft Rejection and
Prolongs Graft Survival in A Mouse Skin
Transplant Model
To explore the effect of SEA in transplantation, we established
murine skin transplant models. The treatment group was
intraperitoneally injected with 100 mg/mouse SEA 3 times a
week for 4 consecutive weeks before transplantation, while the
control group was intraperitoneally injected with PBS. Then, we
performed allogenic skin transplant (BABL/c to C57BL/6)
(Figure 1A). Survival analysis showed that the Sj SEA
treatment significantly prolonged skin graft survival, as the
MST of the control group was 8.00 ± 0.36 days while the MST
of Sj SEA treatment group was 11.67 ± 0.69 days (p < 0.01)
(Figure 1B). Seven days after transplantation, pathological
examination was conducted and the graft rejection score was
significantly lower in the Sj SEA treatment group than that in the
control group (p < 0.01) (Figures 1C, D). Histological analysis of
the skin grafts on the 7th day post transplantation revealed that
Sj SEA treatment resulted in reduced inflammatory infiltration
within allograft as compared with the control group (Figure 1E).

Impacts of Sj SEA Treatment on the
Transcription Profile of Skin Graft
In order to explore the potential molecular mechanism of
prolongation of the allogenic graft survival, we performed RNA
sequencing analysis on the skin grafts of mice in the SEA group and
the control group. Compared with the control group, 86 DEGs were
found in the SEA treatment group, including 39 upregulated genes
and 47 downregulated genes (|log2Foldchange| > 1, p adj < 0.05)
(Figures 2A, B, (Supplementary Table 2). Of note, in these
downregulated genes, we found many chemokines such as Ccl3
Frontiers in Immunology | www.frontiersin.org 4
and Ccl4. The reduction of these chemokines was consistent with
reduced inflammatory cell infiltration within graft. Importantly,
studies demonstrated that alternatively activated macrophages are
correlated transplant protection (12). Among the upregulated genes,
Arg1 was ranked high, which is one of the markers of alternatively
activated macrophage.

GO and KEGG Pathway Analysis of DEGs
in Sj SEA-Treated Skin Graft
To further investigate the functions of these 86 DEGs and
pathways involved in Sj SEA-mediated graft protection, we
performed GO and KEGG functional enrichment analysis.
According to the degree of enrichment of functional
annotations, the top 10 biological processes, molecular
functions, and cellular components are presented in Figure 3A
(Supplementary Table 3). The gene-annotation enrichment
analysis showed that the DEGs in the Sj SEA-treated group
were related to biological processes including lymphocyte
chemotaxis, chemokine-mediated signaling pathway, cellular
response to interferon-g, and cytokine-mediated signaling
pathways. Regarding cellular components, the genes changed
in the treatment group were mainly related to cornified envelope,
external side of plasma membrane, proteinaceous extracellular
matrix, and basal lamina (Figure 3A, Supplementary Table 3).
Regarding molecular function, the genes affected by the Sj SEA
treatment were mainly involved in chemokine activity,
chemokine receptor binding, cytokine activity, and cytokine
receptor binding (Figure 3A, Supplementary Table 3). Based
on the analysis above, Sj SEA-mediated prolongation of graft
survival in the skin transplant model may be related to
modulation of inflammatory responses within skin grafts.

KEGG pathway analysis was facilitated to understand the
possible mechanism of the protective effect of Sj SEA in
prolonging survival of skin grafts. KEGG results indicated
those DEGs involved in more than 20 pathways as shown in
Figure 3B. Among those related pathways, the cytokine–
cytokine receptor interaction ranked first. In this pathway,
chemokines such as Ccl2, Cxcl10, Xcl1, and Ifng were
downregulated significantly (Supplementary Table 4), while
some other pathways were associated with inflammation, such
as chemokines, IL-17 signaling pathway, Toll-like receptor
signaling pathways, as well as TNF signaling pathway.
GSEA of DEGs in Sj SEA-Treated Skin
Graft
To further investigate the possible mechanisms of protection of Sj
SEA in prolonging the survival of mouse skin grafts, we performed
GSEA on the GO and KEGG datasets of this species, respectively.
Using the KEGG dataset as the classification standard and screening
according to |NES| > 1 and p < 0.05, we found that adherens
junction, glycolysis and gluconeogenesis, inositol phosphate
metabolism, and other pathways were upregulated, while other
pathways such as oxidative phosphorylation, allograft rejection, and
Parkinson’s disease were downregulated when compared with the
control group (Figure 4, Supplementary Tables 5 and 6).
Therefore, GSEA suggested that most of the pathways involved in
July 2022 | Volume 13 | Article 884006
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Sj SEA-mediated prolongation of skin graft survival were related to
the regulation of energy metabolism, immune-inflammatory
response, and oxidative stress.

Protein–Protein Interaction Analysis
Revealed Reduced Expression of Multiple
Chemokine Ligands and Ifng, and
Increased Expression of Arg1
Using the STRING database to analyze those 86 DEGs, we detected
48 nodes and 106 edges on Cytoscape (Figure 5A). Cytoscape and
cytoHubba analysis identified 15 hub genes, namely, Ccl2, Ifng,
Cxcl10, Cxcl9, Ccl3, Ccl4, Isg15, CD69, Ccl7, Arg1, Socs1, Ifit3, Xcl1,
Frontiers in Immunology | www.frontiersin.org 5
Sele, and Fam26a (Figure 5B). The Cxcl10 gene had the highest
score of 17. Further analysis of those DEGs with the MCODE
algorithm showed that MCODE 1 contains 12 gene nodes, similar
to the results of the cytoHubba analysis, namely, Ccl3, Xcl1, Ifng,
Ccl2, Cxcl10, Cxcl9, Ccl7, Ccl4, Isg15, Arg1, Socs1, and CD69 with 52
edges (Figure 5C). Thus, these hub genes might play a critical role
in Sj SEA-mediated graft protection in murine skin transplant
models. Among these hub genes, Arg1 was an upregulated gene,
while others were downregulated genes. These hub genes were
mainly involved in cytokine–cytokine receptor interaction and
chemokine signaling pathways as indicated by KEGG analysis
(Supplementary Table 4).
B

C D

E

A

FIGURE 1 | SEA pretreatment can prolong the survival time of mouse skin grafts. (A) In the control group (n=5) has no special treatment, and in the treatment
group (n = 6), each mouse is given SEA 100 mg pretreatment 28 days later (3 times a week, 4 weeks in a row), and the outer ears of BALB/c donor mice were
transplanted to the back of C57BL/6 recipient mice. (B) Compared with the control group (8.00 ± 0.36), the treatment group (11.67 ± 0.69) significantly prolonged
the survival time of skin grafts (p < 0.01). (C, D) On the 9th day after transplantation, there was no obvious inflammation, ulcer, and necrosis in the skin grafts in the
SEA treatment group. Compared with the control group, the graft rejection score was significantly lower than that of the control group (p < 0.01). (E) The
pathological changes of the skin grafts were observed on the 7th day after transplantation. Compared with the control group, the low-power and high-power
microscopes showed that the neutrophil cell aggregates decreased.
July 2022 | Volume 13 | Article 884006
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Furthermore, RT-PCR was used to validate the expression of
those hub genes involved in Sj SEA-induced transplant
protection. Compared with the control group, the expression
of those identified hub genes, including Xcl1, Socs1, Ifng, Cxcl9,
Cxcl10, Ccl7, Ccl4, Ccl3, and Ccl2 were significantly reduced in
the Sj SEA-treated group, while the expression of Arg1 was
significantly increased (Figure 5D). This result was consistent
with the results of RNA-Seq analysis.

Flow Cytometric Analysis of T-Cell
Subsets in the Spleen of Mice Before and
After Skin Transplantation
The fully allogeneic skin transplant model represents a robust and
intense allogeneic reaction, which is mainly mediated by Th1 and
Th17 cells (13–15). However, Treg cells play a critical role in
Frontiers in Immunology | www.frontiersin.org 6
suppressing rejection and inducing tolerance (16). Although skin
graft transcriptomic data suggested some potential mechanisms of
Sj SEA-mediated prolongation of skin graft survival, the actual
immune cell characterization was needed to be validated. To
evaluate the immune status, we performed flow cytometry
analysis (gating strategies are shown in Supplementary
Figure 1). First, 28 days after SEA treatment, before skin
transplantation, we used flow cytometry to detect different T-cell
subsets. Compared with the control group, we found that the
proportion of CD4+IFN-g+ T cells in the spleen did not change
significantly, while the proportion of CD4+IL-4+ T cells and
CD4+Foxp3+ Treg cells was upregulated in the SEA treatment
group (Figure 6A). Subsequently, we sacrificed all mice on the 7th
day post transplantation, and continued to use flow cytometry to
detect immune status in both groups. Intracellular staining
B

A

FIGURE 2 | Volcano map and hierarchical clustering heat map of DEGs. (A) (|log2Foldchange|>1, p adj < 0.05) DEG volcano distribution map; red represents
upregulated transcripts; blue represents downregulated transcripts. (B) Hierarchical clustering heat map of DEGs (n = 3) in each group.
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indicated that the proportion of CD4+IFN-g+ T cells in the spleen
was decreased in the SEA treatment group, while the proportion of
CD4+IL-4+ T cells and CD4+Foxp3+ Treg cells was both increased.
Notably, the proportion of CD4+IL-17+ T cells in the spleen of the
SEA group did not change significantly before and after
transplantation when compared with the control group
(Figure 6B). Thus, flow cytometry analysis indicated that Sj
SEA-mediated prolongation of skin graft survival was associated
with downregulated CD4+IFN-g+ T cells and a higher percentage
of CD4+Foxp3+ Treg cells.
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

In our study, the pretreatment with Sj SEA suppressed rejection
responses and prolongedmurine skin allograft survival by inhibiting
allogenic immunopathology. Furthermore, bioinformatics analysis
showed that Sj SEA-mediated prolongation of skin graft survival
was associated with regulation on cellular response to interferon-g,
activation of IL-17 signaling and chemokine signaling pathways, as
well as cytokine–cytokine receptor interaction. Flow cytometry
analysis demonstrated that prolonged graft survival in the SEA
B

A

FIGURE 3 | GO and KEGG analysis of the role of DEGs and screening enrichment pathways. (A) From the aspects of biological processes, cellular components,
and molecular functions, select the top 10 most significant terms and draw a histogram for display. The abscissa in the figure is the description of GO Term, and the
ordinate is the significance level of GO Term enrichment. The higher the value, the more significant. Orange represents BP, green represents CC, and blue
represents MF. (B) Select the 20 most significant KEGG pathways to draw a scatter diagram for display. The abscissa in the figure is the ratio of the number of
differential genes annotated to the KEGG pathway to the total number of differential genes, the ordinate is the description of the KEGG pathway, the size of the dot
represents the number of genes annotated to the KEGG pathway, and the color from red to purple represents enrichment of the saliency size.
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treatment group was associated with higher percentages of
CD4+IL4+ T cells and CD4+Foxp3+ Treg cells as well as
downregulated CD4+IFN-g+ T cells. Thus, our results indicated
that immunomodulation with Sj SEA might have therapeutic
potential in transplantation.

It has been found that allogenic skin grafts survived longer in
patients with advanced S. mansoni infection than those without
parasitic infection, highlighting a potential role of chronic
Schistosoma infection in suppressing rejection (7). Also,
allograft protection by Schistosoma infection was proved in
murine skin transplant models (8). However, this protective
effect relied on the duration of infection, as prolonged graft
survival was only observed when the transplants were performed
60 days after S. mansoni infection, but not 30 days after initial
infection. Further analysis indicated that graft survival was
positively correlated with worm burden. However, previous
studies neglected the impact of schistosome egg, as emerging
studies demonstrated the capacity of modulating immune
responses by schistosome SEA, particularly in autoimmune
disorders and inflammatory diseases (17, 18). Notably, the
schistosome egg burden in the recipients was unknown in
previous studies; thus, the graft survival difference between 30
days of infection and 60 days of infection may at least partially be
the result of different schistosome egg burden. Our data showed
that Sj SEA pretreatment significantly improved the graft
survival. Therefore, Sj SEA is capable of inhibiting rejection of
skin graft, but the relative contribution remains to be
determined. Of note, SEA treatment can avoid the risks of
Frontiers in Immunology | www.frontiersin.org 8
Schistosoma infection, which seems to be more practicable in
translating into the clinical setting in the future. Although Sj
SEA, as xenogeneic proteins, will raise the risk of generating
neutralizing antibodies and limit the repeated use of Sj SEA in
the recipients, the underlying mechanism would provide new
insights into anti-rejection therapy, and ex vivo applications of Sj
SEA in regulating immune cells seem practicable.

T cells play a key role in transplantation, as T cells are
necessary and sufficient to induce rejection. Particularly, Th1
and Th17 cells are critical in determining allograft rejection, as
increased Th1 and Th17 cells were observed in rejection while
inhibiting Th1 and Th17 cells led to prolonged graft survival
(19). Interestingly, Sj SEA showed strong capacity to regulate T-
cell activities, characterized by impaired Th1/Th17 immune
responses, enhanced Th2 immune response, as well as
increased Tregs (20–23). In our study, bioinformatics analysis
of skin grafts showed that Sj SEA treatment led to regulation on
cellular response to IFN-g and activation of IL-17 signaling, thus
modulating the effect of Th1 and Th17 cells. Flow cytometry
analysis showed that SEA treatment suppressed Th1 cells and
upregulated Tregs. Therefore, we inferred that inhibited Th1 and
increased Tregs mediated by Sj SEA contributed to prolongation
of skin graft survival. In addition, we identify 86 DEGs in skin
grafts in the SEA-treated group, and for the first time, we
identified 10 pathways involved in SEA-mediated skin graft
survival prolongation, which may help to understand the
mechanisms. Although T cells play critical roles in rejection,
other immune cells and non-immune cells are also involved in
FIGURE 4 | GSEA in Sj SEA-treated skin graft. We screened and analyzed 22 upregulated pathways and 22 downregulated pathways based on |NES| > 1 and
NOM p-value < 0.05. The upregulated enrichment pathways include adherens junction, glycolysis and gluconeogenesis, and inositol phosphate metabolism, among
others. The downregulated pathways include oxidative phosphorylation, allograft rejection, Parkinson disease, etc.
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B

C

D

A

FIGURE 5 | PPI analysis and screening of the hub gene and key signaling pathways in DEGs. (A) STRING database analyzes DEGs to get 48 nodes and 106 edges
displayed on Cytoscape. Red represents upregulated genes, blue represents downregulated genes, and orange represents hub genes. (B) Further analysis with
cytoHubba obtained the top 15 most significant genes as hub genes. (C) MCODE analysis obtains 12 genes and 52 edges of module 1, MCODE 1 score: 9.455.
(D) The hub gene of the skin graft obtained by RNA sequencing was verified by qPCR. The significance level was tested by unpaired t test (n = 3 for each group).
The data are shown as the mean ± SEM value. At least 3 independent experiments have also obtained similar results. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001.
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transplant immunopathology. Several lines of evidence suggested
that SEA can also regulate innate immune cells, non-immune
cells, metabolism, and apoptosis (23–29). Thus, the protective
effects mediated by SEA seems to be multifaceted. However, the
active molecules and the underlying mechanisms remain unclear
and warrant further study.

Of note, when compared with solid organ transplants, inhibiting
skin transplant rejection and inducing tolerance remain a big
challenge. The obstacles include high level of resident dendritic
cells within skin and colonizedmicrobes mediated Toll-like receptor
stimulation. Moreover, Treg-independent mechanisms were also
involved in Schistosoma-mediated skin graft protection. In our
study, we found that Sj SEA treatment led to reduced cytokine–
cytokine receptor interactions and chemokine signaling pathways.
Thus, Sj SEAmay promote graft survival via inhibiting immune cell
migration and interaction.

GO analysis showed that among the top 10 most significant
pathways in biological processes, cytokine-mediated signaling
pathways and other pathways contain many DEGs that express
chemokines and related ligands and regulate immuno-
inflammatory effects. Interestingly, the hub genes derived from
Cytoscape analysis were similar to those derived from MCODE
analysis, mainly including Ccl2, Ccl3, Ccl4, Ccl7, Cxcl9, Cxcl10,
Xcl1, Ifng, Arg1, and Socs1. Also, the expression of these genes
was validated by RT-PCR. Moreover, most of those genes were
Frontiers in Immunology | www.frontiersin.org 10
concentrated in the cytokine–cytokine receptor interaction
pathway, and this pathway was ranked first among the
pathways derived from KEGG analysis. These results suggested
a potential value of those hub genes in understanding
the mechanism.

As mentioned above, KEGG pathway enrichment analysis
showed that DEGs are mainly related to cytokine–cytokine
receptor interactions and chemokine signaling pathways. These
pathways are closely related to the occurrence and development
of inflammation and autoimmune diseases. The cytokine–
cytokine receptor interaction pathway and the increased
expression of Cxcl9 and Cxcl10 are related to the development
of rheumatoid arthritis (30–33). Moreover, the upregulation of
Ccl2, Ccl3, Ccl4, Ccl7, Cxcl9, and Cxcl10 is also related to the
acute phase of experimental autoimmune encephalomyelitis
(34). The role of these pathways in promoting inflammation
and regulating immune response may provide new ideas for SEA
in the treatment of other autoimmune diseases and transplant
rejection. Although KEGG pathway analysis helped to
understand the mechanism to some extent, the significance of
this analysis was limited by the amount of DEGs. However, skin
graft survival in the Sj SEA group was significantly longer than
that in the control group, and histological examination also
confirmed this phenotype. In addition, it was validated by RT-
PCR results and flow cytometry analysis. Thus, the conclusion
B

A

FIGURE 6 | T-cell subsets in the spleen of mice in each group were analyzed by flow cytometry on day 28 after SEA treatment and on day 7 after skin
transplantation. (A) Compared with the control group, on the 28th day after SEA treatment, the percentages of CD4+IL-4+ T and Treg cells in the spleen of mice in
the experimental group were significantly upregulated, while CD4+ IFN-g+ and CD4+ IL-17+ T-cell ratios were not significantly different. *p < 0.05, **p < 0.01, n = 6.
(B) On the 7th day after transplantation, the percentages of CD4+ IL-4+ T and Treg cells in the spleen of mice in the experimental group were still significantly
upregulated compared with the control group, and there was no significant difference in the ratio of CD4+ IL-17+ T cells, but compared with the control group, the
percentage of CD4+ IFN-g+ T cells was significantly decreased. *p < 0.05, **p < 0.01, n = 6.
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from KEGG pathway analysis was weak, but it contributed to the
mechanism study to some extent.

Among these hub genes, those immunomodulatory genes
may play an important role in Sj SEA-mediated protection in
skin transplantation. Compared with the control group, the
expression of chemokines such as Ccl2, Cxcl9, and Cxcl10 was
downregulated in the SEA group. These chemokines mainly
played a role in the aggregation of neutrophils and the
activation of monocytes and lymphocytes (35). The expression
of Arg1 is characteristic on M2 macrophages. Previous studies
have found that SEA and its subsets can upregulate the
expression of Arg1 in the host, promoting M2 macrophage
polarization and exerting an anti-inflammatory effect (36, 37).
IFN-g is a strong inducer of Th1; however, Schistosoma and its
secreted products can reduce its expression in the host, reducing
the degree of inflammation (38–40). XCL1 is expressed by
various immune cells, including activated CD8 + T cells, CD4 +

T cells, NK cells, NKT cells, gd T cells, and thymic medullary
epithelial cells (41–46). Similar to IFN-g, the expression of XCL1
in CD8+ T cells, CD4+ Th1 cells, and NK cells seems to be related
to the Th1-type immune response (42, 44). The decreased
expression of XCL1 further suggested that Sj SEA has a
regulatory role in host innate immunity and adaptive immunity.

Several lines of evidence have showed that schistosomes and
their egg antigens can affect host metabolism (47, 48). A recent
study found that S. japonicum infection led to changes in the
expression of genes related to gut glucose and lipid metabolism,
and further investigation identified that SEA changed cellular
metabolic responses by inhibiting phosphatase and tensin
homolog deleted on chromosome ten (PTEN) in enterocytes
(49). In this study, we performed GSEA on the KEGG dataset,
and we found that SEA-mediated prolongation of skin graft
survival was not only associated with reduced allograft rejection,
but also related to alteration in metabolism, such as decreased
oxidative stress and increased glycolysis. Although T-cell
inflammatory function is associated with increased glycolysis,
activated Treg may also use glycolysis for proliferation and when
migrating into tissues (50, 51). Flow cytometry analysis showed
increased CD4+Foxp3+ Treg cells and CD4+IL4+ T cells without
a dramatic increase in CD4+IFN-g+ T cells and CD4+IL17+ T
cells in the SEA treatment group. Thus, the alteration in
metabolism in the skin graft of the SEA treatment group,
which was indicated by GSEA, seems to be more correlated
with increased CD4+Foxp3+ Tregs. However, SEA treatment-
mediated alteration in metabolism was not specifically
determined by both immune cells and non-immune cells,
which remains not well defined and requires further study.

In addition to PPI analysis, some upregulated genes also
deserve our attention. Nuclear receptor subfamily 1 group D
member 1 (NR1D1) is a transcriptional repressor that plays an
important role in inflammatory responses. NR1D1 is implicated
in the immune system as it has been shown to inhibit Toll-like
receptor 4, Cx3cr1, and IL-6 expression in macrophages (52).
Also, NR1D1 regulates the development of Th17 cells and Th17
cell-mediated autoimmune diseases (53). Peptidoglycan
Frontiers in Immunology | www.frontiersin.org 11
recognition proteins (Pglyrps) are a family of innate immune
proteins expressed in the skin. Pglyrp4 limits the overactivation
of Th17 cells by promoting the accumulation of Treg cells at sites
of chronic inflammation, thereby protecting the skin from
excessive inflammatory responses to cellular activators and
allergens (54). The CYP2S1 gene is an extrahepatic cytochrome
P450 that is constitutively or inducibly expressed in lung, spleen,
skin, and some other tissues (55). CYP2S1 may inhibit the
expression of many genes in NHEKs, including IL1b, IL8,
IL33, IL36, LL37, CXCL10, and CCL20. These chemokines or
cytokines are key mediators of the development of psoriasis (56).
CCL20 was most altered in CYP2S1-overexpressed or CYP2S1-
silenced cells, and it was the only receptor for CCR6. Multiple
studies have shown that the CCL20/CCR6 axis plays a critical role
in the recruitment of Th17 cells to the epidermis and is involved
in maintaining the IL23/Th17 signaling pathway (57, 58).
MMP10 is a member of the matrix metalloproteinase (MMP)
family. Studies have shown that Mmp10 drives macrophage
polarization in the M2 direction, and this mechanism may be
related to tolerance through TLR7 signaling (59).

In summary, this study found that Sj SEA treatment
suppressed rejection and prolonged skin graft survival by
regulating immune responses. Bioinformatics analysis
identified 86 DEGs between the Sj SEA treatment group and
the control group, including 39 upregulated genes and 47
downregulated genes. Further analysis indicated that the
transplant protection effect was related to Sj SEA-mediated
regulation on cellular response to interferon-g, activation of IL-
17 signaling and chemokine signaling pathways, as well as
cytokine–cytokine receptor interaction. Moreover, Sj SEA
seemed to modulate both adaptive immunity and innate
immunity involved in transplant immunopathology. Therefore,
Sj SEA treatment might be a new therapeutic strategy to facilitate
anti-rejection therapy and even to induce tolerance. However,
further study is needed to detect the underlying mechanism.
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