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Alcohol consumption is commonplace in the United States and its prevalence has
increased in recent years. Excessive alcohol use is linked to an increased risk of
infections including pneumococcal pneumonia, mostly commonly caused by
Streptococcus pneumoniae. In addition, pneumonia patients with prior alcohol use
often require more intensive treatment and longer hospital stays due to complications
of infection. The initial respiratory tract immune response to S. pneumoniae includes the
production of pro-inflammatory cytokines and chemokines by resident cells in the upper
and lower airways which activate and recruit leukocytes to the site of infection. However,
this inflammation must be tightly regulated to avoid accumulation of toxic by-products and
subsequent tissue damage. A majority of previous work on alcohol and pneumonia involve
animal models utilizing high concentrations of ethanol or chronic exposure and offer
conflicting results about how ethanol alters immunity to pathogens. Further, animal
models often employ a high bacterial inoculum which may overwhelm the immune
system and obscure results, limiting their applicability to the course of human infection.
Here, we sought to determine how a more moderate ethanol exposure paradigm affects
respiratory function and innate immunity in mice after intranasal infection with 10* colony
forming units of S. pneumoniae. Ethanol-exposed mice displayed respiratory dysfunction
and impaired bacterial clearance after infection compared to their vehicle-exposed
counterparts. This altered response was associated with increased gene expression of
neutrophil chemokines Cxc/7 and Cxc/2 in whole lung homogenates, elevated
concentrations of circulating granulocyte-colony stimulating factor (G-CSF), and higher

Frontiers in Immunology | www.frontiersin.org 1

May 2022 | Volume 13 | Article 884719


https://www.frontiersin.org/articles/10.3389/fimmu.2022.884719/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.884719/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.884719/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.884719/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.884719/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.884719/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:elizabeth.kovacs@cuanschutz.edu
https://doi.org/10.3389/fimmu.2022.884719
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.884719
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.884719&domain=pdf&date_stamp=2022-05-04

Hulsebus et al.

Alcohol, Pneumonia, and Innate Immunity

neutrophil numbers in the lung 24 hours after infection. Taken together, these findings
suggest that even a more moderate ethanol consumption pattern can dramatically
modulate the innate immune response to S. pneumoniae after only 3 days of ethanol
exposure and provide insight into possible mechanisms related to the compromised
respiratory immunity seen in alcohol consumers with pneumonia.

Keywords: alcohol, inflammation, innate immunity, lung function, macrophage, leukocyte

INTRODUCTION

The immune system is influenced by a myriad of environmental
factors, including alcohol consumption. In 2019, 69% of U.S.
adults aged 26 years or older reported alcohol use in the past
month (1). Importantly, social stresses associated with the
COVID-19 pandemic have led to increased sales of alcoholic
beverages: sales were 3.6% higher in March 2020 and 15.5%
higher in April 2021 when compared to a 3-year average from
the same month in 2017-2019 (2). Further, alcohol-related
deaths have been rising at an astonishingly quick pace in
recent years: fatalities due to alcohol rose by 25.9% between
2019 and 2020, compared to a 16.6% increase in age-adjusted
mortality rates from all causes (3). Based on this rapidly
escalating prevalence of alcohol consumption, we will likely
continue to see a rise alcohol-associated morbidity and
mortality well into the future.

Alcohol’s effects on the immune system vary based on the
amount and duration of consumption. Broadly speaking, alcohol
intake can be classified as “moderate” or “excessive” (4). The U.S.
Centers for Disease Control and Prevention describe “moderate”
alcohol intake as 1-2 drinks per day for males or 1 drink per day
for a female (4). “Excessive” alcohol consumption includes binge
drinking, or that which brings blood alcohol concentration
(BAC) above the “legal limit” for driving (80 mg/dL; usually 5
+ drinks for a male or 4+ drinks for a female within 2 hours) and
heavy drinking, considered 14+ drinks per week for a male or 7+
drinks for a female (5). In addition, human studies characterize
“alcohol use disorder” (AUD) as the inability to modify or
discontinue alcohol use despite adverse consequences to one’s
personal or work life, and is clinically measured by several social
and psychological parameters (6).

Epidemiological studies have shown that moderate alcohol
intake is generally associated with protective health effects, such
as decreased risk of cardiovascular disease [reviewed in (7)],
lower concentrations of circulating inflammatory biomarkers
(8), and lower risk of all-cause mortality in humans (9). In
contrast, other studies have found an increased risk for all-cause
mortality in adults with heavy alcohol consumption [> 14 and >
7 drinks per week for men and women, respectively (9), or 5+
drinks on a single occasion at least once per week in the past year
(10)]. Additionally, chronic alcohol users often have health
complications associated with alcoholic hepatitis and its
treatment, such as invasive aspergillosis (11) and infections of
the lower respiratory and urinary tracts (12). Mouse models have
similarly shown that excessive ethanol exposure is linked to
deleterious effects on immunity; these include decreased

responsiveness to Toll-like receptor (TLR) 2, 4, and 9 agonists
(13), diminished phagocytic capacity (14, 15), impaired
respiratory function (16), and increased airway neutrophils
following acute lipopolysaccharide-induced lung injury (17).
Neutrophil function is also compromised due to excessive
ethanol consumption. For example, chronic ethanol exposure
is associated with impaired neutrophil chemotaxis to the airways
following pulmonary Aspergillus fumigatus infection, along with
attenuated phagocytosis, fungal killing, and reactive oxygen
species production in A. fumigatus-challenged neutrophils
from ethanol-fed mice (18). Others have demonstrated that
acute ethanol treatment (6 g/kg) decreases neutrophil
infiltration into the peritoneal cavity following cecal ligation
and puncture, accompanied by diminished production of
neutrophil extracellular traps and bacterial killing (19).

Excessive alcohol use has been linked to increased
susceptibility to infectious diseases such as pneumonia, with
the most common bacterial cause being Streptococcus
pneumoniae (20). The estimated annual incidence of
pneumonia in the United States is 24.8 cases per 10,000 adults
(21), and approximately 3.5% of pneumonia patients had an
AUD at diagnosis (22). In fact, meta-analyses have found a dose-
dependent, linear relationship between alcohol consumption and
relative risk for contracting pneumonia (23, 24). In addition,
patients with alcohol use disorder are more likely to have severe
invasive disease that requires hospitalization (25) and adults who
drink excessively (> 60 grams per day) are 4 times more likely to
die within 30 days of infection (26).

Innate immune recognition of S. pneumoniae by tissue-
resident alveolar macrophages or epithelial cells stimulates the
production of pro-inflammatory C-X-C motif chemokine ligand
1 (CXCL1) and CXCL2, which recruit and activate cells, such as
monocytes, macrophages, and neutrophils to the site of infection
(27-29). Additionally, in the context of pulmonary injury,
CXCLI12 promotes neutrophil migration and retention in the
lung (30, 31). Important chemokines for the production and
mobilization of granulocytes from the bone marrow are
granulocyte colony stimulating factor (G-CSF) and granulocyte
macrophage colony stimulating factor (GM-CSF). Following an
inflammatory stimuli such as infection, G-CSF and GM-CSF are
rapidly produced and secreted by monocytes, macrophages,
fibroblasts, and endothelial cells and this corresponds with an
increase in neutrophil differentiation and production in the bone
marrow (32-34). Indeed, mice lacking G-CSF or its receptor
have reduced neutrophil counts in the blood and
bronchoalveolar lavage (BAL) fluid following Pseudomonas
aeruginosa lung infection (35). While the importance of innate
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immune cells in the response to S. pneumoniae has long been
appreciated (36-38), excessive accumulation of these cells can be
deleterious to host tissue if the inflammatory response is not
properly controlled. For example, increased neutrophil
recruitment to the lungs following influenza-induced
pneumonia in mice is associated with alveolar damage,
pulmonary edema, and development of a phenotype similar to
that seen in critically ill humans with acute respiratory distress
syndrome (39).

Our current knowledge regarding the effects of acute alcohol
intoxication on lung immunity is largely based on animal studies
using supra-physiologic doses of alcohol (3-5 g/kg) (40, 41),
sometimes high enough to raise blood alcohol concentration to
350-550 mg/dL (42, 43). Here, we sought to determine the effect
of a 3 day lower-dose alcohol regimen (1.5 g/kg; target BAC of
~80 mg/dL) on the pulmonary response to a clinically relevant
intranasal S. pneumoniae infection (44).

MATERIAL AND METHODS

Mice

Female BALB/cBy mice (Jackson Laboratory) were housed at the
University of Colorado Anschutz Medical Campus in specific
pathogen-free conditions for at least 2 weeks prior to the start of
studies. Animals used in experiments were 3-5 months of age
and weighed at least 20 grams. All animal experiments were
performed under a protocol approved by the Institutional
Animal Care and Use Committee at the University of
Colorado Anschutz Medical Campus (protocol number 00087).
Animals were housed in a temperature- (72°F + 2°) and
humidity- (35%) controlled room with a 14-hour light cycle
(6am-8pm) and 10-hour dark cycle (8pm-6am), and provided
with a nestlet for environmental enrichment. Experiments were
performed between the hours of 8 and 10 am to minimize
confounding effects of circadian variation in corticosterone and
other hormones which can influence inflammatory and immune
responses (45). For these studies, 3-6 mice comprised each
control or treatment group and results are combined from 2-3
individual experiments as indicated in the figure legends.

Oral Gavage and Measurement of BAC

Mice were orally gavaged with a 20% v/v ethanol solution (1.5 g/kg
based on body weight) or vehicle (sterile water) once daily for 3
consecutive days (46). BAC levels were confirmed in each
experiment by obtaining blood via tail snip at 30 minutes post-
gavage and analyzing ethanol levels in a 1:50 dilution of serum
using a commercially available kit (BioVision K620). Animals
were gavaged between 8 and 9 am to mimic human
drinking patterns.

Bacterial Growth and Infection

Previously frozen glycerol stocks (1 ml) of Streptococcus
pneumoniae serotype 3 (ATCC 6303) were quickly thawed at
37°C, added to 4 ml of tryptic soy broth (BD 211825), and
incubated statically at 37°C/5% CO, until the culture reached
mid-log phase (47). Bacteria were washed twice in sterile

phosphate buffered saline (PBS), resuspended in an
appropriate volume to yield approximately 10* colony forming
units (CFU) in 50 pl, and kept on ice until inoculation. One hour
after the final gavage, mice were anesthetized with an
intraperitoneal injection of 12.5 mg/kg of ketamine and 1.25
mg/kg of xylazine (Webster Veterinary, Sterling, MA), and 50 ul
of the prepared inoculum or sterile PBS (Gibco 14190-144) for
sham animals was instilled trans-nasally. Mice were held
vertically for 1 minute to assist inoculum draining into the
lungs. Any mice losing more than 15% of their body weight
were humanely euthanized and excluded from analysis. The
exact dose of inoculum was quantified in each experiment by
serial dilution of the bacterial suspension and plating on tryptic
soy agar containing 5% sheep’s blood (Remel R01200).

Plethysmography

Respiratory function was measured in conscious mice using
unrestrained whole-body barometric plethysmography (Buxco
Research Systems) as described (16, 48). Briefly, mice were
allowed to acclimate in the sealed chamber for 5 minutes and
respiratory parameters were measured and recorded for 10
minutes by the manufacturer’s software (Buxco FinePointe).
Mean values for each parameter per mouse were used
for analysis.

Lung Bacterial Burden

Whole lungs were removed at 24 hours after infection, placed in
1 ml cold PBS, and homogenized using a Tissue Tearor (Dremel
985370). 100 pl of serially diluted sample was plated on tryptic
soy agar containing 5% sheep’s blood (Remel R01200), and CFU
were counted after overnight incubation at 37°C/5% CO,.

Lung Macrophage and Neutrophil
Quantification by Flow Cytometry

Whole lungs were removed at 24 hours post-infection and
dissociated into a single cell suspension per manufacturer’s
protocol (Miltenyi 130-095-927). Briefly, separated lung lobes
were placed in a C tube (Miltenyi 130-096-334) containing 2.4 ml
1X Buffer S, 100 pl enzyme D, and 15 ul enzyme A. Samples were
mechanically disrupted using a GentleMACS instrument
(Miltenyi), filtered, and red blood cells were lysed by
incubation in Ammonium-Chloride-Potassium (ACK) buffer
(Gibco A10492-01) (16). 10° cells per sample were stained in
PBS (Gibco) + 1% BSA (Quality Biological Inc K719500ML) with
the following antibody cocktail: CD45-FITC (clone 30-F11,
Biolegend 103108), CD11b-BV650 (clone M1/70, Biolegend
101259), CD11c-BV605 (clone N418, Biolegend 117334), F4/
80-PerCP-Cy5.5 (clone BMS, Biolegend 123128), SiglecF-BV421
(clone E50-2440, BD Horizon 562681), and Ly6G-APC-Cy7
(clone 1A8, Biolegend 127624). Samples were resuspended in
stabilizing fixative (BD 338036), run on an LSRII flow cytometer
(BD Biosciences), and data were analyzed using Flow]Jo software
v10.7.1 (BD Life Sciences).

Quantitative Real-Time PCR

RNA was extracted from homogenized lung tissue using the
RNeasy Mini kit (Qiagen 74106) and reverse transcribed to
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cDNA (BioRad 1708891) following the manufacturers’ protocols
(49). Equal quantities of cDNA were added to a Tagman master
mix (Life Technologies 4304437) containing either CxclI
(ThermoFisher Mm04207460_m1), Cxcl2 (ThermoFisher
Mm00436450_m1), Cxcl12 (ThermoFisher MmO00445553_m1),
Ly6g (ThermoFisher Mm04934123_m1), Csf2 (ThermoFisher
MmO01290062_m1) or Csf3 (Mm00438334_m1l), and Gapdh as
endogenous control (Thermo Fisher 4352339E). Real-time
quantitative PCR was performed using the QuantStudio 3 Real-
Time PCR System (ThermoFisher Scientific) and analyzed using
the AACt algorithm (50).

Enzyme-Linked Immunosorbent

Assay (ELISA)

Blood was collected from mice via cardiac puncture immediately
following euthanasia and allowed to coagulate for 30 minutes
before serum separation by centrifugation. Granulocyte-colony
stimulating factor (G-CSF) was measured in serum samples
according to manufacturer’s protocol (R&D Systems DY414).

Lung Histology and

Immunohistochemistry (IHC)

The left lung lobe was inflated with 10% formalin (Fisher SF98-4),
fixed overnight, and kept in 70% ethanol until processing. Paraffin-
embedded tissue was sectioned (5 pum) and stained using
hematoxylin and eosin (H&E) or IHC antibodies and scored in a
blinded fashion by an experimental pathologist. IHC was
performed using primary antibodies against Ly6G (1:250, BD
Biosciences 551459) and S. pneumoniae (1:1000; Novus
Biologicals NB100-64502), and detected using ImmPress polymer
reagents (Vector Laboratories). Antigen expression was visualized
with 3,3’ Diaminobenzidine and alkaline phosphatase according to
manufacturer’s protocol (Vector Laboratories). Sections were
counterstained with Hematoxylin QS and slides were
coverslipped using VectaMount medium (Vector Laboratories).

Quantification of H&E- and IHC-Stained
Lung Sections

Semi-quantitative assessment of the following injury criteria in
the H&E-stained sections was performed: gross accumulations of
inflammatory cells in the lung parenchyma (0-6), presence of
leukocytes in the airways (0-2), peri-vascular inflammatory cell
accumulation (0-2) or edema (0-2), and proteinaceous material
in the alveolar space (0-2). Analysis of IHC staining intensity was
achieved by capturing histologic images [enough 40x images per
animal to completely cover the whole IHC-stained lung cross-
section (5-8 per animal)] on an Olympus BX51 (Waltham, MA)
microscope equipped with a 4 megapixel Macrofire digital
camera using the PictureFrame Application 2.3 (Optronics,
Goleta, CA). Images were then imported into Slidebook (3I,
Denver, CO) for quantification. Data are expressed as percent
IHC positive pixels (51). Phagocytosis of S. pneumoniae was
measured by capturing stitched images with a light microscope
equipped with a motorized XY-stage at 400x magnification
(Olympus IX83) and CellSens software (version 1.16, Olympus
Life Sciences). Manual quantification of 8-9 non-overlapping

400x images per animal was performed and phagocytosis was
calculated as the number of cells with internalized S. pneumoniae
relative to total nucleated cells. Average percentage phagocytosis
per group is presented.

Statistical Analysis

Data were analyzed with Graph Pad Prism software for Windows
version 9.2.0 (GraphPad Software, San Diego, California USA)
using an unpaired two-tailed t test with Welch’s correction or
one-way ANOVA as appropriate and indicated in figure legends.
p value < 0.05 was considered to represent a significant difference
between treatment groups.

RESULTS

Ethanol-Exposed Mice Have Increased
Lung Bacterial Burden After

S. pneumoniae Infection Compared to
Vehicle-Exposed Animals

To test our hypothesis that ethanol exposure impairs clearance of
S. pneumoniae from the lungs, we gavaged mice with vehicle
(water) or ethanol (1.5 g/kg) and intra-nasally instilled S.
pneumoniae or PBS (Figure 1A). This dose of ethanol raised
serum BAC to approximately 80 mg/dL at 30 minutes post-
gavage (Figure 1B). Our results indicate that ethanol-exposed
infected mice had significantly higher average S. pneumoniae
CFU in whole lung homogenates at 24 hours post-infection
(Figure 1C). Importantly, since we are introducing 10* CFU .
pneumoniae via an intra-nasal route (vs. direct administration of
bacteria to the lungs via an intra-tracheal infection), our results
confirm that the bacteria are able to withstand the initial immune
response in the upper respiratory tract to reach the lungs,
establish an infection, and begin to replicate.

Ethanol-Exposed Mice Have

Impaired Respiratory Function After

S. pneumoniae Infection Compared to
Vehicle-Exposed Animals

To determine the effect of ethanol consumption on respiratory
function in our infected animals, we performed unrestrained
whole-body plethysmography prior to infection and up to 7 days
after infection. Here, we report respiratory rate [breaths per
minute (bpm)], enhanced pause ratio (penh) - a dimensionless
index of airflow patterns as a mouse breathes (43), expiration
time (Te), and Rpef - the time required to reach peak expiratory
flow relative to Te (44). Before infection, all parameters were
similar between our vehicle- and ethanol-exposed groups;
therefore, we used vehicle-exposed uninfected animals as our
control group throughout the 7-day time course (Figure 2A-D).
When comparing respiratory parameters between infected
groups, we noted a significantly higher penh value in our
ethanol- compared to vehicle-exposed infected mice from days
1-4 post-infection (Figure 2A), decreased breathing frequency in
the ethanol-exposed infected animals at 24 hours (Figure 2B),
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increased expiratory time in ethanol-exposed animals at 24 hours
(Figure 2C), and a lower Rpef value in ethanol- compared to
vehicle-exposed infected mice at 24 hours (Figure 2D). Notably,
penh values in the vehicle-exposed infected mice did not differ
from the uninfected mice through 7 days of infection
(Figure 2A).

Ethanol-Exposed Mice Have Increased
Numbers of Neutrophils, but Similar
Numbers of Macrophages, in the Lung

24 Hours After Infection Compared to
Vehicle-Exposed Mice

Since our initial results showed that ethanol administration is
associated with increased pulmonary bacterial burden and
impaired respiratory function at 24 hours, we wondered if this
was due to ineffective trafficking of immune cells to the infection site
at this time point. To test this, we used flow cytometry to quantify
neutrophils and macrophages, important early responders to S.
pneumoniae infection, in single cell suspensions of whole lung
homogenates. We identified neutrophils as CD45*CD11b"Ly6G",

I
[ I |
0 I 1
1 hour
post-gavage:

Infect with 10* CFU
S. pneumoniae

C
Lung CFU

E 1.5%106+ *
o
> 1
S D 1x10%
§3
5
32 5x105]
<
Q I—_l_—l
(%)

0

Vehicle  Ethanol

FIGURE 1 | Effect of ethanol exposure on blood alcohol concentration (BAC) and S. pneumoniae burden in the lung. (A) Schematic diagram of ethanol exposure
and S. pneumoniae infection. (B) Representative BAC measurements from serum at 30 minutes post-gavage. Each dot represents the value from a single animal
from one experiment. The line for each group represents average value + SEM. (C) Whole lungs were collected at 24 hours post-infection, homogenized, and plated
on agar. S. pneumoniae colony forming units (CFU) were enumerated and data are presented as mean + SEM. n = 4-6 mice per group per experiment and data are

and distinguished tissue-resident alveolar macrophages from
infiltrating macrophages based on SiglecF and CD11b expression
(Figure 3A). Alveolar macrophages are designated as CD45'F4/
80*SiglecF*CD11b™¢/¥™, while infiltrating macrophages are
CD45+F4/80+SiglecF“eg/dmCD11b+ (45). The number of cells in
these subsets did not differ in our uninfected mice based on vehicle
or ethanol treatment (Figure 3B). However, we found increased
numbers of neutrophils in both infected groups relative to
uninfected animals at 24 hours (Figure 3B), indicative of an
innate immune response to the infection. When comparing
vehicle-exposed infected animals to their ethanol-exposed
counterparts, we found that ethanol exposure resulted in 1.8-fold
more neutrophils in the lungs of infected animals at 24 hours but
noted no difference in the number of alveolar or infiltrating
macrophages (Figure 3B). Finally, to complement our result of
increased neutrophils in the lungs of ethanol-exposed animals after
infection, we performed quantitative PCR on whole lung
homogenates for Ly6g expression. We observed 5.0- and 2.7-fold
higher Ly6g transcript in lung homogenates of ethanol-exposed
infected animals compared to uninfected animals or vehicle-
exposed infected animals, respectively (Figure 3C).
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uninfected animals by one-way ANOVA.

Ethanol Exposure Prior to S. pneumoniae
Infection Leads to Increased

Pulmonary Expression of
Pro-Inflammatory Cytokines and
Chemokines, and Increased G-CSF

in the Serum

Based on our results showing an increased number of lung
neutrophils in ethanol-exposed infected animals observed by
flow cytometry, we evaluated pulmonary expression of the
chemokine genes Cxcll, Cxcl2, and Cxcli2, important
neutrophil chemoattractants and activators produced during
the inflammatory response to infection (26, 46). Additionally,
we measured pulmonary expression of Csf2 and Csf3, the genes
encoding for granulocyte macrophage-colony stimulating factor
(GM-CSF) and granulocyte colony-stimulating factor (G-CSF),
respectively, important cytokines for inducing granulopoiesis
and the release of granulocytes from the bone marrow (47),
along with serum levels of G-CSF. Our data show that, compared
to vehicle-exposed infected animals, the ethanol-exposed
infected mice had significantly higher expression of CxclI (3.0-
fold) and Cxcl2 (3.7-fold), and no difference in CxclI12, in lung
homogenates at 24 hours (Figure 4A). Further, we found no
difference in Csf2 expression, but rather elevated levels of Csf3
transcript in the lung and G-CSF in the serum (17.2-fold and 3.0-
fold higher, respectively), in ethanol- compared to vehicle-
exposed infected animals (Figures 4B, C). We noted no
difference in pulmonary gene expression or serum G-CSF

B Breathing frequency
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@ 500 B Ethanol
2
3 *
g 400 L S L]
o 300
Q
2 200
£
©
2 100
[
pre 1 2 3 4 5 6 7
Days post-infection
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Feg
- B TG L]
0.3
L e
- * #
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0.1
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FIGURE 2 | Effect of ethanol consumption on respiratory function following infection. Enhanced pause (penh) (A), breathing frequency (B), time of respiratory
expiration (Te) (C), and Rpef (time to peak expiratory flow as a fraction of Te) (D) were measured by unrestrained whole-body plethysmography before infection and
daily for 7 days post-infection. Black circles with dashed line represents values from vehicle-treated uninfected mice; solid bars represent values from infected
animals (except for the “pre” values, which were obtained in vehicle- and ethanol-exposed mice prior to infection). Data are presented as mean + SEM. n = 3-6 mice
per group per experiment and data are combined from 3 individual experiments. “p < 0.05 compared to vehicle-exposed infected animals, #p < 0.05 compared to

levels between our vehicle- or ethanol-exposed uninfected
groups (Figure 4).

Ethanol Exposure Alters Leukocyte and

S. pneumoniae Localization in the Lung at
24 Hours Following Infection

Due to the increased number of neutrophils in the lungs of
ethanol-exposed infected animals detected by flow cytometry at
24 hours, we analyzed histological markers of inflammation and
injury in H&E-stained lung sections. We found that ethanol-
exposed infected animals had significantly increased peri-
vascular cell accumulation at 24 hours and a trend toward
more leukocytes in the lumen of the larger airways compared
to vehicle-exposed infected animals (Figures 5A, B). We failed to
observe a difference in the other individual scoring criteria—
gross accumulation of inflammatory cells in the lung
parenchyma, peri-vascular edema, or proteinaceous material in
the alveolar space (data not shown).

Next, since we noted altered leukocyte localization in the lungs
by H&E and a difference in neutrophil numbers and transcript by
flow cytometry and qPCR, respectively, we evaluated neutrophil
and bacterial localization after infection utilizing IHC staining.
Quantification of staining (as assessed by percent positive pixels)
showed a great deal of variation between animals within groups,
and thus, no statistical difference was observed in the levels of
Ly6G or S. pneumoniae antigen in lung sections from our vehicle-
and ethanol-exposed infected animals (Supplementary Figure 1).
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FIGURE 3 | Effect of ethanol consumption on macrophage and neutrophil numbers in the lung following infection. (A) Flow cytometry gating strategy to identify
neutrophils, alveolar macrophages, and infiltrating macrophages in lung homogenates. (B) Average number of pulmonary cell subsets in lung homogenate at 24
hours post-infection. (C) RNA from lung homogenates was isolated at 24 hours post-infection and cDNA was analyzed by quantitative PCR for expression of Ly6g;
target gene expression is normalized to gapdh and presented as fold change to vehicle-treated uninfected mice. Data are presented as mean + SEM. n = 3-6 mice
per group per experiment and data are combined from 2 individual experiments. *p < 0.05 compared to all other groups by one-way ANOVA.

We noted an increased presence of neutrophils in the infected
groups compared to vehicle-exposed uninfected animals
(Supplementary Figure 1), with neutrophil localization near S.
preumoniae in both infected groups (Figure 6). Additionally, we
observed a 4.6-fold higher percentage of internalized S.
pneumoniae in macrophages of vehicle- compared to ethanol-
exposed infected animals (Figure 6).

DISCUSSION

Excessive alcohol consumption weakens the ability of the
immune system to effectively respond to pathogens (52). Here,
we describe those 3 consecutive days of a more moderate ethanol
exposure than what is typically used in the literature
(Figures 1A, B) can significantly alter the early pulmonary
response to Streptococcus pneumoniae. Although the peak BAC
in our studies is approximately 80 mg/dL, considered the “legal
limit” for driving in humans, it is likely that the BAC levels for
intoxication in mice are comparably lower due to increased
metabolism of ethanol in rodents compared to humans (53).
Nonetheless, we found that ethanol exposure increases bacterial
burden in the lung and decreases respiratory function within 24
hours after S. pneumoniae infection (Figures 1C, 2). Our results
showing increased bacterial burden in the lungs of ethanol-

exposed mice (Figure 1C) is in line with previous studies
utilizing pathogens such as S. pneumoniae (54), Klebsiella
pneumoniae (55, 56), and Escherichia coli (57). However, the
animal models in these studies use supra-physiological levels of
acute ethanol (often enough to raise BAC well above 350 mg/dL)
or binge-on-chronic ethanol feeding [Lieber-DeCarli diet (58)
for a total of 10 days with a 4 g/kg ethanol gavage on days 5 and
10 (55, 56)] before infection, making it challenging to directly
compare results. Even so, our work expands upon previous
findings by showing a similar response of increased bacterial
burden in animals exposed to a much lower and shorter three-
day ethanol exposure regimen (1.5 g/kg) and infected with a
lower S. pneumoniae inoculum (10* CFU). We believe that our
model better recapitulates how humans who drink alcohol may
acquire bacterial pneumonia via respiratory droplets, as our mice
are given an oral gavage of ethanol at a more moderate level and
then infected intranasally. Furthermore, humans tend to drink
alcohol for social motives (59) putting them in close proximity to
others who may be infected, or more commonly, those who are
asymptomatic carriers of S. pneumoniae (60).

Previous studies have found that respiratory disease is
associated with impaired lung function using whole body
plethysmography, including pneumococcal (61) and SARS-
CoV2 infection (62), and bleomycin-induced lung injury (63).
Further, our group has shown that multi-day ethanol exposure
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leads to respiratory dysfunction following traumatic injury, such
as a cutaneous scald (16, 64). The increased penh values suggest
altered airflow patterns in response to airway inflammation (65,
66), while the higher expiratory time and corresponding
decreased Rpef values suggest airway narrowing/obstruction
(67, 68) and airway collapse with increased airflow resistance
(69, 70) in ethanol- compared to vehicle-exposed infected mice.
Increased leukocyte accumulation, pulmonary edema, and
alveolar wall thickening observed histologically (Figure 5A;
Supplementary Figure 2) likely contribute to the impaired
respiratory function observed by plethysmography. One caveat
to our lung function data is that we observed mortality during
the studies so respiratory parameters are representative of
surviving animals only. On day 4, 6% and 14% of the vehicle-
and ethanol-exposed infected animals, respectively, died. An
additional 12% and 8%, respectively, of the remaining animals
died on day 5; we did not observe any further mortality through
day 7 post-infection (data not shown). Nevertheless, our study is
the first to our knowledge that demonstrates an effect of multi-
day lower-dose ethanol exposure on respiratory parameters
following S. pneumoniae infection.
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FIGURE 4 | Effect of ethanol exposure on chemokine gene expression in the lung and serum granulocyte-colony stimulating factor (G-CSF) levels after infection.
(A, B) Gene expression as indicated in graph titles was measured as described in Figure 3. Target gene expression is normalized to gapdh and presented as
fold change to vehicle-treated uninfected mice. (C) Serum concentration of G-CSF at 24 hours post-infection as measured by ELISA. Data are presented as
mean = SEM. n = 3-5 per group per experiment and represent averages from 3 individual experiments. *p < 0.05 by one-way ANOVA.

Neutrophils are critical early responders to respiratory
pathogens, but their presence and activity at infection sites can
be detrimental if not properly controlled. Using several different
pathogens, animal studies have demonstrated that the host is
more susceptible to severe pneumonia and death when
neutrophils are depleted or otherwise unable to reach the lung
(36, 71), but also when excessive neutrophil accumulation and
their ineffective clearance leads to tissue damage (72-75). Our
results show that ethanol-exposed mice had a higher pulmonary
bacterial burden at 24 hours after infection (Figure 1C) despite
increased numbers of pulmonary neutrophils (Figure 3B) and
correspondingly higher expression of chemokines involved in
neutrophil recruitment, such as CxclI and Cxcl2 (Figure 4A).
Likewise, the upregulation of Csf3 in the lungs and increased
levels of G-CSF in the serum of ethanol-exposed infected mice
(Figures 4B, C) further suggests an immune response geared
toward granulopoiesis and neutrophil homing to the lung.
Indeed, others have shown that G-CSF mRNA levels are
markedly increased in lung tissue from animals challenged
intratracheally with E. coli but did not observe appreciable
levels of G-CSF mRNA in spleen, liver, or kidney tissue from
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FIGURE 5 | Effect of ethanol exposure on lung inflammation following S. pneumoniae infection. (A) Representative images of lungs from uninfected and infected

panels = 400x magnification, scale bar = 50 ym; green arrows denote peri-vascular cells and yellow arrows denote airway leukocytes. (B) Quantitative score for
criterion of peri-vascular and airway cell accumulation (0-2 score). Data are presented as mean + SEM. n = 3-6 mice per group per experiment and data are
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the same animals (76). This suggests that the lung is a primary
source of G-CSF production early after pulmonary infection.
Previous work from our lab has shown that prior ethanol
exposure leads to excessive accumulation of neutrophils (77, 78)
and apoptotic cells (78) in the lungs of mice up to 24 hours
following burn injury, compared to vehicle-treated injured mice.
Although not directly tested in these studies, others have shown
that ethanol exposure decreases phagocytic capacity in both
alveolar macrophages (14, 15, 79-81) and neutrophils (82-84),
along with decreased efferocytosis by alveolar macrophages (17).
Our results showing increased bacterial burden in the lung
despite higher numbers of neutrophils may suggest that either
the tissue-resident alveolar macrophages or the infiltrating
neutrophils are less efficient at properly phagocytosing and/or
breaking down S. pneumoniae within the first 24 hours after
infection. Our THC staining of infected lung tissue would suggest
the former (Figure 6), although we cannot rule out that the
recruited neutrophils are also functionally impaired.
Additionally, the presence of Ly6G-negative airway cells could

indicate apoptotic macrophages that were not detected by flow
cytometry. It is also possible that ethanol treatment in our mice
indirectly alters neutrophil apoptosis due to the hyper-
inflammatory lung microenvironment following infection (85)
and/or impairs efferocytosis of apoptotic neutrophils by alveolar
macrophages or infiltrating macrophages; this question merits
further evaluation and clarification. Indeed, others have reported
delayed neutrophil apoptosis after acute ethanol exposure
followed by a “second hit” to the immune system (86, 87). It
has been shown that blood neutrophils from ethanol-exposed
burned animals had decreased expression of pro-apoptotic
proteins such as caspase-3 and Bax, and correspondingly
decreased apoptosis as measured by histone-associated DNA
fragments (86). Further, delayed neutrophil death appears to be a
common characteristic of human inflammatory lung diseases
such as cystic fibrosis, pneumonia, and idiopathic fibrosis, as well
as in cancer with associated neutrophilia (87). Importantly, in
our model, if recruited pulmonary neutrophils are not able to
properly die via apoptosis and be cleared by alveolar
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macrophages, they may undergo secondary necrosis, releasing
toxic mediators such as elastase and reactive oxygen species, and
inducing lung damage in our ethanol-exposed animals (88, 89).

Inflammation is a necessary process to restore homeostasis
after infection. Resident immune cells in the upper and lower
respiratory tract detect pathogen associated molecular patterns on
invading microorganisms and initiate a signaling cascade leading
to mobilization and migration of leukocytes to the site of infection.
The lungs of our infected animals showed an early accumulation

of peri-vascular and airway leukocytes in animals with prior
ethanol exposure (Figures 4A, B). This suggests that recruited
immune cells are able to reach the lungs but appear to be less
efficient at clearance of S. pneumoniae as noted by CFU counts at
24 hours post-infection in our ethanol-exposed mice (Figure 1C).
While we failed to see differences in the number of alveolar or
infiltrating macrophages in lung homogenates by flow cytometry
(Figure 3), it is possible that ethanol exposure impairs monocyte
trafficking to the lung, as others have previously shown (90).
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Immunohistochemistry staining of lung sections provided
valuable insight into the effect of ethanol on neutrophil and
bacterial antigen localization, as well as bacterial internalization,
following S. pneumoniae infection. We did not observe any gross
difference in neutrophil proximity to S. pneumoniae, suggesting
that neutrophils are able to migrate toward the infection site at 24
hours post-infection in our model. However, it is possible that
neutrophil chemotaxis is impaired at earlier or later time points
post-infection, or in other areas of the lung. Further, there was no
significant difference in neutrophil or bacterial antigen staining
intensity (Supplementary Figure 1), however, we are careful not
to rely solely on this result since the quantification is from a
single tissue section from each animal. Additionally, the S.
pneumoniae antibody used for IHC is a whole cell serotype
blend and will therefore bind to viable and non-viable bacteria
and also closely related bacterial species; therefore, quantification
of S. pneumoniae antigen by IHC may not directly relate to CFU
counts of viable bacteria from lung homogenates.

The results presented here require further clarification in
future studies. A strength of this work is the demonstration of
increased neutrophils and S. pneumoniae in whole lung
homogenates of ethanol-exposed infected animals at 24
hours, and visualization of the localization of each within the
lung. In future experiments, we will characterize the number
and functional capacity of neutrophil and macrophage
populations in the airways following infection by isolation of
these cells from BAL fluid (91). Advanced flow cytometry
analysis of blood, BAL fluid, and whole lung homogenates
will identify the changing inflammatory cell populations and
discriminate cell death (apoptosis or necrosis) in each.
Additionally, it would be useful to determine which subset of
pulmonary cells are expressing Cxcll, Cxcl2 and Csf3, as this
may yield a focused therapeutic target to improve health
outcomes in alcohol consumers with pneumococcal
pneumonia. Finally, because S. pneumoniae was still present
in the lungs at 24 hours post-infection, it is imperative to
examine the later innate and subsequent adaptive immune
response in our model and determine whether complete
resolution of the infection is altered due to ethanol exposure.

In summary, we show here that ethanol exposure—at a dose
relevant to human consumption—results in higher lung bacterial
burden despite an increased presence of pulmonary neutrophils
following intranasal S. pneumoniae infection. An accumulation
of leukocytes was visualized in the airways and peri-vascular
space, and likely contributes to the respiratory dysfunction seen
in our infected animals. Additionally, we noted differences in S.
pneumoniae internalization in macrophages from our ethanol-
exposed infected animals, which likely contributes to the
increased inflammation noted in our mice and could lead to
delayed resolution of the infection. Taken together, these
findings contribute to our knowledge of how short-term
ethanol consumption at physiological doses can alter
pulmonary immunity to respiratory infection. Future studies
aimed at understanding the mechanisms underlying this
exacerbated neutrophilic response could improve health
outcomes in pneumonia patients who drink alcohol.
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Supplementary Figure 1 | Effect of ethanol exposure on Ly6G and S.
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sections with antibodies against Ly6G for neutrophils (brown) and S. pneumoniae
(pink) and counterstained with hematoxylin. (A) Representative images of lung
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Supplementary Figure 2 | Effect of ethanol exposure on alveolar wall thickening
and edema. Representative images at 200x of lungs from uninfected and infected
mice at 24 hours. Scale bar = 100 um; black arrows denote areas of alveolar wall
thickening and edema, green arrows denote cellular accumulation and airway
obstruction. Images are representative of 3-6 mice per group per experiment from 2
individual experiments.
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