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The clinical manifestations of envenomation by Bothrops species are complex and
characterized by prominent local effects that can progress to tissue loss, physical
disability, or amputation. Systemic signs can also occur, such as hemorrhage,
coagulopathy, shock, and acute kidney failure. The rapid development of local clinical
manifestations is accompanied by the presence of mediators of the inflammatory process
originating from tissues damaged by the bothropic venom. Considering the important role
that the complement system plays in the inflammatory response, in this study, we
analyzed the action of Bothrops jararaca snake venom on the complement system and
cell surface receptors involved in innate immunity using an ex vivo human whole blood
model. B. jararaca venom was able to induce activation of the complement system in the
human whole blood model and promoted a significant increase in the production of
anaphylatoxins C3a/C3a-desArg, C4a/C4a-desArg, C5a/C5a-desArg and sTCC. In
leukocytes, the venom of B. jararaca reduced the expression of CD11b, CD14 and
C5aR1. Inhibition of the C3 component by Cp40, an inhibitor of C3, resulted in a reduction
of C3a/C3a-desArg, C5a/C5a-desArg and sTCC to basal levels in samples stimulated
with the venom. Exposure to B. jararaca venom induced the production of inflammatory
cytokines and chemokines such as TNF-a, IL-8/CXCL8, MCP-1/CCL2 and MIG/CXCL9
in the human whole blood model. Treatment with Cp40 promoted a significant reduction
in the production of TNF-a, IL-8/CXCL8 and MCP-1/CCL2. C5aR1 inhibition with
PMX205 also promoted a reduction of TNF-a and IL-8/CXCL8 to basal levels in the
samples stimulated with venom. In conclusion, the data presented here suggest that the
activation of the complement system promoted by the venom of the snake B. jararaca in
the human whole blood model significantly contributes to the inflammatory process. The
control of several inflammatory parameters using Cp40, an inhibitor of the C3 component,
and PMX205, a C5aR1 antagonist, indicates that complement inhibition may represent a
potential therapeutic tool in B. jararaca envenoming.
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INTRODUCTION

Ophidic accidents are an important public health challenge in
several regions worldwide (1). It is estimated that approximately
1.8 to 2.7 million envenomings occur annually, resulting in
between 81,000 and 138,000 deaths and approximately three
times more amputations and other permanent disabilities each
year (2, 3).

Due to the remarkable social and economic impact of such
incidents, after the 10th meeting of the Strategic and Technical
Advisory Group on Neglected Tropical Diseases (Geneva, March
2017), envenomations by snakes were included on June 2017 in
the category of priority neglected tropical diseases of the World
Health Organization (WHO), which currently includes 19 other
diseases (4).

In 2019, new guidelines for the prevention and control of
snake accidents were developed by the World Health
Organization to reduce mortality and disability by 50% before
2030. To accomplish this task, four objectives were outlined: (i)
empower and involve communities; (ii) ensure safe and effective
treatments; (iii) strengthen health systems; and (iv) increase
partnerships, coordination, and collaborative resources (5).

Among the various snake families, only Elapidae,
Hydrophiidae, Viperidae, Crotalidae and Colubridae have
venomous species (6). The genus Bothrops (family Viperidae)
includes more than 30 species and subspecies that are widely
distributed in the neotropical region, from southern Mexico to
northern Argentina and on some Caribbean islands (7, 8).

In Brazil, Bothrops jararaca Wied, 1824 (B. jararaca)
represents a species with a greater severity of accidents among
humans. The clinical manifestations of the envenoming caused
by B. jararaca snakes are complex and characterized by
prominent local effects, including pain, edema, ecchymosis,
blisters, abscesses, and necrosis, which may progress to tissue
loss, physical disability, or amputation. Systemic signs may also
occur, such as hemorrhage (gingival bleeding, hematuria, and
epistaxis), coagulopathy, shock, and acute renal failure (9–11).

The rapid development of Bothrops envenoming
manifestations is accompanied by the presence of mediators of
the inflammatory process (12, 13). Antivenom has specificity for
the main toxins present in the venom and thus is able to neutralize
them in circulation; however, it does not exert the same effect on
the inflammatory mediators (9). Regardless of the cause,
inflammation always seeks to restore homeostasis by
establishing the stages of healing and reconstitution of damaged
tissue (14). The mechanisms occurring in the inflammatory
process include the activation of the complement system.

The complement system is composed of more than 40 plasma
and cell surface proteins that interact with each other and other
molecules, thereby generating enzyme complexes with
proteolytic activity that activate, amplify, and regulate
important functions in the immune and inflammatory
response (15). Its activation can be initiated by three main
pathways, i.e., the alternative pathway (AP), classical pathway
(CP) and lectin pathway (LP) (16, 17). All three pathways result
in the formation of C3-convertase (C3bBb in AP and C4bC2a in
Frontiers in Immunology | www.frontiersin.org 2
CP and LP), cleavage of component C3 with generation of
opsonin C3b and anaphylatoxin C3a. C3b is involved in the
formation of the C5-convertase (C3bBbC3b in AP and C4b2a3b
in CP and LP), which in turn cleaves C5, thereby generating C5b
and the anaphylatoxin C5a. In the terminal stage, C5b interacts
with C6, C7, C8 and several C9 molecules to form the membrane
attack complex (C5b-9n or MAC), which generates hydrophilic
pores and induces cell lysis (17).

The anaphylatoxins C3a, C4a and C5a are biologically active
fragments that are constantly released during the activation of
the complement system. These small peptides (10-14 kDa) are
potent inflammatory mediators that exert their effects through
interactions with specific receptors in various cell types. The
interaction of anaphylatoxins with their respective receptors,
C3aR, C5aR1 and C5aR2, present in leukocytes and vascular
endothelial cells triggers important events in the conduction of
the inflammatory response, including recruitment of immune
cells to the site of injury, induction of oxidative explosion and
promotion of vascular permeability (18–20).

In a previous study conducted with samples of venoms from
19 species of snakes of the genus Bothrops present in Brazil, we
showed that all venoms were able to activate in the human serum
the classical pathway of the complement system in the absence of
sensitizing antibodies. Some of these venoms activated other
pathways of the system, i.e., AP and LP. The activity of
metalloproteases and serinoproteases was fundamental in the
generation of large amounts of the anaphylatoxins C3a, C4a and
C5a. In addition to the activation of the cascade, the direct
cleavage of C3 and C4 or inactivation of the C1-INH regulator
contributed to this event. Metalloprotease and serinoprotease
inhibitors prevented the cleavage of C3 and C4 by the action of
venoms, thereby confirming the action of these enzymes on the
complement system (21, 22).

Among the complement components, C3 and C5 have been
considered important molecular targets to be neutralized due to
their biological contribution in tissue and cellular damage
mediated by the complement. Currently, there are a variety of
molecules capable of inhibiting C3, C5, C5a and its receptors
(C5aR) (23–25).

Among these new antagonists, Cp40, an analog of the
peptide inhibitor of C3, compstatin, showed strong efficacy in
several models of human diseases, such as sepsis (26),
hemorrhagic shock (27), periodontal disease (28, 29),
nocturnal paroxysmal hemoglobinuria (30), hemodialysis-
induced inflammation (31), glomerulopathy C3 (C3G) (24),
acute respiratory distress syndrome (ARDS) of COVID-19
(32), and cobra envenomation (33). In addition, compstatin
derivatives are currently under clinical development and
evaluation for the treatment of various diseases (27).

PMX53, a cyclic hexapeptide that is active orally and
metabolically stable, has shown efficacy in the treatment of
various inflammatory diseases, including arthritis, ischemia
and reperfusion injuries, sepsis, inflammatory bowel disease
and diseases of the central nervous system (34–38). Studies on
changes in the PMX53 phenylalanine residue resulted in the
discovery of a new antagonist, PMX205 (hydrocinnmate-
June 2022 | Volume 13 | Article 885223
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[OpdChaWR]), which increased lipophilicity, metabolic stability
of the compound, and its potency in an inflammatory bowel
disease model (39). In addition, PMX205 presented a higher
brain penetration capacity than PMX53, which has enabled its
use in several models of neurodegenerative diseases (40–42)
Currently, these peptide antagonists are the most widely used
inhibitors for the study of C5aR1/CD88 (20).

Experimentally, the human whole blood model has been used
to evaluate the interaction between the complement system and
Toll receptors (TLRs) (43–45). In this model, lepirudin
(refludan), a specific thrombin inhibitor that does not affect
complement cascade activity, such as anticoagulant, has allowed
for the study of the interaction between coagulation and
complement systems (43, 46). Recently, an alternative
anticoagulant, the peptide GPRP (Gly-Pro-Arg-Pro), which is
able to inhibit the action of thrombin on fibrinogen without
impairing complement cascade activity, was developed and
successfully used in ex vivo human whole blood model (47).

In the present study we aimed to analyze the action of snake
venom B. jararaca on the complement system and cellular
surface receptors involved in innate immunity using the
ex vivo human whole blood model adapted by Johnson et al.
(47) and the modulation of these parameters using complement
system-specific inhibitors.
MATERIALS AND METHODS

Venom
The venom of the snake B. jararaca was supplied by the
Laboratory of Herpetology of the Butantan Institute in
lyophilized form and maintained at -20°C. The protein and
endotoxin contents were quantified by using a BCA assay
protein kit (Pierce) and PYROGENT™ Plus Gel Clot LAL
Assay (Lonza, USA), respectively, according to the
manufacturers’ recommendations. Endotoxin was present in
the venom at a level below the assay’s sensitivity (< 0.125 EU/
mL). The protein concentration of the venom samples was
adjusted to 5 mg/mL with sterile saline solution, aliquoted and
stored at -80°C until use.

Human Whole Blood Model
The experiments using the human whole blood model were
developed according to the protocols established by Mollnes
et al. (43) and Brekke et al. (44, 45) and recently adapted by
Johnson and collaborators (47). Blood was collected from
healthy volunteers in polypropylene tubes containing the
GPRP peptide (GenOne Biotechnologies, Brazil; 8 mg per mL
of blood). For the assay, a total volume of 1 mL was used, with
720 mL of blood, 140 mL of sterile saline solution and 140 mL of
sterile saline solution containing increasing concentrations of B.
jararaca venom. The samples were incubated at 37°C for 30, 60
or 120 minutes under agitation. After incubation, aliquots of 500
mL were collected to analyze the expression of cell markers by
flow cytometry. The remaining material was centrifuged at 405 x
g and 4°C for 10 minutes to obtain the plasma. After this stage,
Frontiers in Immunology | www.frontiersin.org 3
EDTA was added to the plasma samples (final concentration 10
mM), and they were aliquoted and stored at -80°C.

Inhibition of the Complement System With
Cp40 and PMX205
To assess the role of complement in the inflammatory events
promoted by B. jararaca venom, human whole blood was
pretreated with either the compstatin analog Cp40 (C3/C3b
inhibitor, 20 µM) (48) or PMX205 (C5aR1 antagonist, 20 µM)
(40) or with the appropriate vehicle as a control, i.e., saline
(Cp40) or 5% glucose (PMX205), for 5 minutes at room
temperature. Next, the samples were treated with B. jararaca
venom (50.0 mg/mL) or sterile saline solution (negative control)
(14% of the total volume, v/v) for 60 minutes at 37°C. After
incubation, the material was centrifuged at 405 x g and 4°C for 10
minutes to obtain the plasma. After this stage, it was added
EDTA to the plasma (final concentration 10 mM), and the
samples were stored at -80°C.

Dosage of Anaphylatoxins and sTCC
The presence of C3a/C3a-desArg, C4a/C4a-desArg and C5a/
C5a-desArg in the samples of plasma collected, as described
above, was evaluated using the BD CBA Human Anaphylatoxin
Kit, following the manufacturer’s instructions (BD Biosciences,
California, USA). The presence of the soluble complement
terminal complex (sTCC, SC5b-9) was evaluated by ELISA in
plasma samples from human whole blood assays using the
MicroVue SC5b-9 Plus EIA kit following the manufacturer’s
instructions (Quidel Corporation, California, USA).

Quantification of Cytokines
and Chemokines
The presence of the cytokines IL-1b, IL-6, IL-10, IL-12p70 and
TNF in plasma was determined with the BD Cytometric Bead
Array (CBA) Human Inflammatory Cytokines kit based on the
manufacturer’s instructions (BD Biosciences, California, USA).
The presence of the chemokines IL-8, MCP-1, MIG, RANTES
and IP-10 in human plasma was determined with the BD
Cytometric Bead Array (CBA) Human Chemokines kit based
on the manufacturer ’s instructions (BD Biosciences,
California, USA).

Analysis of the Expression of Surface
Markers in Leukocytes
The samples were submitted to the treatments described above
and analyzed for the expression of the cell surface markers
CD11b, CD14, C5aR1, C3aR, TLR2 and TLR4 on the surface
of leukocytes labeled with specific antibodies for the monocyte
(CD33) and granulocyte (CD66b) populations. After the blood
treatment, red blood cells were lysed with BD FACS Lysing
Solution buffer (BD Biosciences, California, USA). Subsequently,
the cells were centrifuged at 405 g at 4°C for 10 minutes,
resuspended and marked with monoclonal antibodies from BD
Biosciences (California, USA) or eBioscience (California, USA),
which were diluted in a 1:5 ratio with anti-CD11b PE
(VIM12 clone), anti-CD14 FITC (clones 61D3 and TüK4) and
June 2022 | Volume 13 | Article 885223
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anti-CD33 APC; in a 1:10 ratio with anti-C5aR FITC (clone
8D6), anti-C3aR PE (clone 17), anti-TLR2 PE (clone TL2.1) and
anti-TLR4 PE (clone HTA125); and in a 1:20 ratio with CD3
APC-Cy7, CD19 PE-Cy7 and CD66b Alexa647. Monoclonal
mouse IgG1k PE and IgG2ak FITC mice were also used as
isotypic controls. After 30 minutes of incubation, 275 mL of
FACS buffer was added, and the cells were analyzed in a
FACSCanto II flow cytometer (BD Biosciences, California,
USA) using SOFTWARE BD FACSDiVa, version 4.1 (BD
Bioscience, California, USA). The results were expressed as
median fluorescence intensity (MFI), determined from the
acquisition of 20,000 events.

Statistical Analysis
Data were expressed as mean ± standard error and statistically
analyzed with GraphPad Prism 9.3.1 software (La Jolla,
California, USA). For comparisons, statistical analyses were
performed using Student’s t test or one-way ANOVA, followed
Frontiers in Immunology | www.frontiersin.org 4
by Tukey’s multiple comparison test. Differences were
considered significant at p ≤ 0.05.
RESULTS

B. jararaca Venom Activates the
Complement System in Human
Whole Blood
Incubation of human blood with increasing concentrations of B.
jararaca venom resulted in the activation of the complement
system as determined by the quantification of the generation of
anaphylatoxins (Figure 1) and sTCC (Figure 2).

A significant increase in the production of C3a/C3a-desArg
was detected after 30 and 60 minutes of incubation of human
blood with 50.0 mg/mL venom. A venom concentration of 50.0
mg/mL induced a significant increase in C4a/C4a-desArg
FIGURE 1 | C3a/C3a-desArg, C4a/C4a-desArg and C5a/C5adesArg levels in human plasma after treatment with B. jararaca venom. Human blood samples
containing the peptide GPRP (8 mg/mL) were incubated with increasing concentrations of B. jararaca venom or sterile saline solution for 30, 60 and 120 minutes
at 37°C. After plasma collection and dilution, the production of anaphylatoxins C3a/C3a-desArg (1:5000), C4a/C4a-desArg (1:5000) and C5a/C5a-desArg
(1:1000) was evaluated by cytometric bead array (CBA). The results are presented as the mean ± SEM from three independent tests. ns, not significant; *p ≤

0.05, **p ≤ 0.005, ***p ≤ 0.0005, ****p < 0.0001.
June 2022 | Volume 13 | Article 885223
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production at 60 and 120 minutes. B. jararaca venom induced a
significant increase in C5a/C5a-desArg production when
incubated for just a period of 30 minutes at all concentrations.
After 60 minutes of incubation, only the venom at a
concentration of 50.0 mg/mL induced a significant increase in
the production of C5a/C5a-desArg. At 120 minutes, both C3a
and C5a production show no difference from the control at all
venom concentrations tested (Figure 1).

sTCC measurements showed that the venom at a
concentration of 12.5 mg/mL induced a significant increase in
this macromolecular complex production when incubated for a
period of 30 minutes. With 60 and 120 minutes of incubation,
the venom was able to induce a significant increase in sTCC
production at the three concentrations used (12.5, 25.0 and 50.0
mg/mL) when compared to the negative control (Figure 2).
Frontiers in Immunology | www.frontiersin.org 5
B. jararaca Venom Induces the Production
of TNF-a and Chemokines in the
Human Blood
The presence of the cytokines IL-1b, IL-6, IL-10, IL-12p70 and
TNF-a was evaluated in plasma samples obtained from human
whole blood assays treated with increasing concentrations of B.
jararaca venom (12.5, 25.0 or 50.0 mg/mL) or in sterile saline
solution (negative control) for 30, 60 and 120 minutes at 37°C.
Figure 3 shows time- and dose-dependent curves of the
production of TNF-a after incubation of B. jararaca venom
with human blood. Increased levels of this cytokine compared to
the control group were detected after 120 minutes of incubation
with 50.0 mg/mL venom. The presence of the other cytokines
tested, i.e., IL-1b, IL-6, IL-10, and IL-12p70, was below the
detection limit of the assays (data not shown).
FIGURE 3 | TNF-a levels in human plasma after treatment with B. jararaca venom. Human blood samples containing GPRP (8 mg/mL) were incubated with
increasing concentrations of B. jararaca venom or sterile saline solution for 30, 60 and 120 minutes at 37°C. After plasma collection and dilution (1:2), the
presence of TNF-a was evaluated by cytometric bead array (CBA). The results are represented as the mean ± SEM of duplicates from three independent tests.
ns, not significant; **p ≤ 0.005.
FIGURE 2 | SC5b-9 levels in human plasma after exposure to B. jararaca venom. Human blood samples containing the peptide GPRP (8 mg/mL) were incubated
with increasing concentrations of B. jararaca venom or sterile saline solution for 30, 60 and 120 minutes at 37°C. After plasma collection and dilution (1:40), the
presence of the soluble complement terminal complex (sTCC, SC5b-9) was analyzed by ELISA. The results are represented as the mean ± SEM of duplicates from
three independent experiments. *p ≤ 0.05, **p ≤ 0.005, ***p ≤ 0.0005, ****p < 0.0001.
June 2022 | Volume 13 | Article 885223
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Figure 4 shows a time- and dose-dependent increase in IL-8
production, which was detected after 30 minutes of incubation
with 50.0 mg/mL of B. jararaca venom and increases after 60 and
120 min of incubation. Moreover, the venom induced a high
production of MCP-1 at all times and venom concentrations
tested; for MIG, it was detected a large amount of this chemokine
at 30 and 60 min in all venom concentrations tested.

B. jararaca Venom Induces Blood
Leukocyte Cell Surface Molecules
Modulation
Figure 5 shows that B. jararaca venom induced a downregulation
in the expression of CD11b, CD14 and C5aR in monocytes. C3aR,
TLR2 and TLR4 showed no significant difference in expression
Frontiers in Immunology | www.frontiersin.org 6
when compared to the negative control (sterile saline solution)
(Supplementary Figure 1). In granulocytes, the venom induced
a reduction in C5aR expression, while CD11b, CD14, C3aR,
TLR2 and TLR4 showed no significant difference compared to
the negative control (sterile saline solution) (Figure 5 and
Supplementary Figure 1).

Complement System Plays a Role in the
Inflammation Induced by B. jararaca
Venom in Human Whole Blood
Cp40 is a 14-amino acid nonimmunogenic cyclic peptide that
binds to C3 and blocks its binding and cleavage by C3
convertase, inhibiting the generation of biologically active
molecules. To assess whether Cp40 was capable of inhibiting
FIGURE 4 | Chemokine levels in human plasma after treatment with B. jararaca venom. Human blood samples containing GPRP (8 mg/mL) were incubated with
increasing concentrations of B. jararaca venom or sterile saline solution for 30, 60 and 120 minutes at 37°C. After plasma collection and dilution (1:2), the presence
of chemokines was evaluated by cytometric bead array (CBA). The results are represented as the mean ± SEM of duplicates from three independent tests. ns, not
significant; *p ≤ 0.05, **p ≤ 0.005, ***p ≤ 0.0005, ****p < 0.0001.
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the activation of the complement system stimulated by the
venom of B. jararaca and, consequently, the generation of
anaphylatoxins (C3a, C4a and C5a) and the terminal complex
of the soluble complement (sTCC, SC5b-9), human blood
samples were preincubated with Cp40 (20 mM) and then
incubated with B. jararaca venom (50.0 mg/mL) or sterile
saline solution (negative control) for 60 minutes at 37°C.

Figure 6 shows that Cp40 was able to significantly inhibit the
generation of the anaphylatoxins C3a/C3a-desArg and C5a/C5a-
desArg stimulated by the venom. However, the generation of
C4a/C4a-desArg was not reduced and the levels of sTCC were
also significantly reduced in the presence of Cp40 (Figure 6).
The inhibition of the complement system by Cp40 significantly
reduced the production of TNF-a, IL-8 and MCP-1 (but
Frontiers in Immunology | www.frontiersin.org 7
not MIG) induced by Bothrops venom in human blood
(Figure 7). Moreover Cp40 reverted the reduction of CD11b
expression in monocytes and C5aR in granulocytes (Figure 8).

To evaluate the role of the C5a-C5aR1 axis in the production
of proinflammatory mediators, human blood samples were
preincubated with PMX205 (10 mM), a C5aR1 antagonist, and
incubated with B. jararaca venom (50.0 mg/mL) or the negative
control (sterile saline solution + 5% glucose). Figure 8 shows that
the inhibition of the C5a receptor by PMX205 promoted a
reduction in the baseline levels of TNF-a and IL-8 in samples
stimulated with the venom. However, PMX205 did not influence
the production of the chemokines MCP-1 and MIG (Figure 9).
PMX205 also positively modulated the C5aR expression on
granulocytes (Figure 8).
FIGURE 5 | Expression of surface markers in monocytes and granulocytes after treatment with B. jararaca venom. Human blood samples containing GPRP (8 mg/
mL) were treated with B. jararaca venom (50 mg/mL) or sterile saline solution (negative control) for 60 minutes at 37°C. After incubation, cells were analyzed for the
expression of CD11b, CD14 and C5aR. The results are expressed as MFI ± SEM of duplicates from three independent experiments. ns, not significant; *p ≤ 0.05,
**p ≤ 0.005.
June 2022 | Volume 13 | Article 885223
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DISCUSSION

The complement system plays an important role in pathogen
immunosurveillance and tissue homeostasis. However,
overactivation can lead to a cycle of inflammatory damage that
exacerbates pathology.

Previous in vitro studies by our group have shown that
venoms from snakes of the genus Bothrops are capable of
activating the complement system in normal human serum
with the production of large amounts of anaphylatoxins
(22, 49). Delafontaine et al. (49) demonstrated that SVMPs
are important for these effects because 1.10 Phe, an inhibitor of
this class of proteases, drastically reduces C5a generation and
sTCC formation in normal human serum incubated with the
venom of B. lanceolatus. Furthermore, the C5a generated by
direct cleavage of purified human C5 by proteases from this
snake venom is highly functional, triggering activation of
neutrophils characterized by an increase in the cytoplasmic
levels of Ca2+. Furthermore, we detected that SVMPs reduced
the inhibitory activity of the regulator of the classical and lectin
pathways, C1-INH, via cleavage of this molecule. These results
suggest that the activation of complement may play a role in the
inflammatory process present in human envenomation by
Bothrops snakes.
Frontiers in Immunology | www.frontiersin.org 8
The human whole blood model, established by Mollnes et al.
(43) and Brekke et al. (44, 45), was initially designed to study the
role of complements in a bacterial sepsis model, and it also
proved to be a useful experimental platform for the investigation
and modulation of the systemic inflammation induced by animal
venoms and toxins, as demonstrated by studies of our group with
Loxosceles spider venom and its main toxin, sphingomyelinase D
(50), and with a class P-I metalloprotease (C-SVMP) purified
from the venom of Bothrops pirajai (51).

An adaptation by Johnson et al. (47) involving the
substitution of lepirudin by GPRP, a peptide inhibiting the first
steps of fibrin polymerization (52, 53), solved the issue that
prevented studies from being conducted using the ex vivo human
whole blood model with snake venom from the genus Bothrops.
Bothropic venom exerts a procoagulant effect in vitro, which is
determined by the presence of toxins with thrombin-like activity,
factor II activators and factor X activators, in addition to other
procoagulant toxins (54). The thrombin-like toxins cause the
cleavage of the a and/or b chains of fibrinogen, which leads to
rapid coagulation (55, 56). Thus, in the present study, GPRP was
used as an anticoagulant, and we were able to overcome the
thrombin-like toxin action and assess the proinflammatory
action of crude B. jararaca snake venom in the ex vivo human
whole blood model.
FIGURE 6 | Production of anaphylatoxins in human blood stimulated with B. jararaca venom in the presence of Cp40. Human blood samples containing GPRP
(8 mg/mL) were preincubated with cp40 inhibitor (20 mM) and then incubated with B. jararaca venom (50.0 mg/mL) or sterile saline solution for 60 minutes at 37°
C. After plasma collection and dilution, the production of anaphylatoxins C3a/C3a-desArg (1:5000), C4a/C4a-desArg (1:5000) and C5a/C5a-desArg (1:1000)
was evaluated by cytometric bead array (CBA). The results are presented as the mean ± SEM from three independent experiments. ns, not significant; *p ≤

0.05, **p ≤ 0.005, ***p ≤ 0.0005, ****p < 0.0001.
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The data obtained here showed that the venom of B. jararaca
induces activation of the complement system in human blood, as
revealed by a significant production of anaphylatoxins (C3a/C3a-
desArg, C4a/C4a-desArg and C5a/C5a-desArg) as well as of the
soluble terminal complement complex (sTCC, SC5b-9) in a
time- and dose-dependent manner (Figures 1, 2). In general,
the best time and concentration of incubation were 60 minutes
and 50 mg/ml venom, respectively, which were selected for
further experiments with complement inhibitors.

The anaphylatoxins C3a, C4a and C5a are biologically active
fragments that MI are constantly released during the activation
of the complement system. These mediators have a spectrum of
proinflammatory activities that involve mast cell degranulation,
increased vascular permeability, adhering molecule expression
regulation, chemotaxis, leukocyte activation, oxygen-reactive
species production, cytokines and chemokines, increased
phagocytosis, and tissue regeneration (14, 20, 57). This wide
set of effects promoted by anaphylatoxins is mediated by the
Frontiers in Immunology | www.frontiersin.org 9
expression of the seven-transmembrane receptors C3aR, C5aR1
(CD88), and C5aR2 (C5L2), and when activated in an
exacerbated manner, these receptors can contribute to the
development of several immunoinflammatory diseases (25, 58).
In bothropic envenoming, the generation of leukocyte infiltrate
and edema represent a characteristic of local inflammatory
reactions (59–63), which may arise as a consequence of the
abundant presence of anaphylatoxins, thereby highlighting the
role of these mediators in venom-induced manifestations (49,
64, 65).

The complement terminal complex (TCC, sC5b-9) represents
the final product of the cascade and is generated by the
interaction of C5b with C6, C7, C8 and several molecules of
C9. The membrane attack complex (sC5b-9 or MAC) is capable
of generating pores in the cell membrane and favors lysis (17). In
addition, the binding of this complex to endothelial cells
provides stimuli capable of inducing the expression and release
of molecules involved in leukocyte migration (66, 67).
FIGURE 7 | Levels of TNF-a and chemokines in human blood stimulated by B. jararaca venom in the presence of Cp40. Human blood samples containing GPRP
(8 mg/mL) were preincubated with Cp40 inhibitor (20 mM) and then incubated with B. jararaca venom (50.0 mg/mL) or sterile saline solution for 60 minutes at 37°C.
After plasma collection and dilution (1:2), the presence of TNF-a and the chemokines IL-8, MCP-1 and MIG was evaluated by the Cytometric Bead Array (CBA).
The results are presented as the mean ± SEM from three independent experiments. ns, not significant; *p ≤ 0.05, **p ≤ 0.005, ***p ≤ 0.0005, ****p < 0.0001.
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Leukocyte migration in response to an inflammatory stimulus
constitutes one of the first lines of defense assembled by innate
immunity. This event is mediated by direct or indirect
mechanisms. The latter involves the presence of cytokines and
other chemotactic agents released by mast cells, macrophages
and endothelial cells after antigen recognition (68). Here, we
showed that the exposure of human blood to B. jararaca venom
Frontiers in Immunology | www.frontiersin.org 10
positively regulated the production of proinflammatory
mediators, such as TNF-a and IL-8, at significant levels,
especially in samples treated with the highest concentration of
venom (50 mg/mL). This production was intensified, especially in
the period of 120 minutes of incubation (Figures 3, 4).

Tumor necrosis factor alpha (TNF-a) is synthesized
predominantly by monocytes/activated macrophages and T
FIGURE 8 | Expression of surface markers in monocytes and granulocytes after treatment with B. jararaca venom in the presence of C-inhibitors. Human blood
samples containing GPRP (8 mg/mL) were pre incubated with Cp40 inhibitor (20 mM) or with PMX205 (10 mM) and then incubated with sterile saline (Cp40 vehicle),
sterile saline + 5% glucose solution (PMX205 vehicle) or B. jararaca venom (50.0 mg/mL) for 60 minutes at 37°C. After incubation, cells were analyzed for the
expression of CD11b, CD14 and C5aR. The results are expressed as MFI ± SEM of duplicates from three independent experiments. ns, not significant; *p ≤ 0.05.
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lymphocytes as a 26 kDa protein, pro-TNF, which is associated
with the plasma membrane, and when cleaved, the soluble form
has an Mr of 17 kDa (69). It is a cytokine with potent action on
various cell types and plays a critical role in the pathogenesis of
several inflammatory diseases (70). Its interaction with
endothelial cells, through one of two distinct receptors
(TNFR1; CD120a, TNFR2; CD120b), mediates the release of
chemokines (e.g., IL‐8, MCP‐1 and IP‐10) and the expression of
different combinations of leukocyte-adhering molecules,
including E-selectin, ICAM-1, VCAM-1 (71) and CD11b/
CD18 (CR3; MAC-1) (72). Due to the ability of TNF-a to
induce the expression of distinct classes of adhering molecules,
this cytokine may be a collaborative factor for leukocyte
infiltration in the presence of bothropic venom.

Interleukin-8 (IL-8; CXCL8) is a member of the chemokine
family that acts through interaction with CXCR1 and CXCR2
receptors expressed on the surface of different cell types. IL-8 can
be secreted by a wide variety of cells, including monocytes and T
lymphocytes, after appropriate stimulation (73). In the acute
inflammatory process, IL-8 plays an important role in
phenomena related to neutrophil recruitment and activation,
cytoskeleton reorganization, changes in intracellular Ca2+ levels,
integrin activation, release of granular enzymes, and oxidative
explosion (74, 75). The presence of increased serum levels of IL-
Frontiers in Immunology | www.frontiersin.org 11
8, IL-6, and TNF-a was observed in a clinical study with patients
bitten by B. asper and B. insularis snakes (76).

Significant levels of MCP-1 and MIG chemokines were also
observed. The generation of these chemokines was induced by
the venom soon after 30 minutes of incubation with human
blood and showed no marked decline in their levels until 120
minutes (Figure 4). The chemotactic protein of monocyte-1
(MCP-1), also known as CCL2, is part of a large family of
structurally homologous proteins that support and regulate the
movement of leukocytes from the blood to tissues. The
recruitment of monocytes is highly regulated by this
chemokine, which, at high concentrations, triggers oxidative
explosion, generating reactive oxygen species (77, 78). MIG
(Monokine induced by gamma interferon), also known as
CXCL9, is a member of the CXC subfamily of inflammatory
chemokines produced by dendritic cells, B lymphocytes and
macrophages, which stimulates the recruitment of T
lymphocytes to the sites of infection and/or injury by the
CXCR3 receptor (79, 80).

In addition to the generation of proinflammatory mediators,
the human whole blood model also allowed us to verify the
leukocyte activation pattern by assessing the expression of cell
surface molecules. A wide regulation of Toll-like receptor (TLR)
signaling by the complement system was previously
FIGURE 9 | TNF-a and chemokine levels in human blood stimulated by B. jararaca venom in the presence of PMX205. Human blood samples containing GPRP
(8 mg/mL) were preincubated with PMX205 (10 mM) and then incubated with B. jararaca venom (50.0 mg/mL) or sterile saline + 5% glucose solution for 60 minutes
at 37°C. After plasma collection and dilution (1:2), the presence of TNF-a and chemokines was evaluated by the Cytometric Bead Array (CBA). The results are
presented as the mean ± SD from three independent experiments. ns, not significant; **p ≤ 0.005, ***p ≤ 0.0005, ****p < 0.0001.
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demonstrated in in vivo studies. Thus, TLR ligands, such as LPS
(TLR4), zymosan (TLR2/6) and oligonucleotide CpG (TLR9),
have been shown to induce complement-dependent production
of TNF-a, IL-6 and IL-1b in mouse plasma (81, 82). A similar
result was observed in mice treated simultaneously with TLR
ligands and cobra venom factor (CVF), a potent complement
activator isolated from Naja naja venom, with the production of
elevated plasma levels of proinflammatory cytokines, indicating
that the complement system can amplify the inflammatory
response in association with Toll receptors (81, 82).
Additionally, the involvement of anaphylatoxin receptors
(C3aR and C5aR1/CD88) and CR3 (CD11b/CD18; MAC-1) in
the regulation of TLR signaling activities has been shown
(82–85).

In our assays, human blood samples were treated with B.
jararaca venom, and the monocyte and granulocyte populations
were analyzed for the expression of cell surface markers of
interest, i.e., TLRs 2 and 4; CD14; CD11b; C3aR and C5aR1.
The data showed that Bothrops venom induced a significant
reduction in the expression of CD11b, CD14 and C5aR1 in
monocytes and of C5aR1 in granulocytes. Similarly, in an
experimental model of sepsis induced in rodents, an important
reduction in C5aR1 levels in neutrophils was demonstrated, and
it was promoted by a markedly increased presence of C5a in the
blood, which regulated the internalization of C5aR1 and whose
intensity correlated with the lethality of the animals (86).
Moreover, an additional mechanism for the reduction in the
expression of C5aR1 is the cleavage and inactivation of C5aR1 by
neutrophil serinoproteases (NSPs) (87).

The decrease in CD11b and CD14 expression in monocytes
gate, induced by the venom, may suggest the presence of myeloid
dendritic cell precursors in this population, that may have initiated
a differentiation process into immature dendritic cells in response
to the venom, despite the short incubation period. According to
Patterson et al. (88), myeloid dendritic cell precursors purified
from blood and cultured in vitro with GM-CSF and IL-4 rapidly
differentiate into two maturational and phenotypically distinct
populations, and the immature subtype is CD11b-/low and CD14-
(88). The role of dendritic cells in the pathogenesis of snake
envenomation is not clear, but it is known that snake toxins, such
as crotoxin from Crotalus durissus terrificus, can activate dendritic
cells and promote immunomodulation (89). Also, dendritic cells
exert an essential role in the development of allergic reactions to
bee and other highly allergenic venoms, due to their ability to
direct the T helper immune responses (90). In our model, the
possible differentiation of dendritic cells precursors by B. jararaca
venom and its role in the envenomation remains to be
further investigated.

To evaluate the participation of the complement system in pro-
inflammatory events induced by the venom of B. jararaca, we
conducted assays in the presence of Cp40 and PMX205 inhibitors.
The use of Cp40, a highly specific inhibitor of the complement C3
component, led to a reduction in the baseline levels of C3a/C3a-
desArg and sTCC in samples stimulated by the venom (Figure 6).
It was also possible to observe a significant reduction in C5a/C5a-
desArg levels but not in C4a/C4a-desArg levels (Figure 6). The
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absence of inhibition in the generation of C4a/C4a-desArg may be
related to the direct action of metalloproteases present in
bothropic venoms capable of cleaving components of the
complement system (21, 22).

Previously, we investigated the inflammatory effects of a
SVMP, named C-SVMP, isolated from B. pitajai venom in a
human whole blood model (51). C-SVMP was able to activate the
complement system and promote an increase in the expression
of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in
leukocytes. Inhibition of component C3 by compstatin
significantly reduced complement activation induced by the
toxin as well as CD11b, C3aR, and C5aR expression in
leukocytes. C-SVMP was able to induce increased production
of the cytokines IL-1b and IL-6 and the chemokines CXCL8/IL-
8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood
model. The addition of compstatin, a C3 inhibitor, to the
reactions caused a significant reduction in the production of
IL-1b, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with
C-SVMP.

Here, we also showed that the complement system is involved
in the synthesis of important inflammatory mediators detected in
human blood treated with B. jararaca venom since inhibition of
the central complement component C3/C3b via Cp40 resulted in
a significant decrease in the production of TNF-a, IL-8 and
MCP-1 (Figure 7). Moreover, the use of the C5aR1 antagonist
PMX205 promoted a reduction in the baseline levels of TNF-a
and IL-8 (Figure 9). Altogether, the data suggest that the C5a-
CaR1 axis is essential for the production of TNF-a and IL-8
mediators induced by Bothrops venom in this ex vivomodel. The
fact that PMX205 was not able to reduce the production of MCP-
1 and MIG (Figure 8) suggests that the production of these
mediators is not influenced by the C5a-C5aR1 axis. CP40 was
able to revert the CD11b and C5aR1 reduced expression induced
by B. jararaca venom in monocytes, whereas PMX205 was able
to improve the expression of C5aR1 in granulocytes.

Recently, we also evaluated the role of the complement system
in the inflammatory events induced by Naja annulifera venom
(33). This venom causes complement activation mediated by the
action of SVMPs. The activation of the C5a-C5aR1 axis in the
subcutaneous tissue of the animals injected with venom triggered
the production of LTB4, PGE2 and TXB2, which were responsible
for the edema. Additionally, the generation of venom-induced
C5a led to the production of the chemokine CXCL1, along with
an increase in MPO tissue levels. C5aR1 signaling in mice
subjected to systemic envenomation was also responsible for
leukocytosis, neutrophilia, monocytosis and acute lung injury, as
demonstrated by the use of PMX205 in these assays.

In conclusion, the data presented here suggest that the
activation of the complement system promoted by the crude
venom of the snake B. jararaca in the human whole blood model
contributes significantly to the inflammatory process. The
control of several inflammatory parameters using Cp40, an
inhibitor of component C3, and PMX205, a C5aR1 antagonist,
suggests that the complement system may be a possible
therapeutic target to control deleterious inflammatory reactions
associated with envenomation by Bothrops snakes and other
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venomous animals in which the complement system is involved
in the pathology of envenomation.
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