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Cancer immunotherapy targets the interplay between immune and cancer cells. In
particular, interactions between cytotoxic T lymphocytes (CTLs) and cancer cells, such
as PD-1 (PDCD1) binding PD-L1 (CD274), are crucial for cancer cell clearance. However,
immune checkpoint inhibitors targeting these interactions are effective only in a subset of
patients, requiring the identification of novel immunotherapy targets. Genome-wide
clustered regularly interspaced short palindromic repeats (CRISPR) screening in either
cancer or immune cells has been employed to discover regulators of immune cell function.
However, CRISPR screens in a single cell type complicate the identification of essential
intercellular interactions. Further, pooled screening is associated with high noise levels.
Herein, we propose intercellular CRISPR screens, a computational approach for the
analysis of genome-wide CRISPR screens in every interacting cell type for the discovery of
intercellular interactions as immunotherapeutic targets. We used two publicly available
genome-wide CRISPR screening datasets obtained while triple-negative breast cancer
(TNBC) cells and CTLs were interacting. We analyzed 4825 interactions between 1391
ligands and receptors on TNBC cells and CTLs to evaluate their effects on CTL function.
Intercellular CRISPR screens discovered targets of approved drugs, a few of which were
not identifiable in single datasets. To evaluate the method’s performance, we used data
for cytokines and costimulatory molecules as they constitute the majority of
immunotherapeutic targets. Combining both CRISPR datasets improved the recall of
discovering these genes relative to using single CRISPR datasets over two-fold. Our
results indicate that intercellular CRISPR screens can suggest novel immunotherapy
targets that are not obtained through individual CRISPR screens. The pipeline can be
extended to other cancer and immune cell types to discover important intercellular
interactions as potential immunotherapeutic targets.
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1 INTRODUCTION

Tumor immunotherapy invigorates the immune system to fight
against cancer. It impedes interactions between immune cells,
most notably cytotoxic T lymphocytes (CTLs), and cancer cells
(1). For example, the well-known immune checkpoint inhibitor
pembrolizumab is used to treat various types of cancer, including
melanoma and triple-negative breast cancer (TNBC), as it targets
PD-1 (PDCD1) and interferes with PD-L1 (CD274) interaction.
Pembrolizumab prevents the PD-L1-induced suppression of
CTL function, enabling cancer cell removal (2). However,
immune checkpoint inhibitors are only effective in a subset of
patients, with as little as 12.46% of cancer patients benefiting
from such treatment in the United States (3). Therefore, novel
immunotherapeutic targets and drugs are required.

Genome-wide clustered regularly interspaced short palindromic
repeats (CRISPR) screens have been increasingly used for the
systematic discovery of targets for cancer therapy. The most
notable examples come for targeted therapy, where a large
consortium called the Cancer Dependency Map performed 1076
genome-wide CRISPR screens in 908 cell lines (4, 5). Genome-wide
CRISPR screening is also employed for immunotherapy (6–17).
For example, pooled CRISPR screening in immune or cancer cells
has been performed to evaluate immune regulatory molecules and
identify potential therapeutic targets. Dong et al. subjected CTLs to
CRISPR screens in order to identify gene knockouts that promote
in vivo tumor infiltration and in vitro degranulation (15). Further,
Lawson et al. utilized CRISPR in cancer cells to identify regulators
of CTL-mediated killing (8).

However, such CRISPR screening approaches have three main
limitations. First, most studies did not focus on intercellular
interactions, which underlie the mechanism of action for
immunotherapy drugs, instead focused on single genes. Focusing
on a single gene is suboptimal, as its protein product can interact
with multiple partners (18). The drawbacks of this approach are
evidentwhenanalyzing a ligandwithopposing effects dependingon
the receptor bound (19). For example, CD80 can activate or
suppress T cells upon binding to CD28 or CTLA4, respectively
(20). Such competitive interaction was also observed among PVR,
CD226, and TIGIT, (Figure 1A) (21). Moreover, our analysis
revealed that a large proportion of immuno-oncology (IO) drugs
(Supplementary Figure 1) and their targets (Figure 1B) are
intercellular communication molecules such as adhesion
molecules, surface antigens, and membrane receptors
(Supplementary Table 1). These factors represent more robust
drug targets than cytosolic proteins because they are exposed on the
cellular membrane and are therefore more targetable (22). Second,
studies have performed CRISPR screening using monocultured
cells, even though monocultures do not recapitulate cell-cell
communication (7). CRISPR screening under co-culture or other
settings that potentially reflect intercellular interactionsmay also be
Abbreviations: CRISPR, clustered regularly interspaced short palindromic
repeats; CTL, cytotoxic T lymphocyte; TNBC, triple-negative breast cancer; IO,
immuno-oncology; ATC, anatomical therapeutic chemical; sgRNA, single guide
RNA; TIL, tumor-infiltrating lymphocyte; KO, knockout; CTRL, control; diff,
differential analysis; exp, expression; comb, combination; FDR, false discovery
rate; AUROC, area under the receiver operating characteristic curve.
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limiting, as it is performed in a single cell type, i.e., in immune or
cancer cells, which makes it difficult to pinpoint essential
intercellular interactions, owing to the focus on a particular gene
rather than on analyzing interactions (23). Lastly, genome-wide
CRISPR screens inevitably entail high technical noise owing to their
high throughput (24). To overcome these limitations and discover
essential and potentially targetable intercellular interactions,
CRISPR screens should be performed for all relevant interacting
cell types.

In this study, we introduced intercellular CRISPR screens, a
computational approach for the evaluation of intercellular
interactions as IO drug targets. We employed intercellular
CRISPR screening for the analysis of two genome-wide CRISPR
datasets, an immune cell and a cancer cell dataset. Through
integrating these datasets, we calculated the “intercellular normZ
score” for each intercellular interaction and quantified its potential
as a target for immunotherapy. As a proof of concept, we applied
the intercellular CRISPR screen to two publicly available genome-
wide CRISPR screening datasets, analyzing cancer cell and CTL
interactions (8, 15). Our screens were more effective in identifying
IO drug targets than CRISPR screens focusing on a single dataset.
2 MATERIALS AND METHODS

2.1 Classification of Cancer Drugs and
Their Targets
2.1.1 Collection of ApprovedCancer Drugs FromDrugBank
The list of drugs, along with their development status (‘groups’),
anatomical therapeutic chemical (ATC) codes, and target
information was collected from DrugBank 5.1.8 (25). Among
14,585 drugs in DrugBank, 4207 belonged to the approved
group, indicating that the drugs were approved in at least one
jurisdiction at some time point. We set two criteria, either of
which should be met for a drug to be termed a cancer drug; (1)
The drugs should have ATC codes starting with ‘L01’
(antineoplastic agents), or (2) drugs belonging to the ‘Cancer
immunotherapy’ category (accession number DBCAT005215)
that were used in cancer treatment owing to their immunological
effects. The DrugBank Clinical API was used to retrieve 72
approved drugs that belong to the ‘Cancer immunotherapy’
category. Altogether 221 cancer drugs were identified.
2.1.2 Classification of Cancer Drugs Into IO vs Non-
IO Using DrugBank and IO Landscape
Two resources were used to classify cancer drugs as IO and non-IO
drugs. The first resource was the ‘Cancer immunotherapy’ category
(accession number DBCAT005215) from DrugBank. The second
was the IO Landscape, developed by the Cancer Research Institute
to catalog the developmental status of IO drugs (26).

Among the ‘Cancer immunotherapy’ drugs from DrugBank, a
few drugs such as trastuzumab, a ERBB2 (HER2) inhibitor, are
monoclonal antibodies that can be regarded as a targeted therapy
rather than immunotherapy (27). However, a few monoclonal
antibodies including pembrolizumab, a PDCD1 inhibitor, are used
as immunotherapeutic drugs. Therefore, we set two criteria, one of
May 2022 | Volume 13 | Article 884561

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yim et al. Intercellular CRISPR Screens for Immunotherapy
which should be met to classify a drug as an IO drug; (1) The drug
belongs to theDrugBank ‘Cancer immunotherapy’ category anddoes
not have ATC codes starting with ‘L01XC’ (monoclonal antibodies),
or (2) A drug belongs to the ‘Cancer immunotherapy’ category, has
ATC codes startingwith ‘L01XC’, and is listed on IOLandscape. As a
result, 47 cancerdrugswere classified as IOdrugs. The remaining174
cancer drugs were classified as non-IO drugs.

2.1.3 Protein Target Classification Using ChEMBL
Drug target information was collected from DrugBank. We used
the classification term ‘targets’ and excluded ‘enzymes’,
‘transporters’, and ‘carriers’. As a result, 282 targets for 185
approved cancer drugs were identified.

The targets were classified using ChEMBL 29 (28). We used
Level 1 classification terms to classify proteins into 14 categories. If
a protein was classified as a “child” term, the term was mapped to
the corresponding Level 1 terms based on the classification
hierarchy. A target can have more than one category. For
example, B-cell receptor CD22 was classified into the ‘Adhesion’,
‘Membrane receptor’, and ‘Surface antigen’ categories.

Drugs were categorized based on their target classification. If
a drug had multiple targets, it was considered to belong to all
classes into which its targets were classified.

2.2 Intercellular CRISPR Screens:
Integration of CRISPR Screens in Immune
and Cancer Cells to Prioritize Intercellular
Interactions for IO Target Discovery
2.2.1 Data Sources
We set five criteria for selecting CRISPR screening datasets in
immune and cancer cells; (1) Genome-scale, and (2) publicly
Frontiers in Immunology | www.frontiersin.org 3
available datasets that were (3) obtained while the immune and
cancer cells were interacting with each other. (4) The type of
immune and cancer cells should be similar enough between the
datasets and (5) transcriptome of the edited cell types should
be available.

2.2.1.1 Genome-Wide Pooled CRISPR Screens in CTLs
Genome-wide pooled CRISPR screens of CTLs were obtained
from Dong et al. (15). The screen aimed to identify genes whose
knockout increased the infiltration of CTLs into the tumor tissue
in vivo. To achieve this goal, CTLs were transduced with a mouse
genome-scale single guide RNA (sgRNA) library and were
subsequently injected into Rag1-/- mice with TNBC, E0771
tumors (Figure 2A), and tumor tissues were harvested. The
harvested tumor samples were compared with cellular libraries of
infected CTLs that served as control samples to identify the
enriched sgRNAs and genes in the tumor samples.

The normalized read count matrix was downloaded from
Table S1 (15). The dataset contained the normalized read counts
of 128,209 sgRNAs targeting 21,786 genes from three cellular
libraries and ten knockout samples (Figure 2B).

2.2.1.2 Gene Expression in CTLs
In the study by Dong et al. (15), single-cell RNA sequencing was
used to identify genes expressed in CD8+ tumor-infiltrating
lymphocytes. From the paper, Table S2 was used to obtain a list
of genes expressed in CTLs as follows: First, low-quality cells with
small library sizes (the number of unique molecule identifiers ≥4
standard deviations below the mean) or diversities (the number of
detected genes ≥4 standard deviations below the mean), or large
mitochondrial genes (the proportion of mitochondrial genes ≥4
standard deviations above the mean) were removed. Genes with
A B

FIGURE 1 | Intercellular interactions are potent targets for cancer immunotherapy. (A) Intercellular interactions between PVR, NECTIN2, CD226, TIGIT, and CD96.
PVR and NECTIN2 are expressed on antigen-presenting cells (APCs) and some tumor cells. Their receptors, CD226, TIGIT, and CD96 are expressed on T cells or
natural killer cells (NK cells). Upon binding to PVR or NECTIN2, CD226 and TIGIT trigger stimulatory and inhibitory signals, respectively. Whether the binding of PVR
to CD96 delivers stimulatory or inhibitory signals is to be determined. The multiplicity of these interactions highlights the importance of focusing on intercellular
interactions, rather than a single ligand or a receptor. (B) The percentage of proteins targeted by non-cancer, non-IO, and IO drugs that belong to each protein
class. Membrane receptors, surface antigens, and adhesion proteins are preferentially targeted by IO drugs, relative to enzymes. APC, antigen-presenting cell; NK
cell, natural killer cell; IO, immuno-oncology.
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low variance were regarded as being unexpressed. After converting
Ensemble IDs into gene symbols, 7874 genes were identified
expressed in CTLs (29).

2.2.1.3 Genome-Wide Pooled CRISPR Screens in TNBC
Cell Lines
A genome-wide pooled CRISPR screen in two mouse TNBC cell
lines, 4T1 and EMT6, was conducted by Lawson et al. (8). The
screening was performed to identify cancer genes whose
knockout regulates the evasion of CTL-mediated killing of
cancer cells. To this end, cancer cells were infected with the
mouse Toronto knockout library and co-cultured with activated
CTLs (Figure 2A). The number of sgRNAs in co-cultured cancer
cells was compared with that in monocultured cancer cells as
control samples. We downloaded two normalized read count
matrices consisting of 94,110 sgRNAs targeting 19,459 genes in
six co-culture and six monoculture samples for each cell line
from Supplementary Table 2 (8) (Figure 2B).

2.2.1.4 Gene Expression in TNBC Cell Lines
To identify genes that were expressed in the mouse TNBC cell
lines 4T1 and EMT6, bulk RNA sequencing data were obtained
from Supplementary Table 6 (8), from which the TNBC CRISPR
screen data was collected. Two replicates were used for each TNBC
cell line. A gene was considered as being expressed in a cell line if
the mean expression level across replicates was at least ten
fragments per kilobase of exon per million (FPKM) (30). If a
gene had multiple probes, the probe with the highest average
expression level was used. As a result, 6411 and 6518 genes were
identified in 4T1 and EMT6, respectively.
Frontiers in Immunology | www.frontiersin.org 4
2.2.1.5 Intercellular Interactions From ConnectomeDB2020
and CellPhoneDB
Intercellular interaction data were collected from two sources:
ConnectomeDB2020 (31) and CellPhoneDB (32). ConnectomeDB2020
contains 2293 manually curated ligand-receptor interactions.
CellPhoneDB is a database of ligands, receptors, and describes
1396 interactions between these. Although both databases
provide information on interaction data from humans, the
CRISPR screens were performed in mouse cells. Therefore, we
used orthologs to obtain potential ligand-receptor interactions in
mice (29, 31). As a result, 4825 intercellular interactions between
1391 ligands and receptors were identified.
2.2.2 Differential Analysis to Calculate Fold
Change of Genes
We performed differential analysis using the drugZ algorithm
(33) to identify genes that were significantly differentially
enriched in knockout samples compared with control samples
in each CRISPR dataset (Figure 2C). First, the drugZ algorithm
compares sgRNA counts in knockout samples against control
samples to calculate the fold changes in the amount of sgRNAs.
Next, the algorithm standardizes the fold change by dividing it by
the standard deviation and converts it into a z-score. To robustly
estimate the standard deviation, drugZ uses empirical Bayes
methods by borrowing information from sgRNAs with similar
read counts in the control samples. Next, it combines the z-
scores of individual sgRNAs targeting the same gene by
summing the individual z-scores and dividing the sum by the
square root of the number of summed sgRNAs. This yields the
final normZ score, which follows a standard normal distribution.
A B DC

FIGURE 2 | Overview of methods. (A) Data from two genome-wide pooled clustered regularly interspaced short palindromic repeats (CRISPR) screens were used. One
CRISPR screen edited cytotoxic T lymphocytes (CTLs) to identify genes whose knockout increased the infiltration of CTLs into tumor tissue (upper) (15). The second
screen edited two triple-negative breast cancer (TNBC) cell lines to identify genes whose knockout regulates the evasion of TNBC cells from CTL-mediated killing (lower)
(8). (B) Genome-wide CRISPR screens yielded normalized read count matrices showing the amount of sgRNAs in each sample. TNBC CRISPR screen data had two
matrices, one for each TNBC cell line. (C) We performed differential analysis to calculate fold changes of genes between knockout and control samples, yielding “Gene-
level normZ scores”. Positive scores were assigned to genes that were more likely to activate CTL function, and negative scores were assigned to genes that were more
likely to suppress CTL function. (D) We collected information for intercellular interactions from public databases and calculated the score of each intercellular interaction by
‘combining’ gene-level normZ scores of the interactants. Because two TNBC cell lines were used, two ‘cell-line specific intercellular normZ scores’ were obtained, one for
each TNBC cell line. We combined cell-line-specific intercellular normZ scores to obtain the final intercellular normZ score. TIL, tumor-infiltrating lymphocyte; KO, knockout;
CTRL, control; diff, differential analysis; exp, expression; comb, combination.
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For the TNBC CRISPR screening dataset, we used drugZ
algorithm to calculate fold changes of genes co-cultured with
CTLs compared to monocultured TNBC cells. As a result, genes
whose knockout help TNBC cells escape from CTL-mediated
killing obtained positive normZ scores. Since knockouts of these
genes prevent CTLs from killing TNBC cells, they may be
components of CTL-mediated cancer cell removal. For the CTL
CRISPR screening dataset, we calculated the fold changes of genes
in cell libraries against the tumor samples in order to give negative
scores to CTL-suppressive genes. Genes whose knockout increased
CTL infiltration into tumor tissue were enriched in the tumor
sample, and therefore given negative scores. These genes may
prevent CTL infiltration in their normal state. As a result, positive
normZ scores were given to the genes that activate CTL function,
while CTL-suppressive genes had negative normZ scores for both
CRISPR screening datasets.

2.2.3 Calculation of Intercellular normZ Score for
Each Interaction
We combined two genome-wide CRISPR screening datasets to
calculate the intercellular normZ scores. Before combining the
CTL CRISPR and TNBC CRISPR screens, we set the normZ
scores of unexpressed genes to zero for each cell type to reduce
noise resulting from the high-throughput pooled screening
procedure (5) (Figure 2C).

After zero out the normZ scores of unexpressed genes for
each cell type, the normZ score of a ligand from one cell type and
the corresponding receptor’s normZ score from the other cell
type were summed to calculate the cell-line-specific intercellular
normZ score (Figure 2D and Supplementary Figure 2). Because
the gene-level normZ scores follow a standard normal
distribution, we divided the sum by square root of two, i.e. the
number of interacting genes, to obtain intercellular normZ scores
that follow a standard normal distribution. As a result, we
obtained two intercellular normZ scores, one each from 4T1-
CTL and EMT6-CTL. For each intercellular interaction, we
summed both normZ scores and divided the sum by the
square root of two, i.e., the number of CTL-TNBC pairs, to
obtain the final intercellular normZ score (Figure 2D). To obtain
significant intercellular normZ scores, normZ scores from CTL,
4T1, and EMT6 CRISPR screens should have identical signs. If a
ligand and a receptor obtained high normZ scores simply due to
noise, there may be little chance that their normZ scores are large
and have identical signs across all CTL, 4T1, and EMT6 CRISPR
screens. Therefore, their normZ scores will offset each other
during the summation, resulting in a small intercellular
normZ score.

Because normZ scores follow the standard normal
distribution (z-scores), the corresponding p-values and false
discovery rates (FDRs) were calculated based on the normZ
scores (33) (Supplementary Table 2).

2.2.4 Alternative Methods to Calculate Intercellular
normZ Scores
Other than the proposed method in 2.2.3, we devised two
alternative methods to calculate the intercellular normZ scores.
Frontiers in Immunology | www.frontiersin.org 5
The first alternative method is ‘Strict’, which explicitly requires
normZ scores to have the same sign when summed. If two
normZ scores with different signs have to be summed, the ‘Strict’
method sets the result as zero instead of summing the scores. On
the other hand, the proposed method in 2.2.3 does not put any
constraints on the signs when two normZ scores are added,
hence we named it as ‘Tolerant’. The second alternative method
is ‘Composite’, a hybrid of ‘Strict’ and ‘Tolerant’. When the gene-
level normZ scores of CTL and TNBC screens are summed,
‘Composite’ requires them to have the same sign. However, the
intercellular normZ scores for 4T1-CTL and EMT6-CTL are not
required to have the same sign to calculate the final score because
cancer cell lines are highly heterogenous and they may not show
the same immunological effect. In total, we used three different
methods (‘Strict’, ‘Tolerant’, and ‘Composite’) to calculate
intercellular normZ scores.

2.3 Collection of Well-Known
Immunomodulators for
Performance Evaluation
2.3.1 Gold-Standard Dataset: Targets of Approved
Drugs and Phase III Clinical Trial Drug
Candidates for Immunotherapy
To benchmark the performance of intercellular CRISPR screens
over using either of the screening data alone, a gold-standard
dataset was obtained. Approved immunotherapy drugs that
modulate CTLs were used as the gold-standard dataset to
discover novel immunotherapeutic targets using CTL-related
CRISPR screening data. We downloaded IO Landscape data
and filtered drugs whose clinical stage was ‘Approved’ (26).
Among 141 approved drugs, 97 drugs were classified as ‘T-cell
targeted immunomodulators’ or ‘Other immunomodulators’.
Among these, we retrieved 32 drugs whose target cell types
were ‘APC/T cell’ or ‘T cell’. We manually inspected the 32 drugs
and finalized the list of gold-standard drugs. However, only ten
intercellular interactions were targeted by the approved drugs.
Therefore, we obtained information for other drug candidates
that modulate the function of CTLs and whose clinical stages
were ‘Phase III’. As a result, 38 intercellular interactions between
47 genes and their effects on CTL function were identified
(Supplementary Table 3).

2.3.2 Silver Standard Dataset: Cytokines and
Co-Stimulatory Molecules
The size of the gold-standard dataset was still limited to
quantitatively evaluating and comparing the methods. Therefore,
we collected a silver standard dataset composed of well-known
immunomodulators as potential immunotherapeutic targets.
These immunomodulators include cytokines, and co-stimulatory
and co-inhibitory molecules since they compose the majority of
targets of T cell modulators and other modulators (34). Because
we used CRISPR datasets obtained while cancer cells and CTLs
were interacting, we collected CTL-related immunomodulators
only (20, 21, 35–52). As a result, we obtained 79 and 30
intercellular interactions known to activate and suppress CTL
function, respectively.
May 2022 | Volume 13 | Article 884561

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yim et al. Intercellular CRISPR Screens for Immunotherapy
2.4 Performance Comparison
2.4.1 Aggregation of Intercellular normZ Scores
Into Gene-Level Scores
Intercellular CRISPR screen evaluates each interaction, whereas
CTL CRISPR and TNBC CRISPR screens evaluate each gene. To
compare the intercellular CRISPR screen with the CTL and TNBC
CRISPR screens, we aggregated interaction-level intercellular
normZ scores into gene-level scores (Supplementary Figure 3).
We enumerated all intercellular interactions involving each gene
in CTL/TNBC cells. We hypothesized that strong interactions
would result in intercellular normZ scores with high absolute
values. Therefore, we used the intercellular normZ score with the
highest absolute value as the score for the gene in the
corresponding cell type.

2.4.2 Performance Evaluation Metrics
We used the area under the receiver operating characteristic
curve (AUROC), precision, recall, and F1 scores to evaluate the
ability of CRISPR screens to discover the silver standard
dataset. For the AUROC, we used the normZ scores. For
precision, recall, and F1 score, we used FDR < 5% to classify
normZ scores as CTL-activating, CTL-suppressive, and
unknown. Genes/interactions with FDR ≥ 5% were classified
as unknown. The remaining genes/interactions with positive
and negative normZ scores were classified as CTL-activating
and CTL-suppressive, respectively.

Because we have three classes, CTL-activating, CTL-
suppressive, and unknown, we used an averaging scheme to
evaluate performances. There are two averaging schemes in
multiclass classifications: micro- and macro-averaging. Micro-
averaging weighs each instance equally. On the other hand,
macro-averaging regards each class as equally important, giving
more weight to instances from minor classes. Since the silver
standard dataset was highly imbalanced, we adopted the macro-
averaging scheme. The performance for the unknown class was
not evaluated since it may include potential immunotherapeutic
targets that activate or suppress CTL functions.
3 RESULTS

3.1 Intercellular CRISPR Screens
Identify Approved Targets for
Cancer Immunotherapy
To discover novel immunotherapeutic targets, we focused on
intercellular interactions instead of single genes. We propose the
use of intercellular CRISPR screens as a pipeline to discover
potentially therapeutic interactions between immune and cancer
cells. As a proof of concept, we used an intercellular CRISPR
screen to identify the interactions that affect CTLs in TNBC
(Figure 2). We used two genome-wide pooled CRISPR screen
datasets that were collected while CTLs were interacting with
TNBC cells (8, 15). Next, we collected intercellular interactions
from CellPhoneDB and ConnectomeDB2020 (31, 32). By
combining the two CRISPR screen datasets and the expression
Frontiers in Immunology | www.frontiersin.org 6
level of each gene in CTLs and TNBC cell lines, we calculated
intercellular normZ scores, the extent to which each intercellular
interaction affected CTL function. Intercellular normZ scores
were calculated with three different methods. The first was
‘Strict’, which requires the immunological effects (CTL-
activating or CTL-suppressive) of a ligand and a receptor
should be concordant. Also, ‘Strict’ requires the immunological
effects in different TNBC cell lines should be concordant. The
second was ‘Tolerant’ since it permits a ligand and a receptor
with different immunological effects. The last was ‘Composite’, a
hybrid of ‘Strict’ and Tolerant. ‘Composite’ requires the effect of
a ligand and a receptor to be concordant, whereas the effects in
different TNBC cell lines can be different.

Figure 3A shows that the intercellular CRISPR screen
(‘Tolerant’ method) can identify both CTL-activating and
suppressive interactions which can increase or inhibit CTL-
mediated cancer cell removal, respectively. In contrast, the
CTL and TNBC CRISPR screens are more suited for
identifying CTL-suppressive and activating genes, respectively.
The results can be explained as follows: knockout of CTL-
activating genes decreases the number of CTLs, resulting in
increased TNBC cell numbers. In contrast, the knockout of
CTL-suppressive genes increases the number of CTLs,
resulting in decreased TNBC cells. CTL CRISPR screens are
more suitable for identifying genes that increase the number of
CTLs, i.e., CTL-suppressive genes, whereas TNBC CRISPR
screens are more suitable for identifying CTL-activating genes
which can increase TNBC cell numbers. By combining both
CRISPR screens, intercellular CRISPR screens can effectively
identify CTL-activating and suppressive genes.

The intercellular CRISPR screen evaluates each interaction,
whereas CTL and TNBC CRISPR screen evaluates a single gene.
To directly compare intercellular CRISPR screen against CTL
and TNBC ones, we aggregated intercellular normZ scores
involving the identical gene to obtain gene-level intercellular
normZ scores. We used FDR < 5% to predict genes as CTL-
activating and CTL-suppressive based on the normZ scores. The
results for gene-level comparisons showed a similar tendency
(Figure 3B, C). The CTL CRISPR screen identified CTL-
suppressive genes whereas genes discovered from TNBC
CRISPR screens were biased towards CTL-activating ones. In
contrast, intercellular CRISPR screens (‘Tolerant’ method) can
help identify both CTL-activating and suppressive genes. For
example, CTL-activating interactions between Ifna, Ifng, Tnf,
and their corresponding receptors were not identifiable from
CTL CRISPR screen, while intercellular CRISPR screen
successfully discovered them (Figure 3B and Supplementary
Figure 4A). Similarly, CTL-suppressive interactions Pdcd1-
Cd274, Havcr2-Ceacam1, and Havcr2-Lgals9 were identified by
intercellular CRISPR screen, but not by TNBC CRISPR screen
(Figure 3C and Supplementary Figure 4B). On the other hand,
Jmjd6 was identified by TNBC CRISPR screen, but not by
intercellular CRISPR screen (Figure 3C and Supplementary
Figure 4B). Even though Jmjd6 was suggested to suppress the
function of CTLs from in vitro TNBC CRISPR screen, it showed
the opposite effect from in vivo CRISPR screens performed by
May 2022 | Volume 13 | Article 884561
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A

B

D

C

FIGURE 3 | NormZ scores from the intercellular, CTL, and TNBC CRISPR screens. Intercellular normZ scores were calculated by the ‘Tolerant’ method. (A) Rank-
ordered normZ scores from the intercellular (left), CTL (middle), and TNBC (right) CRISPR screens. Interactions/genes known to activate and suppress CTL function are
marked in red and blue, respectively. The dot sizes are negatively proportional to the FDR. The top ten interactions/genes are represented in the inset. (B) Statistically
significant (FDR < 5%) genes from the gene-level intercellular and CTL CRISPR screens. (C) Statistically significant (FDR < 5%) genes from the gene-level intercellular and
TNBC CRISPR screens. Genes with positive and negative normZ scores are marked with red and blue, respectively. Well-known immunomodulators from the silver
standard data are marked in bold. (D) The intercellular, CTL, and TNBC normZ scores of interactions/genes targeted by approved immunotherapeutic drugs, or phase III
clinical trial drug candidates. * Statistically significant (FDR < 5%) interactions/genes.
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Lawson et al. (8). This supports that intercellular CRISPR screen
correctly rejected Jmjd6.

To benchmark the use of intercellular CRISPR screens
(‘Tolerant’ method) relative to the use of either CRISPR screen
alone, we obtained a gold-standard dataset containing data for 38
intercellular interactions targeted by approved IO drugs or phase
III clinical trial drug candidates for immunotherapy. Figure 3D
shows that CTL-suppressing and activating interactions tended to
have negative and positive scores, respectively. Significant
interactions were mostly related to cancer antigen presentation
and killing of cancer cells, reflecting the experimental endpoint of
the used CRISPR screens (53). This may be the reason why Ctla4
obtained insignificant scores since it is related to the proliferation
of CTLs in lymph nodes rather than killing cancer cells in
peripheral tissue (53, 54). A few interactions were missed when
CRISPR screen data were used alone. For example, the TNBC
CRISPR screen failed to identify Cd274 (Pd-l1) because it was not
expressed in either 4T1 or EMT6 cells. However, this result is
biologically plausible because not all patients express PD-L1 or
respond to anti-PD-L1 therapy (55). In contrast, the CTL CRISPR
dataset failed to identify interferons alpha and gamma. These
results indicated that intercellular CRISPR screens combined the
complementary CRISPR datasets to identify IO targets more
comprehensively. However, a few gold-standard interactions had
negligible scores. For example, aldesleukin is a recombinant
interleukin-2 that has been approved for the treatment of renal
cell carcinoma. However, the normZ scores of Il2 and Il2r were
close to zero in the CTL and TNBC CRISPR screens, respectively.
Interestingly, we found that interleukin-2 failed to demonstrate its
efficacy in breast cancer patients during a phase III clinical trial
(56). Similarly, pegylated recombinant interleukin-10 or
pegilodecakin had low efficacy against pancreatic ductal
adenocarcinoma during a phase III clinical trial (57).

In summary, the intercellular CRISPR screen identified two
intercellular interactions, Pdcd1-Cd274 and Ifna2-Ifnar targeted
by approved IO drugs pembrolizumab and peginterferon alfa-2b,
respectively. In addition, our results suggested Havcr2-Lgals9 and
Ifng-Ifngr, targeted by sabatolimab and interferon gamma-1b
respectively, as potentially therapeutic interactions. These results
indicate that intercellular CRISPR screens can be used to discover
effective targets during the early drug development stages.
3.2 Intercellular CRISPR Screens
Outperform Single CRISPR Screens
We performed three quantitative evaluations to compare the
performances of different CRISPR screens. First, we evaluated
the performance of intercellular CRISPR screens calculated by
the ‘Tolerant’method. Next, we compared the ‘Tolerant’method
with two alternative methods, ‘Strict’ and ‘Composite’, to identify
the best way to calculate intercellular normZ scores. Lastly, we
compared the performance of intercellular CRISPR screens with
CTL and TNBC CRISPR screens to estimate the degree of
performance enhancement. Because there are few IO drugs, the
gold-standard dataset may not be appropriate for the
quantitative evaluation. Therefore, we used a silver standard
Frontiers in Immunology | www.frontiersin.org 8
dataset containing cytokines and co-stimulatory molecules as
potential immunotherapeutic targets. Cytokines and co-
stimulatory molecules were selected since they compose the
majority of targets of immunomodulatory drugs (34). Because
intercellular normZ scores are continuous, they were binarized
based on an FDR < 5% to make predictions.

The confusion matrix of the ‘Tolerant’ method is shown in
Figure 4A. Among 79 CTL-activating interactions in the silver
standard dataset, 30 were correctly classified as CTL-activating,
whereas the remaining 49 were classified as unknown. Among 30
CTL-suppressive interactions, four were classified as CTL-
suppressive, whereas the remaining 26 were classified as
unknown. Even though 21 CTL-suppressive interactions
obtained negative normZ scores, only four were statistically
significant, i.e. FDR < 5%. Among 4716 interactions whose
effects are unknown, 20 and one interaction were classified as
CTL-activating and CTL-suppressive, respectively, and
suggested as potential immunotherapeutic targets. Based on
the confusion matrix, we evaluated the precision, recall, and F1
scores of intercellular CRISPR screen against the silver standard
dataset. We used macro-averaging to deal with multiclass
classification. Macro-averaged precision, recall, and F1 score
were 0.70, 0.26, 0.35, respectively (Figure 4B). The recall was
lower than precision since we used a strict threshold, FDR < 5%,
for the classification to identify highly confident potential targets.

We evaluated two alternative methods to calculate the
intercellular normZ scores (Supplementary Figure 5). The first
method is ‘Strict’, which explicitly requires normZ scores to have
the same sign when summed. We named the method in Figure 2
as ‘Tolerant’ since it does not put any constraints on the signs of
normZ scores. The second alternative method is ‘Composite’,
which requires the gene-level normZ scores of CTL and TNBC
screens to have the same sign. However, the intercellular normZ
scores for 4T1-CTL and EMT6-CTL are not required to have the
same sign under the ‘Composite’method.We evaluated ‘Tolerant’,
‘Composite’, and ‘Strict’ when used with and without gene
expression data. The best performance was obtained using the
‘Tolerant’ method with expression data, whereas the ‘Strict’
method with expression data performed the worst. For the
‘Composite’ and ‘Strict’ methods, the use of gene expression
data reduced the performances due to the strict constraint on
the normZ scores which resulted in many zeros. In contrast,
including expression data improved the performance of the
‘Tolerant’ method. Therefore, we used the ‘Tolerant’ method
with expression data to calculate the intercellular normZ scores.

Next, we compared the performanceof the intercellularCRISPR
screen relative to the CTL and TNBC CRISPR screens. We
calculated the AUROC, precision, recall, and F1 scores for each
CRISPR screen (Figure 4C and Supplementary Figure 6). The
results showed that the intercellular CRISPR screen outperformed
both individual CRISPR screens for all macro-averaged evaluation
metrics. For class-specific performances, intercellular CRISPR
screen achieved similar or superior performances except for the
precision of the CTL and TNBC screen for CTL-suppressive and
CTL-activating classes, respectively. However, the CTL and TNBC
CRISPR screen failed to identify the opposite classes, resulting in
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impaired macro-averaged precision and recall. In fact, the
intercellular CRISPR screen improved the macro-averaged recall
and F1 score over single CRISPR screens more than twice. These
results demonstrate that intercellular CRISPR screens can use
complementary CRISPR screens to robustly identify
immunotherapeutic targets.
3.3 Intercellular CRISPR Screens Identify
Potential IO Targets
Based on the intercellular normZ scores, we identified potential
IO targets with previously unknown effects. We investigated 21
interactions with FDR < 5% (Figure 4A), and additional three
interactions whose absolute values of intercellular normZ
scores were >3. We finalized seven interactions based on the
following criteria; (1) Interactions whose effects from CTL and
TNBC CRISPR screens were concordant, and (2) interactions
involving genes expressed in CTLs. We included genes that
were not expressed in TNBC cell lines because a few genes,
including CD274, may be expressed in only a subset of TNBC
cell lines.
Frontiers in Immunology | www.frontiersin.org 9
Among the seven interactions identified, none was identifiable
when CTL CRISPR screen was used only. On the other hand, Calr,
Tnfrsf1a, and Tnfrsf1b were discovered from TNBC CRISPR
screens while Bst2, Ccl4, and Fn1 were not. Among them, six
interactions were partially supported by literature (Table 1). Three
interactions involved Tnfrsf1a/b, which activate CTL function
(49). In particular, Tnfrsf1b-mediated activation of CTLs showed
tumor regression in syngeneic EMT6 models (58). On the other
hand, knockdown of Bst2 increased tumor latency and reduced
tumor volume in E0771 and 4T1 models (59). It is particularly
interesting because Bst2 was not identifiable from 4T1 CRISPR
screen (FDR=0.543). In addition, a recent study reported that
Slc7a1 reduces memory T cells by activating mTORC1 (60), and
Sdc2 facilitates the removal of the T-cell receptor/CD3 complex
from the cell membrane (61).

In summary, our results suggested seven intercellular
interactions as immunotherapeutic targets for TNBC. Among
these, four may activate CTL function, for which agonists can be
investigated as IO drugs. The remaining three were suggested to
suppress CTL function, for which antagonists may be
investigated to treat TNBC.
A B

C

FIGURE 4 | The performance of the intercellular CRISPR screen (‘Tolerant’ method). (A) Confusion matrix of intercellular CRISPR screens. Predictions were made
based on an FDR < 5%. (B) Precision, recall, and F1 scores of intercellular CRISPR screens. (C) AUROC, precision, recall, and F1 scores of CTL, TNBC, and
intercellular CRISPR screens. AUROC, area under the receiver operating characteristic curve.
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4 DISCUSSION

In this study, we showed the utility of intercellular CRISPR
screens for the discovery of immune–cancer cell interactions as
IO targets, relative to focusing on single genes. Intercellular
CRISPR screens integrate two CRISPR screens, one for
immune and one for cancer cells, which are obtained when
both cells interact with each other. Our results showed that CTL
and TNBC CRISPR screens were complementary, and the
intercellular CRISPR screen outperformed individual screens.

Although our results successfully identified approved IO
targets and known immunomodulators, they have three
limitations. First, the experimental settings for the CTL and
TNBC CRISPR screens were different. The CTL and TNBC
CRISPR screens were used in vivo and in vitro, respectively. In
addition, the screens used different TNBC cell lines. Although we
tried to find datasets with similar experimental conditions, there
were few studies that satisfied our five selection criteria. We
expect that using CRISPR screening datasets obtained under
identical experimental conditions and incorporating more
datasets would lead to more robust results. Second, public
databases were used to identify putative interactions between
CTLs and TNBC cells. Growing efforts have been made to infer
cell-type-specific intercellular interactions by combining
information from public databases with large-scale gene
expression data (62). Although we set the scores of
unexpressed genes to zero, adopting sophisticated methods to
infer cell-type-specific intercellular interactions may refine
intercellular CRISPR screens to help identify more specific
targets. Lastly, potential IO targets in Table 1 were not
experimentally validated. Even though we listed some
supporting literature, they should be validated by experiments.

Despite these limitations, the intercellular CRISPR screening
method identified nine (Figure 3 and Supplementary Table 3)
and 34 interactions (Figure 4A) that are targeted by approved
drugs and phase III clinical trial drug candidates, respectively.
Moreover, our results suggested seven interactions as potential IO
targets (Table 1). Focusing on interactions instead of single genes
overcomes the limitation of not accounting for a single gene
having multiple interaction partners. In addition, the novel
method proposed in the study is useful because ligands and
receptors are generally druggable. A recent study suggested that
Frontiers in Immunology | www.frontiersin.org 10
a PD-1 and PD-L1 bi-specific antibody is more effective than using
anti-PD-1 and anti-PD-L1 antibodies together (63), further
supporting the use of intercellular CRISPR screens over
single screens.

Considering the aforementioned advantages, intercellular
CRISPR screens can be used to evaluate interactions between
several cancer and immune cell types such as natural killer cells
or macrophages (23, 64). Moreover, the proposed method can be
extended to consider multiple immune cell types simultaneously
in order to more precisely model the tumor microenvironment.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS

SY and WH conceptualized the study. SY developed and
evaluated the proposed method along with WH under the
supervision of NH and DL. All authors contributed to writing,
reading, and have approved the manuscript.
FUNDING

The work described and publication of this article were
supported by the Bio-Synergy Research Project (NRF-
2012M3A9C4048758) of the Ministry of Science and ICT
through the National Research Foundation. NH and WH were
funded by LifeArc.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.
884561/full#supplementary-material
TABLE 1 | Highly ranked intercellular interactions for immunotherapeutic targets.

Rank CTL gene TNBC gene CTL 4T1 EMT6 Intercellular Supporting literature

normZ score FDR normZ score FDR normZ score FDR normZ score FDR

9 Itgav Calr 1.33 0.546 4.28 0.003 3.81 0.011 5.375 4.62e-5
10 Lta Tnfrsf1a 1.19 0.546 2.49 0.552 5.05 7.5e-5 4.96 3.40e-4 (49)
11 Ltb Tnfrsf1a 0.51 0.546 2.49 0.552 5.05 7.5e-5 4.28 0.003 (49)
30 Lta Tnfrsf1b 1.19 0.546 0.96 0.552 4.74 2.53e-4 4.04 0.004 (49, 58)
56 Gm49339 Bst2 -2.72 0.613 -0.88 0.543 -1.04 0.548 -3.68 0.094 (59)
64 Slc7a1 Ccl4 -3.28 0.178 0.36* 0.543 -0.02* 0.544 -3.28 0.313 (60)
67 Sdc2 Fn1 -2.52 0.613 -0.91 0.543 -0.42 0.548 -3.185 0.388 (61)
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screens (FDR < 0.05), Bst2, Ccl4, and Fn1 were not. * Ccl4 was not expressed in 4T1 and EMT6 TNBC cell lines. All the other genes were expressed in the corresponding cell types.
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