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Lipids are involved in both energy metabolism and signaling transduction. Abnormal lipid
metabolism in T cells is associated with the differentiation, longevity and activity of T cells,
which has received increasing concern since its firstly reported in 1985. To evaluate the
trends of lipid metabolism in T cells and map knowledge structure, we employed
bibliometric analysis. A total of 286 related publications obtained from the Web of
Science Core Collection published between 1985 and 2022 were analyzed using
indicators of publication and citation metrics, countries, institutes, authors, cited
references and key words. The present research status, the global trends and the
future development directions in lipid metabolism and T cells were visualized and
discussed. In summary, this study provides a comprehensive display on the field of
lipid metabolism in T cells, which will help researchers explore lipid metabolism in T cells
more effectively and intuitively.
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INTRODUCTION

T lymphocytes (also named T cells) are the main components of lymphocytes, which derived from
bone marrow pluripotent stem cells. Immunotherapy based on T cells has been confirmed as a
successful method for the treatment of various diseases (1–3). The differentiation, longevity,
durability, and functionality of T cells play vital roles in regulating the efficacy of
immunotherapy, which are largely determined by the metabolic activity of glucose, lipid and
amino acid (4, 5). Clarifying the metabolic status in T cells can help to control T cell differentiation
and fate, so that the effect of immunotherapy based on T cells can be amplified.

Lipids, consisting of acylglycerols, isoprenoids, sterols, and phospholipids, etc., are hydrophobic
biomolecules making up biological membranes (6, 7). Besides participating in energy metabolism,
lipids on the membranes can also give rise to signaling transduction in response to extracellular
stimuli through working as second messengers, highlighting the importance of lipid components on
membrane (8, 9). As signaling molecules, lipid metabolism in cells, including biosynthesis, storage
and degradation, participates in controlling the status and function of various cells, including T
cells. Actually, the correlation between lipid metabolism and T cells has received limited but
increasing concern since related publication firstly reported in 1985 (9). Till now, the effect and
status of lipid metabolism has been partly revealed in regulating the differentiation, longevity and
org May 2022 | Volume 13 | Article 8840301
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activity of T cells. For instance, Pearce et al. (10) has
demonstrated that the deficiency of mitochondrial long chain
fatty acid oxidation (LC-FAO) caused by specific deletion of TNF
receptor associated factor 6 (TRAF6) in T cells results in defect in
their ability to generate long lived memory T (TM) cells,
highlighting that LC-FAO is indispensable to the formation of
TM cells. Opposite results indicated that LC-FAO is not required
for TM cell formation in both human and mice (11). These
contradictory results suggested the complicated and vital effect of
lipid metabolism in T cells. However, limited studies have been
published in this field, which means that researches on lipid
metabolism in T cells is still in development stage. Analyzing
what has been achieved in this field can help us to estimate the
developmental trend in lipid metabolism in T cells and guide
experimentation strategies and funding decisions.

Bibliometrics is a method exploring library and information
science through comprehensively analyzing the bibliographic
mater ial based on quanti tat ive measurement (12) .
Bibliometrics can help researchers quickly grasp the hotspots
and development trends in their fields, laying a cornerstone for
the direction of future researched (13, 14). Over the years, the
outcomes of application of bibliometrics in immune cells are
fruitful (15–17). However, bibliometric study on the relationship
between T cells and lipid metabolism is still a void. Therefore, we
here performed a bibliometrics study on lipid metabolism in T
cells based on data published to help to make further decisions in
this field.
MATERIALS AND METHODS

Data Sources and Search Strategies
The Web of Science Core Collection (WoSCC) was used to search
and obtain data on T cells and lipid metabolism in the past 40 years
Frontiers in Immunology | www.frontiersin.org 2
(from 1985 to 2022). Literature retrieval was conducted within one
day (February 19, 2022) to avoid fluctuations in citations caused by
rapid updates of publications. The search formula was set to TS= (T
lymphocytes OR T cells) AND TS=(lipid metabolism). A total of
2911 studies were acquired via this step. Next, 128 articles including
meeting articles (n=55), online publication (n=23), book chapter
(n=20), editorial materials (n=14), meeting abstract (n=12) and
others (n=4) were excluded. Further, only articles written in English
was kept (n=2761). Finally, we read the title, abstract or even full
text of these publications to screen out papers closely related to the
topic we studied (lipid metabolism in T cells). The topics we mainly
focus on are how T cells recognized extracellular lipid, how lipid
metabolism regulated the fate of T cells and how lipidmetabolism in
T cells was regulated. Finally, only 290 publications were enrolled
for bibliometrics analysis. The detailed process was shown in
Figure 1. The studies used included the following information:
the number of publications and citations, titles, publication year,
countries/regions, affiliations, authors, journals, key words and
references. This procedure was conducted by three researchers
(PC, CZ and SJ) independently and any potential differences were
discussed. The publications list of the 290 articles was provided in
Supplementary Table 1.

Statistical Analysis
All valid data were imported to Microsoft Office Excel 2019,
HisCite (version 2009.08.24), VOSviewer (version 1.6.18),
CiteSpace (version 5.8.R2), and Bibliometrix 4.1.0 Packages
based on the R language to perform visual analysis.

Microsoft Office Excel 2019 was employed to plot
radar charts.

HisCite (18) was employed to calculate the number of
publications, total local citation score (TLCS) and total global
citation score (TGCS) for each publication year, and top
countries, authors, journals and institutions.
FIGURE 1 | Flowchart of the screening process.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Lipid Metabolism in T Lymphocytes
Vosviewer (19) was hired to visualize the bibliometric
network including the cooperation among countries and
institutions. The colors of the nodes represent various times or
clusters; the size of the nodes means the number of publication;
the thickness of the line represents the strength of the relation.

CiteSpace (20)was used to conduct cluster analysis andbursts of
references and keywords, timeline views. Cluster analysis of key
words can identify vital areas on lipidmetabolism inT cells through
classifying keywords and references. The modularity Q > 0.3 and
mean silhouette > 0.5 indicated the clustering results are enough
and convincing. Keywords and references bursts can be used to
detect new research trends on lipid metabolism in T cells.

The Bibliometrix Packages (21) is a tool based on the R
language used for bibliometric analysis, which was used to
analyze the annual growth rate of publications and top 10 cited
references here.
RESULTS

Analysis of the Overall Distribution
A total of 194 original researches and 96 reviews associated with
lipid metabolism in T cells were screened out. Curve fitting
Frontiers in Immunology | www.frontiersin.org 3
analysis (Figure 2A) revealed an overall increasing trend of the
annual amount of publications on lipid metabolism in T cells
since its first reported in 1985, and the annual growth rate is
3.39%. During 1985 to 2012, less than 10 publications on lipid
metabolism in T cells was published annually. Specially, in the
earliest six years (1985-1990), only three papers were published
in 1985 (written by Goppelt M), 1987 (written by Cockcroft S)
and 1990 (written by Stephen FD), respectively. Goppelt et al. (9)
proposed the effect of lipid metabolism in the activation of T cells
for the first time. Closed to the same time, Cockcroft et al. (22)
identified activated inositol lipid kinase as a main signal in the
activation of human T cells. After that, Stephen et al. (23)
identified the effect of free fatty acids on spectrin organization
in lymphocytes. Afterwards, the number of publications
gradually increased from 11 in 2013 to 45 in 2021. Although
the number of the papers is still not very high, the average annual
growth increased rapidly. Especially, the amount of papers in
2021 (n=45) was even slightly higher than that in the earliest 20
years (1985-2003, n=41). Although the annual citation of
publications fluctuated over the past years, an overall increasing
trends could still been found (Figure 2B). The increased annual
publication and citation highlighted the rapidly progression of
interest in the field of lipid metabolism in T cells.
A

B

FIGURE 2 | Overall distribution of publication outputs on lipid metabolism in T cells (A) Global annual output trends; (B) Global annual citation.
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Analysis of Countries/Regions
From1985 to 2022, a total of 32 countries performed studies on lipid
metabolism in T cells, and the global article productivity is shown in
Figure 3A. The top 11 with the highest number of outputs were
displayed in Table 1. Especially, the USA exhibited the highest
publications with a total of 123 papers associated with lipid
metabolism in T cells over past years. Then, China (n=42) and UK
(n=37) took the second and third places, respectively (Figure 3B).

The most cited countries for published researches are the
USA (cited 12227 times), followed by UK (cited 2082 times) and
Canada (cited 1646 times) (Figure 3C). A further co-authorship
network of countries/regions with equal to or more than five
publications were constructed. The network demonstrated that
the cooperation among countries displayed is relatively close.
Among them, the USA has been in cooperation with almost all
other countries, and Germany possess the most closest
cooperation with the USA (Figure 3D).

Analysis of Institutions and Authors
A total of 473 institutions have conducted researches on lipid
metabolism in T cells. The top 12 institutions with the most
Frontiers in Immunology | www.frontiersin.org 4
publications are listed in Table 2. Among them, Harvard
Medical School (n=10) and St Jude Children’s Research
Hospital in the USA (n=10) were the leading institutions in
terms of outputs, followed by Karolinska Institute in Sweden
(n=9) (Figure 4A). The institutions with the publication number
greater than or equal to four were used to construct co-authorship
network. The network demonstrated that the cooperation among
institutions presented is relatively not strong, suggesting enhanced
cooperation among institutions (Figure 4B).

A total of 1896 researchers have published articles on lipid
metabolism in T cells till now, and the top 19 productive authors
are listed in Table 3. Among them, Chi H was the most
productive author with 10 publications, followed by Chapman
NM (published 6 papers) and Zhang J (published 6 papers).
Pearce EL is the most cited author (cited 1751 times), followed by
Rathmell JC (cited 1471 times) and Chi H (cited 826 times).
Further, a timeline of authors who has had published papers on
lipid metabolism in T cells were drawn (Figure 4C). Among the
top 19 productive authors, Xu QB has keened on this field for
more than 30 years since publishing his first paper in 1991;
Calder PC and Curi R have keened on this field for about 30
A

B

D

C

FIGURE 3 | Analysis of countries/regions. (A) Geographical distribution of global output; (B) Radar map of the top 10 productive countries; (C) Radar map of TGCS
of the top 10 productive countries; (D) Visual cluster analysis of cooperation among countries.
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years since publishing their first paper in 1993; Wick G has only
published papers between 1991 and 1995; and the other 15
authors engaged in lipid metabolism in T cells after 2001.

Analysis of Journals
A total of 153 journals accepted studies on lipid metabolism in T
cells, and the top 10 core journals are shown in Table 4. A total of
83 papers were published in these 10 journals. Frontiers in
Immunology (published 19 articles) was the most prolific
journal, followed by Journal of Immunology (published 10
articles) and Nature (published 10 articles). Nature was the
most cited journal (3137 times), followed by Journal of
Immunology (2197 times) and Immunity (1031 times).

Analysis of Cited and Co-Cited References
Both cited and co-cited references are foundation for studying the
filed researchers interested in, which can provide basic
background information. Therefore, we performed an analysis
on cited and co-cited references. The top 10 cited references
among the 290 publications were presented in Table 5, and the
top 10 co-cited references was listed in Table 6. The article with
the most citation and co-citation was written byMichalek RD et al.
(77) in 2011 who revealed that lipid oxidation based activation of
AMP-activated protein kinase is required for the generation of
regulatory T cells (Tregs). Further, we build a co-cited reference
Frontiers in Immunology | www.frontiersin.org 5
network cluster analysis. The modularity Q was 0.8873, and the
mean silhouette value was 0.9126, suggesting the excellent quality
of the cluster analysis. Nine clusters with the highest K values were
plotted (Figure 5A), which contain “tumor microenvironment”,
“glycosphingolipids”, “th2”, etc. Additionally, we conducted a
timeline for these clusters (Figure 5B). Relatively, the
correlation between lipid metabolism and Th2 cells, and the
application of chemicals targeting lipid metabolism in cancer
treatment are newly concerned by researchers. Finally, a
references burst was performed based on the top 10 co-cited
references with the strongest citation (Figure 5C). We found that
the research published by Kidani et al. (2013) (76) possess the
highest bursts strength (8.58), in which they pointed out the
necessity of sterol regulatory element-binding proteins (SREBP)
in affecting lipid metabolism in activated CD8+ T cells. Besides,
Yang W had a relatively high citation bursts in recent years.

Analysis of Keywords
We firstly constructed a network based on extracted keywords
(Figure 6A). Interestingly, we found the existence of dendritic
cells, suggesting the crosstalk between immune cells mediated by
lipid. Liu et al. (2019) (74) demonstrated that tregs can enhance
the SREBP1-dependent metabolic fitness of macrophages
through inhibition of CD8+ T cell-released interferon gamma
TABLE 2 | The top 12 productive institutions concerning lipid metabolism in T cells.

Rank Institution Country Counts TLCS1 TGCS2

1 Harvard Medical School USA 10 (3.4%) 13 670
2 St Jude Children’s Research Hospital USA 10 (3.4%) 44 826
3 Karolinska Inst Sweden 9 (3.1%) 4 148
4 Harvard University USA 8 (2.8%) 5 1473
5 Stanford University USA 8 (2.8%) 22 1308
6 National Cancer Institute USA 6 (2.1%) 11 494
7 French National Centre for Scientific Research French 6 (2.1%) 8 558
8 Duke University USA 5 (1.7%) 68 1590
9 University Oxford UK 5 (1.7%) 16 278
10 University Penn USA 5 (1.7%) 41 1440
11 Vanderbilt University USA 5 (1.7%) 4 162
12 Yale University USA 5 (1.7%) 17 492
May 2022
 | Volume 13 | Article
1 TLCS, total local citation score.
2 TGCS, total global citation score.
TABLE 1 | The top 11 productive countries concerning lipid metabolism in T cells.

Rank Country Counts TLCS1 TGCS2

1 USA 123 (42.4%) 387 12227
2 China 42 (14.5%) 0 512
3 UK 37 (12.8%) 33 2082
4 Germany 28 (9.7%) 50 1415
5 Italy 19 (6.6%) 18 411
6 France 17 (5.9%) 25 826
7 Japan 17 (5.9%) 0 313
8 Switzerland 14 (4.8%) 17 811
9 Canada 11 (3.8%) 59 1646
10 Austria 10 (3.4%) 11 298
11 Sweden 10 (3.4%) 4 158
1 TLCS, total local citation score.
2 TGCS, total global citation score.
884030
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(IFN-g). However, the crosstalk between T cells and other
immune cells is nearly void when discussing lipid metabolism.
Thus, studies on exploring this field should be enhanced to fulfill
the gap. Subsequently, we built a keywords cluster analysis, and
13 clusters were obtained (Figure 6B). The modularity Q and the
mean silhouette value of the cluster were 0.624 and 0.8485,
respectively, indicating the outstanding quality of this analysis.
Based on the clusters, we further plotted a timeline (Figure 6C).
The timeline of clusters showed that fatty acid oxidation is a
relatively new selection for lipids type studied. Finally, the top 10
keywords with the strongest bursts indicated that regulatory T
Frontiers in Immunology | www.frontiersin.org 6
cell (Treg) takes the first place, especially in recent years,
suggesting studies on lipid metabolism in regulating tregs
attracted the attention of researchers (Figure 6D).
DISCUSSION

In this study, we analyzed the main knowledge domain and
emerging trends of lipid metabolism in T cells. Increasing annual
outputs and citations of publication were found with time. The
USA was the most productive country among the 32 countries,
and nine of the top 12 productivity institutions are located in the
USA. Among the authors work in the institutions in the USA,
Chi H was the most representative. His team mainly
concentrated on the effect of lipid metabolism on the
differentiation and maintenance of T follicular helper (T-FH)
and tregs (72, 73, 75, 78). Their latest study on T-FH cells
revealed cytidine diphosphate (CDP)-ethanolamine pathway,
along with C-X-C motif chemokine receptor 5 (CXCR5) as
essential factors for T-FH cell differentiation (72). Besides, they
found that inhibiting SREBPs-depended lipid synthesis in tregs
can unleash effective and safe antitumour immune responses,
highlighting the potential of SREBPs as checkpoints for tregs
(78). Among the top 12 productive institutions, the most cited
institution is the Duke University in the USA (published 5
articles, cited 1574 times). The most cited publication in the
Duke University is written in 2011 by Rathmell JC who found
that CD4+ T cell subsets require distinct metabolic programs
(77). In detail, they reported that Th1, Th2, and Th17 cells are
highly glycolytic due to the highly expressed glucose transporter
glucose transporter 1 (Glut1) on the membrane, while low
expressive level of Glut1 but high lipid oxidation rates are
detected in tregs.

According to the published documents, lipid metabolism
regulates the fate of both CD4+ and CD8+ T cells (Table 7,
Figure 7). Based on the timelines of references and keywords,
and burst of keywords, the differentiation of CD4+ T cells,
especially tregs, draw large attention recently. Th17 cells are
characterized by the secretion of pro-inflammatory cytokine IL-
17 to induce inflammatory diseases and tumors, and its
differentiation is positively controlled by the nuclear receptor
retinoic acid receptor-related orphan receptor g (RORgt) (41,
42). Accumulation of the cholesterol precursor desmosterol can
specifically activate RORgt and subsequently trigger Th17
differentiation (27). Similarly, 7b, 27-dihydroxycholesterol, a
derivative oxysterol of cholesterol, was identified as the most
selective and potent agonist for RORgt, which can restore the
inhibitory effect of ursolic acid (an RORgt inhibitor) on Th17
differentiation (29). In summary, cholesterol uptake and
biosynthesis programs are enhanced, whereas cholesterol efflux
and metabolism programs are inhibited during Th17
differentiation. Similar effect of cholesterol on tregs
differentiation has also been confirmed, and liver kinase B1
(LKB1) was identified as a key regulator. Researchers have
proved the mevalonate pathway (the first step of cholesterol
synthesis) as the most affected pathway in tregs with specific
TABLE 3 | The top 19 productive authors concerning lipid metabolism in T cells.

Rank Author Counts TLCS1 TGCS2

1 Chi H 10 44 826
2 Chapman NM 6 5 81
3 Zhang J 6 3 52
4 Calder PC 5 0 279
5 Curi R 5 4 94
6 Pearce EL 5 44 1751
7 Zeng H 5 39 736
8 Bensinger SJ 4 76 765
9 Berod L 4 19 303
10 Coquet JM 4 4 95
11 Getz GS 4 4 292
12 Parks JS 4 38 553
13 Rathmell JC 4 67 1471
14 Reardon CA 4 4 292
15 Tibbitt CA 4 4 95
16 Vogel P 4 42 705
17 Wei J 4 5 96
18 WICK G 4 5 45
19 Xu QB 4 5 59
1 TLCS, total local citation score.
2 TGCS, total global citation score.
A B

C

FIGURE 4 | Analysis of institutions and authors. (A) Radar map of the top 12
productive institutions; (B) Visual cluster analysis of cooperation among
institutions. (C) The top authors' production over time.
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mTOR deletion (75). Also, tregs with LKB1-deficient showed
impaired suppressive activity, which can be restored by the
enhancement of the mevalonate pathway (43). Besides, it has
been shown that geranylgeranyl pyrophosphate (GGPP), an
intermediate metabolites of cholesterol synthesis, amplifies
Tregs differentiation via enhancing signal transducer and
activator of transcription 5 (STAT5) phosphorylation in colitis
(24). However, there exists opposite evidence demonstrating a
conversed effect of the cholesterol biosynthesis pathway (CBP)
on tregs. Researchers showed that targeting SREBPs, a key
regulator of cholesterol synthesis, in tregs can unleash its
effective anti-tumour responses without autoimmune toxicity
(78). The function of other lipids on CD4+ T cells has also been
studied previously. For instance, naive CD4+ T cells with
Frontiers in Immunology | www.frontiersin.org 7
depletion of acid sphingomyelinase (ASM), which is a
phospholipids hydrolase enzyme, possess a greater probability
to differentiate into Th1 and Th17 cells which can facilitate anti-
tumor immunity in non-small-cell lung cancer (31). Besides,
Michalek RD et al. (77) revealed that lipid oxidation based
activation of AMP-activated protein kinase is required for the
generation of Tregs. However, Raud et al. (11) and Saravia et al.
(44) argued that fatty acid oxidation medicated by carnitine
palmitoyltransferase 1A (CPT1A) is not indispensable to tregs
generation or function in vivo. Although dispute exists in the
effect of lipids on tregs, the importance of them in CD4+ T cells
differentiation should be attached.

In addition to CD4+ T cells, lipids are also indispensable to
CD8+ T cells. Cai et al. (45) indicated that activation of RAR
TABLE 5 | The top 10 cited references among the 290 publications.

Rank First Author Year Journal DOI

1 Michalek RD (77) 2011 Journal of Immunology 10.4049/jimmunol.1003613
2 Pearce EL (10) 2009 Nature 10.1038/nature08097
3 Daynes RA (69) 2002 Nature Review Immunology 10.1038/nri912
4 Patsoukis N (67) 2015 Nature Communications 10.1038/ncomms7692
5 Zeng H (75) 2013 Nature 10.1038/nature12297
6 Daynes RA (69) 2002 Cell 10.1016/j.cell.2008.04.052
7 Patsoukis N (67) 2015 Immunity 10.1016/j.immuni.2014.06.005
8 Daynes RA (69) 2002 Journal of Immunology 10.4049/jimmunol.164.3.1364
9 Patsoukis N (67) 2015 Nature 10.1038/35009119
10 Ma C (71) 2016 Nature 10.1038/nature16969
May 2022
TABLE 6 | The top 10 co-cited publications in lipid metabolism in T cells.

Rank First Author Year Journal DOI

1 Michalek RD (77) 2011 Journal of Immunology 10.4049/jimmunol.1003613
2 Berod L (79) 2014 Nature Medicine 10.1038/nm.3704
3 Pearce EL (10) 2009 Nature 10.1038/nature08097
4 Kidani Y (76) 2013 Nature Immunology 10.1038/ni.2570
5 O’Sullivan D (68) 2014 Immunity 10.1016/j.immuni.2014.06.005
6 Shi LZ (66) 2011 Journal of experimental medicine 10.1084/jem.20110278
7 Wang RN (64) 2011 Immunity 10.1016/j.immuni.2011.09.021
8 Bensinger SJ (70) 2008 Cell 10.1016/j.cell.2008.04.052
9 van der Windt GJW (65) 2012 Immunity 10.1016/j.immuni.2011.12.007
10 Zeng H (75) 2013 Nature 10.1038/nature12297
TABLE 4 | The top 10 core journals publishing lipid metabolism in T cells.

Rank Journal Counts TLCS1 TGCS2

1 Frontiers in Immunology 19 (6.6%) 0 428
2 Journal of Immunology 10 (3.4%) 88 2197
3 Nature 10 (3.4%) 93 3137
4 International Journal of Molecular Sciences 9 (3.1%) 0 34
5 Immunity 7 (2.4%) 24 1031
6 Cell Reports 6 (2.1%) 9 160
7 Nature Immunology 6 (2.1%) 41 609
8 Proc Natl Acad Sci U S A 6 (2.1%) 35 564
9 European Journal of Immunology 5 (1.7%) 19 269
10 Immunology 5(1.7%) 5 147
| Volume 13 | Article
1 TLCS, total local citation score.
2 TGCS, total global citation score.
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related orphan receptor A (RORɑ) with SR1078 (a cholesterol
synthetic agonist) can impair the survival and proliferation of
activated CD8+ T cells. Besides, ablation of cytochrome P450
family 27 subfamily A member 1 (CYP27A1), a rate-limiting
enzyme responsible for 27-hydroxycholesterol biosynthesis, could
dramatically inhibit metastasis of cancers by decreasing the amount
of CD8+ T cells (30). These results indicated a positive cholesterol
content in CD8+ T cells enhances their effect. However, excessive
cholesterol in tumor microenvironment was proved to be an
inhibitor regulating the anti-tumor activity of CD8+ T cells (46).
The role of other lipids on CD8+ T cells has also been explored
previously. For instance, Corrado et al. (39) found that deficiency of
cardiolipin-synthesizing enzyme PTPMT1 results in poor response of
CD8+ T cells to antigens due to the lack of essential cardiolipin.
Additionally, Pearce et al. (10) has indicated that the deficiency of
long chain fatty acid oxidation (LC-FAO) in T cells leads to defect in
Frontiers in Immunology | www.frontiersin.org 8
their ability to generate long lived memory T (TM) cells, However,
Raud et al. (11) demonstrated that LC-FAO is not required for TM
cells formation in vivo. Besides, Pan et al. (47) reported that specific
deficiency of fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5)
hampers exogenous free fatty acid uptake by mouse CD8+ tissue-
resident Tm cells and reduces their survival, while having no effect on
the survival of central Tm cells in lymph nodes.

In light of the effect of lipid metabolism on T cells, clearing
drugs or inhibitors targeting key enzymes regulating lipid
metabolism seems to be helpful (Table 8, Figure 7). Among
these drugs, the cholesterol-lowering chemicals Statin, an
inhibitor of HMGCR, is the most widely used. The most
recognized role of statin is to promote the differentiation of
CD4+ T cells into Th2, whereas to inhibit that into Th1 and Th17
in inflammation or autoimmune diseases (49–54). However,
Shimada et al. (48) identified statin as a drug inducing Th1 in
A

B

C

FIGURE 5 | Analysis of cited and co-cited references. (A) Cluster analysis of co-cited references; (B) Timeline distribution of the top seven clusters; (C) Top 10
references with the most strongest citation bursts.
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patients with acute coronary syndrome. As for tregs, the effect of
statins is also in dispute. Studies have reported that tregs
proliferation, activation and immunological suppressive ability
are largely restricted in the presence of simvastatin (75).
Opposing data were available regarding the role of statins in
patients with rheumatoid arthritis or acute coronary syndrome
in which increased number of tregs were detected after treatment
with statins (55, 56). For CD8+ T cells, statins have been clarified
to attenuate T cells exhaustion in subjects with HIV-1 infection
(57) and minimize the incidence of tumor recurrence of breast
cancer (58). Above evidence suggest the potential value of statins
in inflammation, autoimmune diseases and tumors. However,
most studies published now are mainly on statins, and statins
may elevate the amount and activity of tregs in some patients,
Frontiers in Immunology | www.frontiersin.org 9
which may lead to a terrible outcome for some patients with
cancers. Understanding the reason why some effective therapies
targeting lipid metabolism function in some patients but not in
others, mining new drugs targeting other key enzymes, and
exploiting the combined use of drugs targeting lipid
metabol i sm with immunotherapy, radiotherapy or
chemotherapy are our future research direction.

Although we summarized the past and looked to the trends in
further in the field of lipid metabolism in T cells through a
relatively comprehensive bibliometrics analysis, there still exist
several limitations. First, despite our efforts to obtain the most
comprehensive literature, some articles were still not included in
the analysis, which may cause bias in the analysis. Second, some
of the studies with excellent quality published in recent years
A B

D

C

FIGURE 6 | Analysis of Keywords. (A) Co-network of keywords; (B) Cluster analysis of keywords; (C) Timeline distribution of the top 15 clusters; (D) Top 10
keywords with the most strongest bursts.
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TABLE 7 | The effect of part metabolites generated in lipid metabolism on T cells.

Metabolites Generation Pathway Key Enzymes Effect on T cells

FPP1/GGPP2 Metabolites in CBP HMGCR3 Treg ↑ (24, 25)13

Th1 ↑ (26)
Desmosterol Precursor of cholesterol HMGCR3 Th17 ↑ (27)
25-hydroxylase Derivative of cholesterol CYP25A14 Th1 ↓ (28)14

27-hydroxylase Derivative of cholesterol CYP27A15 Th17 ↑ (29)
CD8+ T ↓ (30)

sphingosine-1-phosphate Hydrolyzate of phospholipids ASM6 Th1 ↓, Th17 ↓ (31)
Th2 number ↑, activity ↓ (32)
Treg ↑ (33)
CD8+ T ↓ (34)

Prostaglandin E2 Prostaglandin COX7, mPGES18 Th1 ↑, Th17 ↑ (35, 36)
Treg ↑ (37)
CD8+ T ↑ (38)

Cardiolipin Glycerophospholipids GPAM9, PTPMT110 CD8+ T ↑ (39)
Platelet activating factor Glycerophospholipids GPAM9 Th17 ↑ (39)
Long-chain fatty acids Fatty acid ACC111, SCD112 Th1 ↑, Th17 ↑ (40)
Short-chain fatty acids Fatty acid ACC111, SCD112 Treg ↑ (40)
Frontiers in Immunology | www.frontiersin.org
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1FPP, farnesyl pyrophosphate; 2GGPP, geranylgeranyl pyrophosphate; 3HMGCR, HMG-CoA reductase; 4CYP25A1, cytochrome P450 family 25 subfamily A member 1; 5CYP27A1,
cytochrome P450 family 27 subfamily A member 1; 6ASM, acid sphingomyelinase; 7COX, cytochrome c oxidase; 8mPGES1, prostaglandin E synthase; 9GPAM, glycerol-3-phosphate
acyltransferase, mitochondrial; 10PTPMT1, protein tyrosine phosphatase mitochondrial 1; 11ACC1, acetyl-CoA carboxylase 1; 12SCD1, stearoyl-Coenzyme A desaturase 1.
13↑, increased; 14↓, decreased.
FIGURE 7 | The process of lipid metabolism in T cells. The citrate is exported from mitochondria to cytosol by mitochondrial citrate carriers to generate acetyl-CoA
and. Acetyl-CoA is the substrate for the biosynthesis of fatty acid synthesis (FAS), cholesterol (CBP), phospholipids and other active lipids. For CBP, HMG-CoA
reductase (HMGCR) is the rate-limiting enzyme mediating the synthesis of acetyl-CoA to farnesyl pyrophosphate (FPP), and statins are specific chemicals inhibiting
HMGCR. Squalene monooxygenase (SE) is the rate-limiting enzyme mediating the synthesis from squalene to cholesterol, and naftifine, terbinafine, NB-598 are
specific chemicals targeting SE. After cellular distribution, excessive cholesterol is disposed of either through exporting outsides the cells or storing as cholesterol
esters via cholesterol acyltransferase (ACAT) enzymes, and CI-1011, CI-976, CP-113, CP-818 and K604 are inhibitors of ACAT1. For FAS, Acetyl-CoA is firstly
converted into malonyl-COA by acetyl-CoA carboxylase 1 (ACC1), and NDI-010976 and PF-05221304 repress ACC1. Malonyl-COA is further used to synthesize
fatty acid through the regulation of FASN ans SCD1. TVB2640 and FT4101 specific target FASN, and specific Aramchol targets stearoyl-Coenzyme A desaturase 1
(SCD1). Fatty acid is synthesized to phospholipids which can hydrolyze to sphingosine-1-phosphate (S1P) through acid sphingomyelinase (ASM), and Amitriptyline
suppresses ASM. and it can participate fatty acid oxidation (FAO) after turning into Acyl-COA. Besides, fatty acid can also participate in fatty acid oxidation after
entering into mitochondria, which is mediated by CTP1A, and etomoxir is a chemical targeting carnitine palmitoyltransferase 1A (CPT1A).⊣: inhibition.
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may failed to obtain excessive citations due to the limited time
span, they had not been highlighted in this analysis. Thirdly, this
project is performed based on machine algorithm, which may
lead to a slightly insufficient evidence.

Our results indicated that researches on lipid metabolism in T
cells are developing rapidly at present. The USA is a major
producing country, which generates many breakthroughs in this
field. Frontiers in Immunology and Nature were the most prolific
and cited journals, respectively. Finally, the correlation between
lipid metabolism and Th17 and Tregs cells attracted increasing
attention recently.
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