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The antiviral response of natural killer (NK) cells and CD8+ T cells is weak in patients with
chronic hepatitis B (CHB) infection. However, the specific characteristics of these cells and
the association between NK cells and CD8+ T cell dysfunction is not well known. In this
study, higher galectin-9 (Gal-9) expression was observed in circulating NK cells from CHB
patients than from healthy controls and was found to contribute to NK cell dysfunction. In
addition, circulating CD8+ T cells showed obvious dysfunction and overexpressed TIM-3,
the natural receptor of Gal-9, during active CHB infection. Gal-9+ and Gal-9- NK cells from
active CHB patients were sorted and cocultured with autologous CD8+ T cells. The
proportion of tetramer+CD8+ T cells and the cytokines production of CD8+ T cells were
lower after cocultivation with Gal-9+ than with Gal-9- NK cells. We showed that in vitro
depletion of NK cells increased circulating hepatitis B virus (HBV)-specific CD8+ T cell
responses in patients with active CHB infection. Because Gal-9 is increased in the serum
of CHB patients, CD8+ T cells were sorted and cultured with exogenous Gal-9, resulting in
lower IFN-g, TNF-a, CD107a, and granzyme B levels, decreased expression of the
activation receptor CD69, increased expression of TIM-3, and a high percentage of
early apoptotic CD8+ T cells. Blocking Gal-9 or TIM-3 in vitro in a culture of peripheral
blood mononuclear cells (PBMCs) stimulated with HBV peptide from active CHB patients
restored CD8+ T cell function. However, blocking Gal-9 in vitro after removal of NK cells
from PBMCs did not rescue CD8+ T cells exhaustion. Furthermore, NK and CD8+ T cells
from active CHB patients were sorted and cocultured in vitro, and the exhaustion of CD8+

T cells were alleviated after blocking Gal-9 or TIM-3. In summary, overexpression of Gal-9
on NK cells, which interacts with TIM-3+CD8+ T cells and likely contributes to antiviral
CD8+ T cell dysfunction, may be a potential target for the treatment of CHB patients.
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1 INTRODUCTION

Hepatitis B virus (HBV) is a hepatotropic virus that can cause
persistent infection (1). Approximately 2 billion people are infected
with HBV, of whom over 350 million are chronic carriers (2).
Without proper management, up to 20% of patients with chronic
hepatitis B (CHB) die from HBV-induced liver diseases such as
cirrhosis, hepatocellular carcinoma, and liver failure (3). Viral
persistence due to a low antiviral immune response is thought to
contribute to HBV infection-related pathology (4). However, the
exact mechanism of HBV-mediated immunosuppression during
chronic infections is not fully clarified.

Natural killer (NK) cells are important innate immune
lymphocytes that serve as the first line of defense against viral
infection (5). We have postulated that an increase in inhibitory
receptor expression on NK cells contributes to CD8+ T cell
dysfunction during chronic viral infection and hepatocellular
carcinoma (6). During chronic HBV infection, viral persistence
results in NK cell dysfunction and impaired production of cytokines
such as IFN-g (7). Our previous study (8) demonstrated that
Hepatitis B e antigen (HBeAg) induces NKG2A+ NK cell
dysfunction through the production of regulatory T cell-derived
Interleukin 10 (IL-10) during CHB. The outcome of hepatic diseases
is primarily dependent on antigen-specific T cell immune responses
(6). Furthermore, CD8+ T cell plays a key role in viral elimination
during HBV infection (9). When infection persists, virus-specific
CD8+ T cells enter a state known as T cell exhaustion (10).
Exhausted CD8+ T cells have distinct features, including
overexpression of inhibitory receptors and dysfunctional cytokine
signaling (11–13). In CHB patients, effector CD8+ T cells are in a
state of multi-level exhaustion with significantly lower rates of
proliferation and IFN-g, IL-2, TNF-a, granzyme, and perforin
production (14, 15). Moreover, several human and mouse studies
have shown that NK cells regulate and restrict T cell immunity (16).
Based on the type of immune stress, NK cells can limit T cell
function by impacting perforin (17), NKp46 (18), or NKG2D (19)
expression and cytokine production (20–22). Removal of NK cells
in vitro was shown to increase HBV-specific CD8+ T cell responses
(23). However, the mechanism underlying T cell exhaustion and the
relationship between NK cell exhaustion and T cell exhaustion in
CHB patients requires further study.

Galectin-9 (Gal-9) is a member of the galectin family of
animal lectins with conserved carbohydrate recognition
domains (CRDs) for b-galactosides. It consists of two CRDs
linked by a single sequence, which cross-links glycoproteins to
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form a polyvalent galactose protein grid that regulates various
cellular activities (24, 25). Gal-9 is widely expressed in a variety of
immune and non-immune cells and exists in the membranes,
cytoplasm, and nuclei (25, 26). The expression of Gal-9 on NK
cells has been reported, and studies show that Gal-9+ NK cells are
associated with decreased granzyme B, perforin, and granulysin
production (27–29). During chronic viral infection, TIM-3 is
continuously expressed on exhausted T cells (30). As a natural
ligand for TIM-3, Gal-9 plays a key immunomodulatory role by
inducing apoptosis or inhibiting effector function through
interaction with TIM-3. CD8+ T cells overexpress TIM-3 during
HIV infection, and binding of Gal-9 to TIM-3 contributes to CD8+

T cell failure (31, 32). Blocking TIM-3 with Gal-9 in vitro can rescue
HIV, HCV, and HBV-specific CD8+ T cell exhaustion (33, 34).
However, it remains unclear whether NK cells regulate CD8+ T cells
through Gal-9/TIM-3 in CHB patients.

In this study, we found an increase in Gal-9+ NK cells in the
peripheral blood of CHB patients compared to healthy controls,
which contributed to anti-HBV CD8+ T cell dysfunction through
Gal-9/TIM-3 axis. Overall, this study clarifies a mechanism by
which NK cells induce CD8+ T cell exhaustion and suggests a
potential treatment target for CHB infection.
2 MATERIALS AND METHODS

2.1 Human Subjects
The study included 328 subjects divided into the following four
groups: Tolerant CHB (n=25), Active CHB (n=117), Inactive
CHB (n=40), and age- and sex-matched healthy controls (n=146;
HCs). All patients were diagnosed with HBV infection and
untreated while HCs were ruled out for infection with hepatitis
or other diseases that could influence the study. Characteristics
of the enrolled subjects are summarized in Table 1. Tolerant
CHB patients were characterized as HBeAg-positive and had
normal alanine transferase (ALT) and elevated levels of HBV
DNA that were >20,0000 IU/mL; Active CHB patients were
characterized as having serum ALT levels >61 U/L and HBV-
DNA levels >2000 IU/mL; Inactive CHB patients were
characterized by the absence of HBeAg and the presence of
anti-HBe antibodies, normal ALT levels, and HBV DNA <2000
IU/mL (35). Twenty CHB patients who were receiving antiviral
therapy for more than 6 months were also recruited into the
study. The study was approved by the local ethics committee of
The First Affiliated Hospital of Anhui Medical University.
TABLE 1 | Characteristics of human subjects.

All CHB patients Tolerant Active Inactive HC

N 182 25 117 40 146
Age (years) 39.4 ± 0.9 34.9 ± 2.1 39.7 ± 1.2 41.3 ± 1.5 35.7 ± 0.9
Male/female 108/74 8/17 79/38 21/19 69/77
ALT (U/L) 296.4 ± 34.5 28.7 ± 2.7 445.9 ± 48.3 23.6 ± 1.6 20.0 ± 0.7
HBsAg (+/-) 182/0 25/0 117/0 40/0 NA
HBeAg (+/-) 96/86 25/0 70/47 0/40 NA
HBV DNA (IU/mL), median 6.05×106 2.07×108 1.4×107 4.01×102 NA
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2.2 Serological Experiments
HBV markers, including HBsAg, HBsAb, HBeAg, HBeAb, and
HBcAb, were quantified using commercial enzyme
immunoassay kits (Zhongshan Bio-Tech, China). HBV DNA
levels were determined by real-time PCR (Roche LightCycler480,
Switzerland). Serum ALT was detected using an automatic
biochemical analyzer (Cobas 8000, Roche Diagnostics
GmbH, Switzerland).

2.3 Flow Cytometry Analysis
Peripheral blood mononuclear cells (PBMCs) were isolated using
Ficoll-Isopaque (TBD) gradient centrifugation from freshly
peripheral blood. Peripheral lymphocytes and CD8+ T cells
from the in vitro cultures were stained with fluorochrome-
conjugated antibodies, collected using a BD FACSCanto Plus
flow cytometer, and analyzed with FlowJo VX (Tree Star,
Ashland). The following mouse anti-human monoclonal
antibodies were used: BV510-CD3, BV605-CD3, FITC-CD56,
PE-CD56, BV421-CD56, APC-H7-CD8, APC-CY7-CD8, PE-
CY7-CD8, BV421-TIM-3, PE-PD-1, FITC-CD158a, 647-
NKP30, APC-NKP46, APC-NKG2D, FITC-CD226, PE-CY7-
CD69, FITC-IFN-g, PE- IFN-g, PerCP-IFN-g, FITC-TNF-a,
PE-TNF-a, APC-TNF-a, PE-CY7-CD107a, BV510-CD107a,
PE-Granzyme B, V450-Granzyme B, BV510-Granzyme B, 647-
Perforin (BD Biosciences); FITC-NKG2A, PE-CD158b (Miltenyi
Biotec); PE-CY7-NKG2A (BECKMAN); 660-Galectin-9, PE-
HLA-E (eBioscience); PE-TIM-3, PE-KIR3DL1 (R&D); APC-
T IG IT , BV605 -T IG IT (B i oL e g end ) , F ITC -CD69
(Thermo fisher).

For intracellular cytokines staining, PBMCs were incubated
with DMEM (HyClone) containing 5% FBS (Gibco) with 50 ng/
mL phorbol 12-myristate 13-acetate, 1 µg/mL ionomycin, and
2.5 µg/mL monensin (all from Sigma-Aldrich, USA) at 37°C in a
5% CO2 incubator for 4 h. CD107a antibody was added at the
start of the incubation. Cells were then stained with the
membrane markers. Afterwards, the cells were fixed,
permeabilized, and stained with antibodies against IFN-g,
TNF-a, granzyme B, and perforin.

To detect CD8+ T cells apoptosis after in vitro culture, cells were
stained with BV510-CD3 and PE-CY7/APC-H7-CD8 for 30 min.
After washing with 1× Annexin V binding buffer (BioLegend), the
cells were suspended in 100 mL Annexin V binding buffer and
stained with FITC-Annexin V (BD Biosciences) for 15 min. The
stainingwas terminatedusing100mLPBS, and7-AAD(BioLegend)
was added to exclude dead cells before analysis using a BD
FACSCanto Plus flow cytometer.

To detect HBV-specific CD8+ T cells, PBMCs cultured in
vitro were harvested and stained with PE-tetramer (core18-27)
for 1 h. After washing with PBS, the cells were incubated with
BV510-CD3, PE-CY7-CD8 for 30 min, and 7-AAD (BioLegend)
was added prior to analysis.
2.4 Cell Sorting
NK cells were purified from PBMCs using a human NK cell
Isolation Kit (Miltenyi Biotec, 130-092-957) according to the
manufacturer’s instructions. The purity of the isolated NK cells
Frontiers in Immunology | www.frontiersin.org 3
was > 90%, and the PBMCs-DNK were the cells left after
depletion of NK cells.

PBMCs isolated from the fresh blood of active CHB patients
were stained with BV510-CD3, BV421-CD56, APC-H7-CD8,
and 660-Gal-9 and NK, Gal-9+/- NK, CD8+ T cells were purified
using a FACS Aria II (BD Biosciences). The purity of isolated
cells was >95%.

2.5 Cell Culture
2.5.1 Co-Culture of CD8+T Cells With Gal-9+ or
Gal-9-NK Cells
CD8+ T cells (5 × 104) and Gal-9+ NK cells (5 × 104) or Gal-9-

NK cells (5 × 104) at a ratio of 1:1 were co-cultured in DMEM
with 10% FBS (containing 200 U/mL penicillin, 0.2 mg/mL
streptomycin, and 100 mM Hepes buffer) and IL-2 (100 IU/
mL) with 5 mg/mL anti-CD3 and 5 mg/mL anti-CD28 at 37°C in a
5% CO2 incubator for 3 days. The percentage of HBV-specific
CD8+ T cells and the function of CD8+ T cells were assessed.

2.5.2 Co-Culture of CD8+T Cells With Exogenous
Gal-9
CD8+ T cells (1× 105) purified by FACS were cultured in
DMEM with 10% FBS (containing 200U/mL penicillin, 0.2
mg/mL streptomycin, and 100 mM Hepes buffer) and IL-2
(100IU/mL) with 5 µg/mL anti-CD3, 5 µg/mL anti-CD28 and
5 ng/mL exogenous recombinant human Gal-9 (rhGal-9) (R&D
Systems) at 37°C in a 5% CO2 incubator for 3 days. Monensin
and CD107a monoclonal antibody were added during the last 4
h. TIM-3, CD69, IFN-g, TNF-a, CD107a, and granzyme B
expression along with CD8+ T cell apoptosis were assessed.

2.5.3 PBMCs Culture
PBMCs (2 × 106) and PBMCs with depletion of NK cells (2 ×
106) were resuspended in complete medium (DMEM containing
10% FBS, 200U/mL penicillin, 0.2 mg/mL streptomycin, and 100
mM Hepes buffer) and stimulated with individual HBV peptides
(core18-27, FLPSDFFPSV) (2 µg/mL) and recombinant
interleukin-2 (IL-2) (100 IU/mL). Cells were cultured for 10
days and fed twice weekly with complete medium and IL-2. On
day 10, monensin and CD107a monoclonal antibody were
added, and IFN-g, TNF-a, CD107a, granzyme B, and perforin
expressions by CD8+ T cells were detected.

2.5.4 Blocking Assays
PBMCs (2 × 106) were resuspended in complete medium
(DMEM containing 10% FBS, 200 U/mL penicillin, 0.2 mg/mL
streptomycin, and 100 mM Hepes buffer) and stimulated with
individual HBV peptides (core18-27, FLPSDFFPSV) (2 µg/mL)
and recombinant interleukin-2 (IL-2) (100 IU/mL) in the
presence of 10 µg/mL Gal-9 inhibitor (9M1-3, BioLegend),
TIM-3 inhibitor (10 µg/mL; F38-2E2, BioLegend), and IgG
(BioLegend). Cells were cultured for 10 days and fed twice
weekly with complete medium and IL-2. On day 10, monensin
and CD107a monoclonal antibody were added, and IFN-g,
TNF-a, CD107a, granzyme B, and perforin expressions by
CD8+ T cells were detected.
June 2022 | Volume 13 | Article 884290
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PBMCs with depletion of NK cells (2 × 106) were resuspended
in complete medium (DMEM containing 10% FBS, 200 U/mL
penicillin, 0.2 mg/mL streptomycin, and 100 mM Hepes buffer)
and stimulated with individual HBV peptides (core18-27,
FLPSDFFPSV) (2 µg/mL) and recombinant interleukin-2 (IL-
2) (100IU/mL) in the presence of 10 µg/mL Gal-9 inhibitor
(9M1-3, BioLegend) or IgG (BioLegend). Cells were cultured for
10 days and fed twice weekly with complete medium and IL-2.
On day 10, monensin and CD107a monoclonal antibody were
added, and IFN-g, TNF-a, CD107a, granzyme B, and perforin
expressions by CD8+ T cells were detected.

CD8+ T cells (1 × 105) purified by FACS were cultured in
DMEM with 10% FBS (containing 200 U/mL penicillin, 0.2 mg/
mL streptomycin, and 100 mM Hepes buffer) and IL-2 (100 IU/
mL) in the presence of 5 µg/mL anti-CD3, 5 µg/mL anti-CD28,
and 10 µg/mL Gal-9 inhibitor (9M1-3, BioLegend) or IgG
(BioLegend) at 37°C in a 5% CO2 incubator for 3 days.
Monensin and CD107a monoclonal antibody were added
during the last 4 h, and IFN-g, TNF-a, CD107a, granzyme B,
and perforin were analyzed.

CD8+ T cells (5 × 104) and NK cells (5 × 104) at a ratio of 1:1
were cocultured in DMEM with 10% FBS (containing 200 U/mL
penicillin, 0.2 mg/mL streptomycin, and 100 mM Hepes buffer)
and IL-2 (100 IU/mL) in the presence of 5 µg/mL anti-CD3 and 5
µg/mL anti-CD28 at 37°C in a 5% CO2 incubator for 3 days. Gal-
9 inhibitor (10 µg/mL; 9M1-3, BioLegend), TIM-3 inhibitor (10
µg/mL; F38-2E2, BioLegend), and a corresponding IgG control
(BioLegend) were added to the culture. Monensin and CD107a
monoclonal antibody were added during the last 4 h, and the
expressions of IFN-g, TNF-a, CD107a, granzyme B, and perforin
and CD8+ T cell apoptosis were assessed.

2.6 Quantitative Real-Time PCR (qRT-PCR)
Total RNA was extracted from NK cells using the RNeasy Mini
Kit (QIAGEN) in CHB patients and HCs and converted to
cDNA using the RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific). The forward and reverse primers
were as follows: 5′-TGCAACACGAGGCAGAACG-3′ and 5′-
CACAGAGCCATTGACGGAGAT-3′ for galectin-9, 5′-GAG
TCAACGGATTTGGTCGT-3′ and 5′-TTGATTTTGGAGG
GATCTCG-3′ for GAPDH. Gene expression was measured
using a real-time PCR machine (cobas z 480, Switzerland) and
PowerUp SYBR Green Master Mix (Thermo Fisher Scientific).
The mRNA level of Galectin-9 was normalized to that of
GAPDH, and the relative expression of mRNA was calculated
using the 2−DDCt method.

2.7 ELISA
The level of serum galectin-9 was measured using a Human
Galectin-9 Quantikine ELISA Kit (R&D). In brief, reagents,
standard dilutions, and samples were prepared according to
the manufacturer’s instructions. Assay diluent (100 µL) was
added to each well followed by 100 µL of a prepared standard,
control, or 4 times diluted sample, and the plate was incubated
for 2 h on a microplate shaker. After washing, 200 µL of
conjugate were added to each well, and the plate was incubated
Frontiers in Immunology | www.frontiersin.org 4
for 2 h on the shaker. After additional washing, 200 µL substrate
solution was added to each well, the plate was incubated for 30
min in the dark, 50 µL stop solution was added, and the plate was
read at 450 nm within 30 min. All procedures were performed at
room temperature.

2.8 Statistics Analysis
The data were analyzed using Graphpad Prism 6.0 and shown as
the mean ± SEM. A Student’s t-test was used for two-group
comparisons and a one-way ANOVA was used for three-group
and four-group comparisons. p <0.05 was considered significant.
3 RESULTS

3.1 Expression of Gal-9 Is Increased and
Associated With Functional Impairment in
NK Cells of CHB Patients
To study the phenotype of NK cells, expression of inhibitory
receptors (CD158a, CD158b, KIR3DL1, TIGIT, NKG2A, Gal-9)
and activating receptors (NKP30, NKP46, NKG2D, CD226) was
measured on circulating NK cells from patients with different
stages of CHB and healthy controls (HCs). Gating strategies of
lymphocytes and NK cells were showed in Supplementary
Figure 1A. Active CHB patients had a higher number of
NKG2A+ NK cells than HCs, and patients at all stages,
especially tolerant and active periods of CHB had elevated Gal-
9+ NK cells than HCs. A representative FACS plot of Gal-9+ and
Gal-9- NK cells gating is shown in Supplementary Figure 1B.
The expression of other receptors on NK cells, including
CD158a, CD158b, KIR3DL1, TIGIT, NKP30, NKP46, NKG2D,
and CD226, was equivalent between the groups (Figures 1A, B;
Supplementary Figures 2A, B). Furthermore, Gal-9 was more
highly expressed on CD56dim than CD56bright NK cells from
CHB patients (Figure 1C).

To assess the phenotypic characteristics of Gal-9+ NK cells,
PD-1 and TIGIT expression on Gal-9+/- NK cells were analyzed
in CHB patients. The gating strategies to separate Gal-9+ NK and
Gal-9- NK cells from PBMCs were detailed Supplementary
Figure 1C. Gal-9+ NK cells from CHB patients expressed
higher levels of PD-1 and TIGIT than Gal-9- NK cells
(Figures 1D, E).

We confirmed the expression Gal-9 on NK cells from CHB
patients by measuring Gal-9 mRNA in total NK cells and found
that Gal-9 mRNA was higher in NK cells from CHB patients
than HCs (Figure 1F). Moreover, Gal-9 levels were significantly
higher in the serum of CHB patients than HCs (Figure 1G). In
addition, the 15 CHB patients who had received antiviral
treatment for more than 6 months had significantly lower Gal-
9 expression than CHB patients without treatment (Figure 1H);
NKG2A+ NK cells were also reduced in patients after antiviral
treatment, as described previously (8).

The function of NK cells in CHB patients was also assessed.
Expression of IFN-g, TNF-a, CD107a, granzyme B, and perforin
were lower in circulating NK cells from total CHB patients than
June 2022 | Volume 13 | Article 88429
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HCs (Figure 2A). Interestingly, the only difference between any
two study groups was between active CHB patients and HCs
(Figure 2B). These data suggest that compared with HCs,
circulating NK cells were most dysfunctional in active CHB
patients. Furthermore, the function of Gal-9+ and Gal-9- NK
cells was also determined. IFN-g, TNF-a, and granzyme B
production was significantly lower in Gal-9+ than Gal-9- NK
cells (Figures 2C, D). There was no difference in the expression
of CD107a and perforin between Gal-9+ and Gal-9- NK cells
(data not shown). These results demonstrate that Gal-9
expression is increased and associated with functional
impairment of NK cells from CHB patients.

3.2 CD8+ T Cells Are Functionally
Exhausted During the Active Phase of
CHB Infection
We evaluated the function of circulating CD8+ T cells. As shown
in Figure 3A, the production of TNF-a, CD107a, and granzyme
Frontiers in Immunology | www.frontiersin.org 5
B in CD8+ T cells from CHB patients was significantly decreased
compared with HCs. The percentage of IFN-g+ and
perforin+CD8+ T cells was also lower, but the differences in the
proportions of these cells in CHB patients and HCs were not
significant. CHB patients were divided into three groups (Active,
Tolerant, and Inactive), and responses were compared between
the groups and with the HCs. The production of IFN-g, TNF-a,
CD107a, and granzyme B by CD8+ T cells was obviously lower in
active CHB patients than in HCs. The percentage of granzyme
B+CD8+ T cells was also decreased in tolerant CHB patients
relative to HCs, and the percentage of IFN-g+CD8+ T cells and
CD107a+CD8+ T cells was lower in active than inactive CHB
patients. There were no differences between the other two groups
(Figure 3B). Moreover, cytokine production by circulating CD8+

T cells was markedly higher in CHB patients who had received
antiviral treatment for more than 6 months than in active CHB
patients without treatment (Figure 3C). Taken together,
cytokine production by CD8+ T cells was impaired in CHB
FIGURE 1 | Expression of Gal-9 is increased and associated with functional impairment in NK cells of CHB patients. (A) Representative flow cytometry plots
showing expression of the inhibitory receptors, CD158a, CD158b, KIR3DL1, TIGIT, NKG2A, and Gal-9 on circulating NK cells in the Tolerant, Active, and Inactive
groups of CHB patients and HCs. (B) Comparison of the proportion of receptors expressed on circulating NK cells in (A). (C) Comparison of Gal-9 expression in
circulating CD56bright NK cells and CD56dim NK cells in CHB patients. (D) Comparison of the PD-1 expression levels in circulating Gal-9+ NK cells and Gal-9- NK
cells in patients with CHB. (E) Comparison of the TIGIT levels in circulating Gal-9+ NK cells and Gal-9- NK cells in patients with CHB. (F) Gal-9 mRNA expression in
circulating NK cells from CHB patients and HCs. (G) Gal-9 expression in serum from CHB patients and HCs. (H) Comparison of the Gal-9 expression levels in NK
cells in peripheral blood of CHB patients with or without antiviral treatment, respectively. Results are expressed as the mean ± SEM, and the number of samples (n)
in each group was ≥ 3. One-way ANOVA test was conducted for four-group comparisons. Groups with significant differences are marked, and the unmarked paired
groups have no differences. Unpaired t-test was used to compare two independent groups. A paired t-test was used to compare paired samples. *P < 0.05; **P <
0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant.
June 2022 | Volume 13 | Article 884290
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patients, particularly active CHB patients, compared with HCs,
and the function of CD8+ T cells in active CHB patients was
restored after antiviral treatment.

3.3 Gal-9/TIM-3 Axis Promotes CD8+ T
Cell Immune Exhaustion in Active
CHB Patients
Based on previous results and the regulatory function of NK cells
on CD8+ T cells, the relationship between impaired NK cells and
exhausted CD8+ T cells from active CHB patients was assessed.
Expression of HLA-E, a ligand of NKG2A, and TIM-3, a Gal-9
receptor, in CD8+ T cells from active CHB patients and HCs was
measured. The gating strategies of lymphocytes and NK cells and
representative flow cytometry plots of HLA-E and TIM-3 are
shown in Supplementary Figure 3A. Of note, because our
previous results (Figures 1–3) showed that NK and CD8+ T
cells were most exhausted in active CHB patients, only cells from
active patients were tested. The percentage of TIM-3+CD8+ T
cells was significantly higher in active CHB patients compared
Frontiers in Immunology | www.frontiersin.org 6
with HCs (Figure 4A), while HLA-E expression in CD8+ T cells
was not significant (Supplementary Figure 3B). Furthermore,
TIM-3+CD8+ T cells had higher levels of PD-1 and TIGIT than
TIM-3-CD8+ T cells in active CHB patients (Figures 4B, C). The
detailed gating strategies to separate TIM-3+ and TIM3-CD8+ T
cells are shown in Supplementary Figure 3C. In addition, the
proportion of TIM-3+CD8+ T cells was lower in CHB patients
who had received antiviral treatment for more than 6
months (Figure 4D).

To determine whether NK cells induce CD8+ T cell
dysfunction through the Gal-9/TIM-3 pathway, we cocultured
Gal-9+ NK cells or Gal-9- NK cells with CD8+ T cells from active
CHB patients in vitro and then determined the percentage of
HBV-specific CD8+ T cells (tetramer+CD8+ T cells) and assessed
the function of CD8+ T cells. The frequency of tetramer+CD8+ T
cells and the production of IFN-g, TNF-a, CD107a, and
granzyme B by CD8+ T cells were significantly lower after
coculture with Gal-9+ NK versus Gal-9- NK cells (Figures 4E–
I). The perforin expression was also lower after coculture with
FIGURE 2 | Gal-9+ NK cells are impaired relative to Gal-9- NK cells in CHB patients. (A) Comparison of the expression of IFN-g, TNF-a, CD107a, granzyme B, and
perforin in circulating NK cells from CHB patients and HCs. (B) Comparison of the expression of IFN-g, TNF-a, CD107a, granzyme B, and perforin in circulating NK cells
from Tolerant, Active, and Inactive CHB patients and HCs. (C) Representative flow cytometry plots showing the expression of IFN-g, TNF-a, and granzyme B in circulating
Gal-9+ NK cells and Gal-9- NK cells from CHB patients. (D) Comparison of the percentages of IFN-g, TNF-a, and granzyme B secreted by Gal-9+ NK cells and Gal-9- NK
cells in peripheral blood from CHB patients. Results are expressed as the mean ± SEM, and the number of samples (n) in each group was ≥ 3. One-way ANOVA test was
conducted for four-group comparisons. Groups with significant differences are marked, and the unmarked paired groups have no differences. An unpaired t-test was used
to compare two independent groups. A paired t-test was used to compare paired samples. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Gal-9+ NK cells than with Gal-9- NK cells, but with no significant
difference (data was not shown). The detailed gating strategies to
separate Gal-9+ NK and Gal-9- NK cells and the purity after
sorting are shown in Supplementary Figure 3D.

To test whether NK cells are a source of Gal-9, exogenous
Gal-9 (rhGal-9) was substituted for NK cells and cocultured with
CD8+ T cells from active CHB patients. The expression of TIM-3
in CD8+ T cells was significantly increased after coculture with
rhGal-9 (Figure 5A). In addition, CD69, IFN-g, TNF-a,
CD107a, and granzyme B expressions were significantly
decreased in CD8+ T cells in the experimental groups
compared with the controls (Figures 5B, D–G). The perforin
production was also lower after coculture with rhGal-9, but with
no significant difference (data was not shown). Furthermore,
early apoptosis (Annexin V+7-AAD-) of CD8+ T cells increased
after coculture with rhGal-9 (Figure 5C). In summary, CD8+ T
cells from active CHB patients are likely to be impaired by NK
cells through the Gal-9/TIM-3 but not the NKG2A/HLA-
E pathway.
Frontiers in Immunology | www.frontiersin.org 7
3.4 Gal-9 Expression in NK Cells Induces
TIM-3+CD8+ T Cell Dysfunction
To further verify our suspicion that NK cells impair CD8+ T cell
responses directly, we depleted NK cells from PBMCs of active
CHB patient, cultured the latter in vitro, stimulated with HBV
peptide (core18-27) for 10 days. IFN-g, CD107a, granzyme B,
and perforin expressions by CD8+ T cells were increased after
depletion and TNF-a expression had no significant difference
(Figures 6A–E). Then, we blocked the Gal-9/TIM-3 pathway in
vitro and observed the impact on CD8+ T cells. PBMCs isolated
from active CHB patients were stimulated with HBV peptide
(core18-27) in the presence of anti-human Gal-9 antibody, anti-
human TIM-3 antibody, or IgG for 10 days. We found that IFN-
g, TNF-a, granzyme B and perforin production by HBV-specific
CD8+ T cells were increased after blocking Gal-9, and IFN-g,
TNF-a, CD107a and perforin production by HBV-specific CD8+

T cells were increased after blocking TIM-3 (Figures 7A–E),
suggesting that TIM-3 blockade treatment had similar effect as
the Gal-9 blockade treatment. However, IFN-g, TNF-a, CD107a,
FIGURE 3 | CD8+ T cells are functionally exhausted in active CHB patients. (A) Comparison of the expression of IFN-g, TNF-a, CD107a, granzyme B, and perforin
in circulating CD8+ T cells from CHB patients and HCs. (B) Comparison of the expression of IFN-g, TNF-a, CD107a, granzyme B, and perforin in circulating CD8+ T
cells from Tolerant, Active, and Inactive CHB patients and HCs. (C) Comparison of the percentages of functional molecules, including IFN-g, TNF-a, CD107a,
granzyme B, and perforin, in circulating CD8+ T cells from the untreated and treated CHB patients. Results are expressed as the mean ± SEM, and the number of
samples (n) in each group was ≥ 3. One-way ANOVA test was conducted for four-group comparisons. Groups with significant differences are marked, and the
unmarked paired groups have no differences. An unpaired t-test was used to compare two independent groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001;
n.s., not significant.
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granzyme B, and perforin production by CD8+ T cells were not
altered after blocking Gal-9 while culturing the PBMCs depleted
of NK cells in vitro (Figure 7F). Moreover, CD8+ T cells alone
treated with anti-Gal-9 in vitro showed no functional restoration
(Supplementary Figures 4A–E). The above results indicate that
anti-Gal-9 blocking requires NK cells in the culture to exert
its effect.

We further purified NK cells and CD8+ T cells from PBMCs
of active CHB patients and cocultured them in vitro, stimulated
with anti-CD3/anti-CD28, and blocking with anti-human Gal-9
antibody, anti-human TIM-3 antibody, or IgG for 3 days. We
found that IFN-g, CD107a, granzyme B, and perforin production
increased after blocking Gal-9, and TNF-a, granzyme B, and
perforin production increased after blocking TIM-3
(Figures 7G–K). And CD8+ T cell early apoptosis decreased
after blocking TIM-3 (Figure 7L). Thus, blocking of TIM-3 has
similar effect as blocking Gal-9, and NK cells negatively regulate
CD8+T cells through the Gal-9/TIM-3 pathway.

In conclusion, these findings indicate that circulating CD8+ T
cells from active CHB patients were exhausted. In addition,
CD8+ T cells were impaired by NK cells through the Gal-9/
TIM-3 pathway, and the function of both total and HBV-specific
CD8+ T cells was restored after blocking the Gal-9/TIM-3
Frontiers in Immunology | www.frontiersin.org 8
pathway in vitro, showing that the antiviral ability of CD8+

T cells was recovered.
4 DISCUSSION

The natural history of CHB infection is complicated, and
patients can experience several stages of infection, changing
from a state of high viral load without liver injury to an active
state, then inactive, and then back to an active state after a few
years. During the recurrent course of the disease, patients are at
risk of serious complications such as liver fibrosis, cirrhosis, liver
cancer, and even acute-on-chronic liver failure. Therefore, CHB
is a dynamic condition with three main phases: 1) the immune
tolerance phase associated with high HBV DNA, normal ALT
levels, and no liver damage; 2) the immune active phase
characterized by high HBV DNA, elevated ALT levels, and
active liver inflammation; and 3) the inactive phase
characterized by HBV DNA levels < 2000 IU/mL, normal ALT
levels, and no liver damage. Patients infected with HBV can
gradually move from one stage to the next with the possibility of
reverting to a prior stage (35). As a result, this study recruited
CHB patients without antiviral treatment and assessed the
FIGURE 4 | CD8+ T cells are immune exhausted through the Gal-9/TIM-3 axis in active CHB patients. (A) Comparison of the levels of TIM-3 expressed in circulating
CD8+ T cells in active CHB patients and HCs. (B) The percentages of PD-1 expressed in TIM-3+CD8+ T cells and TIM-3-CD8+ T cells in peripheral blood from active
CHB patients. (C) The percentages of TIGIT expressed on TIM-3+CD8+ T cells and TIM-3-CD8+ T cells in peripheral blood from active CHB patients. (D) The
percentage of TIM-3 expressed on CD8+ T cells in peripheral blood from active CHB patients with or without antiviral treatment, respectively. (E–I) Gal-9+ NK, Gal-9-

NK, and CD8+ T cells were sorted from active CHB patients, cocultured in vitro, and stimulated with anti-CD3/anti-CD28 for 3 days. The frequency of tetramer+CD8+

T cells (E) and the production of the cytokines IFN-g, TNF-a, CD107a, and granzyme B (F-I) by CD8+ T cells were analyzed. Results are expressed as the mean ±
SEM, and the number of samples (n) in each group was ≥ 3. Unpaired t-test was used to compare two independent groups. A paired t-test was used to compare
paired samples. *P < 0.05; **P < 0.01; ****P < 0.0001.
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immune status of NK and CD8+ T cells from patients in different
disease stages to guide stage-specific treatment approaches.

Distinct changes in the immune system occur during different
phases of CHB infection, which helps to explain why studies
showed conflicting findings on NK and CD8+ T cell function
during this infection. In this study, we found that NK and CD8+

T cell exhaustion was more severe in active CHB patients than
Frontiers in Immunology | www.frontiersin.org 9
healthy subjects, and that NK cells with high Gal-9 expression
could induce CD8+ T cell dysfunction through the Gal-9/TIM-
3 pathway.

As an important component of the innate immune system,
NK cells play a key role in the antiviral response (5). In chronic
HBV infection, the persistence of the virus alters the NK cell
phenotype and the expression of activating and inhibitory
FIGURE 5 | Exogenous Gal-9 induces circulating CD8+ T cell exhaustion in active CHB patients. (A–G) Coculture of CD8+ T cells from active CHB patients and
rhGal-9 for 3 days and stimulation with anti-CD3/anti-CD28. (A) The percentage of TIM-3+CD8+ T cells after culture with or without rhGal-9. (B) The percentage of
CD69+CD8+ T cells after culture with or without rhGal-9. (C) Comparison of CD8+ T cell early apoptosis after culture with and without rhGal-9. (D–G) Comparison of
the expression of IFN-g, TNF-a, CD107a, and granzyme B in CD8+ T cells from active CHB patients after culture with and without rhGal-9. Results are expressed as
the mean ± SEM, and the number of samples (n) in each group was ≥ 3. A paired t-test was used to compare paired samples. *P < 0.05; **P < 0.01; ***P < 0.001.
FIGURE 6 | CD8+ T cell responses are suppressed in a NK cell-dependent manner in active CHB patients. PBMCs or PBMCs depleted of NK cells (PBMCs-DNK)
were cultured in vitro and stimulated with HBV peptide (core18-27) for 10 days. The production of the cytokines IFN-g, TNF-a, CD107a, granzyme B, and perforin
(A–E) by CD8+ T cells was analyzed. Results are expressed as the mean ± SEM, and the number of samples (n) in each group was ≥ 3. A paired t-test was used to
compare paired samples. *P < 0.05; **P < 0.01; n.s., not significant.
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receptors on the NK cell surface. NKG2A is highly expressed in
NK cells in patients with CHB, HCV, and hepatocellular
carcinoma, resulting in NK cell dysfunction. Some studies
showed that blocking NKG2A or antiviral therapy can reduce
NKG2A expression and partially restore NK cell function (7, 36–
39). In the current study, the proportion of NKG2A+ NK cells
was elevated in the peripheral blood of CHB patients and
significantly elevated in patients with active CHB, which is
consistent with our previous findings (8). Recently, the
expression of Gal-9 in NK cells has also been reported, and a
high frequency of Gal-9+ NK cells was shown to reduce the
effector capacity of NK cells (28, 29, 40). Gal-9 is widely
expressed in a variety of human and mouse immune cells and
exists in various sites including the cell membrane, cytoplasm,
and nucleus (26). This study focused on the expression of Gal-9
on the surface of NK cells in CHB patients and found that there
was significantly more Gal-9+ NK cells in CHB patients than in
healthy controls, and the phenotype and function of Gal-9+ NK
cells were markedly impaired relative to Gal-9- NK cells.
Moreover, the percentage of Gal-9+NK cells was lower in CHB
patients who had received antiviral treatment for at least 6
months than in untreated patients. NKG2A expression was
Frontiers in Immunology | www.frontiersin.org 10
also reduced after treatment, which has been reported
previously (7).

It has been demonstrated that the function of NK cells is
impaired in chronic HBV infection, as shown by the reduced
production of IFN-g and TNF-a (7, 8). We further investigated
and found that the expression of functional molecules, including
IFN-g, TNF-a, CD107a, granzyme B, and perforin, was also
downregulated in circulating NK cells from CHB patients,
primarily among those in the active phase.

As an important component of the adaptive immune system,
CD8+ T cells also play a key antiviral role in HBV infection.
However, unlike CD8+ T cells from patients with acute HBV
infection, those from CHB patients gradually become weak or
even lose their antiviral capacity as the virus persists. The virus-
specific CD8+ T cell response can be heterogeneous depending
on the disease phase (41, 42), with multilevel exhaustion. We
found that circulating CD8+ T cells from CHB patients had
reduced ability to produce effector cytokines, especially during
the active phase, while those in other phases were still functional.
Nebbia et al. (34) found that the response of HBV-specific CD8+

T cells was influenced by the level of HBV viral replication;
therefore, the function of CD8+ T cells in CHB patients who had
FIGURE 7 | The function of anti-HBV CD8+ T cells in active CHB patients was restored after blocking the Gal-9/TIM-3 pathway. (A-E) PBMCs isolated from active
CHB patients were cultured in vitro with anti-human Gal-9 antibody, anti-human TIM-3 antibody, or control IgG and stimulated with HBV peptide (core18-27) for 10
days. The function of HBV-specific CD8+ T cells was analyzed. (F) PBMCs depleted of NK cells (PBMCs-DNK) were cultured in vitro with anti-Gal-9 or control IgG
and stimulated with HBV peptide (core18-27) for 10 days. The production of the cytokines IFN-g, TNF-a, CD107a, granzyme B, and perforin by CD8+T cells was
analyzed. (G–L) NK and CD8+ T cells were sorted from active CHB patients, cocultured in vitro with anti-human Gal-9 antibody, anti-human TIM-3 antibody, or
control IgG and stimulated with anti-CD3/anti-CD28 for 3 days. The production of the cytokines IFN-g, TNF-a, CD107a, granzyme B, and perforin by CD8+ T cells
(G–K) and early CD8+ T cell apoptosis (L) were analyzed. Results are expressed as the mean ± SEM, and the number of samples (n) in each group was ≥ 3. One-
way ANOVA test was conducted for three-group comparisons. A paired t-test was used to compare paired samples. *P < 0.05; **P < 0.01; n.s., not significant.
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been receiving antiviral therapy for more than 6 months and
were in a more stable state was assessed. We found that the
function of CD8+ T cell was indeed significantly enhanced in
these patients compared with untreated active CHB patients. The
mechanism of CD8+ T cell exhaustion is complex, and the
reduced effector function of exhausted CD8+ T cells is usually
associated with elevated expression of inhibitory receptors, such
as PD-1 (43) and TIM-3 (34). Blocking these inhibitory receptors
in vitro can partially restore the function of HBV-specific CD8+

T cells. PD-1 and TIM-3 expression on CD8+ T cells from CHB
patients were measured, and the proportion of TIM-3+CD8+ T
cells was significantly increased. The proportion of PD-1+CD8+

T cells was also elevated, but not significantly (data not shown).
Several studies have shown that NK cells have both traditional

antiviral and immunomodulatory effects and can regulate T cell
immunity in multiple ways, including through NK cell receptors
(18, 19), perforin (17), and cytokines (20–22), such as IFN-g, IL-10.
Iona S. Schuster et al. (44) found that TRAIL+ NK cells control
CD4+ T cell responses during chronic viral infection to limit
autoimmunity. However, few studies have assessed the regulation
of CD8+ T cell immunity by NK cells in CHB patients. Peppa et al.
(23) found that NK cells in CHB patients can induce virus-specific
CD8+ T cell death through TNF-related apoptosis-inducing ligand
(TRAIL) and negatively regulate antiviral immunity. In this study,
we found thatNKcells fromCHBpatients overexpressNKG2Aand
Gal-9. To determine whether CD8+ T cell immunity was regulated
through these two molecules, further studies were conducted to
demonstrate that CD8+ T cells from CHB patients overexpressed
TIM-3, the Gal-9 natural receptor, while there was no difference in
expression of HLA-E, the ligand for NKG2A. Moreover, the
function of HBV-specific CD8+ T cells was restored after
depletion of NK cells in vitro. Thus, it is likely that NK cells
regulate CD8+ T cell immunity through the Gal-9/TIM-3 pathway.

The Gal-9/TIM-3 pathway has been reported to induce CD8+

T cell exhaustion in chronic viral infections, and blocking this
pathway in vitro rescue CD8+ T cell exhaustion. Moreover, the
Gal-9/TIM-3 pathway was reported as a promising target for
immunotherapy (31, 33, 45). We cocultured Gal-9+ NK and
CD8+ T cells in vitro and demonstrated that Gal-9+ NK cells can
promote CD8+ T cell exhaustion in CHB patients. Furthermore,
stimulating PBMCs with HBV peptide and blocking the Gal-9/
TIM-3 pathway partially restored HBV-specific CD8+ T cell
function. In addition, we purified NK cells and CD8+ T cells
from active CHB patients and cocultured them in vitro, and
blocking Gal-9/TIM-3 partially rescued CD8+ T cells exhaustion.
Frontiers in Immunology | www.frontiersin.org 11
In summary, our study demonstrates a mechanism by which
NK cells induce CD8+ T cells dysfunction. The findings indicate
that Gal-9/TIM-3 axis is a potential therapeutic checkpoint in
CHB patients.
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