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Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and
reduces mortality of infants/children living with HIV. However, the ability of infected cells to
establish latent viral reservoirs shortly after infection and to persist during long-term ART
remains a major barrier to cure. In addition, while early ART treatment of infants living with
HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses
and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive
immune-based therapies that are geared towards limiting the establishment of the virus
reservoir and/or mediating the clearance of persistent reservoirs are of interest for their
potential to achieve viral remission in the setting of pediatric HIV. Because of the
differences between the early life and adult immune systems, these interventions may
need to be tailored to the pediatric settings. Understanding the attributes and specificities
of the early life immune milieu that are likely to impact the virus reservoir is important to
guide the development of pediatric-specific immune-based interventions towards viral
remission and cure. In this review, we compare the immune profiles of pediatric and adult
HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in
pediatric populations, and highlight the potential values of current cure strategies using
immune-based therapies for long-term viral remission in the absence of ART in children
living with HIV.

Keywords: pediatric HIV, cure, early life immunity, immune-based therapies, HIV cure strategies
org July 2022 | Volume 13 | Article 8852721

https://www.frontiersin.org/articles/10.3389/fimmu.2022.885272/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.885272/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.885272/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:stella.berendam@duke.edu
mailto:genevieve.fouda@duke.edu
https://doi.org/10.3389/fimmu.2022.885272
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.885272
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.885272&domain=pdf&date_stamp=2022-07-13


Berendam et al. Therapies for Pediatric HIV Cure
INTRODUCTION

In 2020, approximately 150,000 children were newly infected
with HIV and 1.7 million children (<15 years of age) were living
with HIV worldwide (1). Most of these children (˜90%) live in
sub-Saharan Africa and were infected perinatally or during the
breastfeeding period. Although antiretroviral therapy (ART) has
significantly reduced the rate of vertical transmission, infant
infections continue to occur due to incident of maternal HIV
infections during pregnancy or breastfeeding, poor maternal
access to ART treatment, challenges in maternal ART
adherence, and lack of viral suppression in mothers receiving
ART (2). Early ART treatment reduces mortality and improves
clinical outcomes in infants with HIV. Thus, the current
treatment guidelines recommend initiation of ART to infected
infants as early as possible, regardless of clinical or
immunological outcomes (3). Studies have shown that early
ART initiation within the first months of life in infants with
HIV suppresses viral replication and can result in a significantly
smaller latent viral reservoir, preservation of CD4+ T cell counts,
and decreased immune dysregulation (4–7). However, ART is
not curative and does not eliminate the establishment of
persistent latent viral reservoirs, which contribute to viral
rebound when treatment is interrupted (8).

Previous studies have also reported that early ART initiation
in infants with HIV is associated with a lack of circulating HIV-
specific antibodies and T cell responses, likely due to low levels of
circulating viral antigen and suppression of viral replication (6,
9–11). In these studies, approximately 36-46% of infants with
perinatal HIV infection who were treated with ART within the
first year of life became seronegative (9, 11–13). In a more recent
study, Cotugno et al. reported that while these early ART-treated
perinatally infected infants are seronegative, in vitro stimulation
of the memory B cell population derived from peripheral blood
mononuclear cells (PBMCs) with HIV peptides induced HIV-
specific antibody responses, suggesting persistence of HIV-
specific humoral memory despite the seronegative status (13).
Interestingly, in vitro stimulation induced higher expression of
transcriptional signature profiles of genes related to antibody
production (PRDM1) and T-B cells cognate stimulation
(CXCR4, IL21R) in early ART-treated infants who were
seropositive compared to their seronegative counterparts,
suggesting a truncated process of HIV-specific B cell
maturation in seronegative children (13). Taken together these
results suggest that while early ART initiation is beneficial for
controlling viral replication, rapid elimination of viral antigen
results in qualitatively distinct HIV-specific memory responses.
Additional studies are needed to further define the impact of the
timing of ART initiation on persistence of HIV-specific cellular
and humoral immune responses in children and to define
whether the distinct profiles of HIV-specific memory T and B
cells in children who become seronegative has an impact on the
potential of immunotherapies to promote cure.

The overall goal of this review is to discuss current knowledge
of early life immunity that can be harnessed to develop future
strategies aimed to achieve HIV remission in pediatric settings.
Herein, we compare the characteristics of innate and adaptive
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immune cells in pediatric versus adult elite controllers, discuss
the characteristics of cellular and anatomic HIV reservoirs in
pediatric populations, and highlight the potential of novel
immune-based interventions that have been studied in adults
with HIV or in preclinical models to eliminate persistent latently
infected viral reservoirs in children living with HIV.
IMMUNE PROFILES OF PEDIATRIC AND
ADULT HIV ELITE CONTROLLERS

HIV elite controllers (ECs) are a rare group of individuals with
HIV that have the capacity to spontaneously control viral load
without treatment (14). Specifically, these individuals maintain a
viral load of <50 copies/ml at least three times over the course of
a year (15) and do not demonstrate CD4+ T cell depletion (16).
These individuals are distinguished from long-term non
progressors (LTNPs) who have low-to-moderate viremia
(<5000 RNA copies/ml) but preserved CD4+ T cell numbers
(15–17). ECs make up ~0.5% of all adults with HIV and the
number is at least six times lower in children with HIV (~0.08%)
(18, 19). While most ECs eventually lose control of viremia, they
provide a model for natural suppression of HIV replication that
can guide immunotherapeutic interventions towards long-term
ART-free virus control. Herein, we examine and compare the
adaptive and innate immune cell profiles of pediatric and adult
ECs to guide development of immune-based strategies for latent
reservoir clearance and HIV remission tailored to the
pediatric settings.

Cellular Immunity
CD8+ T Cells
The CD8+ T cell response has been identified as a distinct and
crucial feature in HIV ECs (20). Both pediatric and adult ECs,
compared to their progressor counterparts, possess a higher
frequency of HIV Gag-specific, polyfunctional CD8+ T cells
capable of cytokine release (IFN-g, TNF-a and IL-2),
degranulation, and release of perforin and granzyme B
(19, 21). Notably, in pediatric elite controllers (PECs), this
polyfunctional population of HIV-specific CD8+ T cells is
higher than in non-progressors, even though the overall
production of cytokines is similar between these groups (19).
Additionally, in line with previous observations in adults,
pediatric progressors (PPs) had higher magnitude Nef-specific
CD8+ T-cell responses compared to ECs (19). Additionally,
Viera et al. reported that only two of seven adolescent ECs
(median age 14.6 years, range 12.7–16.6 years) shared the
protective HLA Class I type (HLA-B∗27/57/58 : 01/81 : 01)
previously described in adult ECs, suggestive of potential
distinct, age-relevant immune control mechanisms in pediatric
age groups. Studies using nonhuman primate (NHP) models of
HIV/SHIV/SIV in adult macaques showed differential impact of
antiviral CD8+ T cell depletion between ECs and progressors in
chronic and acute infections (22–24). CD8+ T cell depletion
resulted in a more prominent increase in viral replication in ECs
(22) with a subsequent recovery of viral control upon
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reconstitution of CD8+ T cells (23), and more profound CD4+ T
effector memory cells activation and expansion (24). This finding
further highlights the contribution of CD8+ T cells to the
suppression of viremia, suggesting that elicitation of effective,
polyfunctional antiviral HIV-specific CD8+ T cell responses will
be a key for achieving long term viral control in pediatric HIV.
NHP model of SIV infection in adult macaques showed viral
suppression by CD8+ T cells that recapitulate HIV suppression
in ECs (25, 26). These adult macaques were inoculated
intravenously with SIVagm.sab92018 and demonstrated viral
suppression below the levels of detection of conventional and
single copy assays despite persistent reservoirs of replication
competent virus. However, it is unclear whether similar
characteristics could be achieved in a pediatric NHP model
due to differences in early life immune milieus and different
route of infection. Therefore, there is a critical need to develop
NHP model that can be utilized to understand the mechanisms
of viral control in pediatric HIV ECs.

CD4+ T Cells
HIV primarily targets CD4+ T cells expressing CXCR4 and
CCR5 co-receptors, which undergo dramatic depletion during
the acute phase of infection. Even after ART initiation, CD4+ T
cell populations do not fully recover (27, 28). Unsurprisingly,
PECs were observed to have higher proportion of naïve CD4+ T
cells compared to PPs who had an increased effector memory
CD4+ T cell population (19). Additionally, immune activation
and exhaustion makers on central memory and transitional
memory CD4+ T cells were lower in PECs compared to PPs
(19). Functionally, HIV-specific CD4+ T cells in PECs are
superior to those in PPs, with increased polyfunctionality
despite lower activation (19, 29). This phenotype of lower
immune activation and exhaustion markers is also strongly
established in adult ECs (29, 30). In adult ECs, low HIV DNA
viral reservoir is associated with lower activation of both CD4+
and CD8+ T cells (31, 32). However, while the lower activation
phenotype is shared between adult and pediatric ECs, they are
likely influenced by factors unique to their distinct immune
milieus. The lower HIV reservoir and lower activation in CD4+ T
cells in adults is attributed to the aggressive CD8+ T cell response
in the acute phase of infection (33), while this phenotype in
pediatric ECs is preceded by the tolerogenic environment (18).
Taken together, these findings demonstrate that the CD4+ T cells
in pediatric and adult ECs share similar phenotypes, in which
they are less susceptible to infection and exhaustion. However,
understanding of mechanisms and pathways that contribute to
these phenotypes in the context of tolerogenic early life
immunity could potentially benefit immunotherapeutic designs
against pediatric HIV.

Regulatory T Cells
Tregs are crucial in dampening inflammatory responses, and
hence, it is reasonable to hypothesize that Tregs, could be
important in slowing progression of HIV pathogenesis.
However, there could also be a conflicting dual role of these
cells in HIV control. Adult ECs have normal Treg frequencies,
with low HIV-specific immune activation while maintaining
Frontiers in Immunology | www.frontiersin.org 3
strong polyfunctional T cell responses (29). A study on
pediatric slow progressors (PSP), who are characterized by
high CD4+ T-cell counts and low immune activation despite
having high viral load, indicated that these PSPs had a higher
absolute number of Tregs expressing a suppressive phenotype
compared to PPs (34). Additionally, PSPs had higher secretion of
the immunosuppressive cytokine IL-10 and a higher frequency
of central memory Tregs compared to PPs. Moreover, PSPs that
progressed later had lower frequency of suppressive Tregs, lower
Treg proliferation, and IL-10 production (34). Together, these
findings suggest an active role of suppressive Tregs and anti-
inflammatory responses in controlling immune activation
thereby slowing progression to disease in children with HIV.
Given that the function of Tregs may plausibly limit or promote
HIV pathogenesis, more pediatric studies are required to clarify
their roles, distributions, and functions in the context of HIV
control. Some therapeutic strategies to target Tregs have in fact
been studied in adults with HIV. As CTLA-4 on Tregs plays a
role in suppressing HIV-specific T cells, blocking CTLA-4 has
been proposed as a strategy to rescue an effective HIV-specific T
cell response (35, 36). In a study of SIV-infected adult rhesus
macaques CTLA-4 blockade resulted in reduced viral RNA in
tissues (37). However, another study showed conflicting results
when blockade was performed in the early stage of infection (38).
Dual monoclonal antibody treatment using anti-PD-1 and anti-
CTLA-4 in SIV-infected adult NHPs with long term ART
enhanced both memory CD4+ and CD8+ T cells proliferation
and effectors functions but was insufficient to control or delay
viral rebound after ART interruption (39). Thus, dual CTLA-4/
PD-1 blockade is likely insufficient to induce HIV remission and
would likely require combination with enhanced killing
strategies , such as therapeutic vaccination (40) or
coadministration of neutralizing antibodies (41). The potential
contribution of Tregs to HIV cure was further demonstrated in
NHP model of SIV infection in adult macaques (42, 43). Tregs
depletion in SIV infected adult macaques resulted in increased in
reactivation of latent reservoirs as well as significant boost of
SIV-specific cytotoxic T lymphocytes (CTLs) responses (42).
However, Tregs depletion alone is insufficient as a strategy for
HIV cure and would require combination with other viral
reactivation therapies or vaccination strategies (44). Therefore,
future research should focus on refining promising Treg
treatments as a strategy for cure in pediatric HIV NHP model.

Th17
Th17 cell populations are crucial in maintaining the integrity of
the gut mucosa by promoting epithelial cell regeneration as well
as coordinating immune responses in this region (45). The
absence of these cells results in microbial translocation due to
reduced gut integrity, leading to the immune activation which
promotes HIV-driven CD4+ T cell depletion, especially in the
gut. Consistent with this pathogenic mechanism, studies have
shown a higher frequency of Th17 cells in circulation among
adult ECs compared to long-term non progressors and even
HIV-negative individuals, suggesting a protective role for this
cell subset (46). Unfortunately, studies on the distribution and
expansion of Th17 cells in HIV infection in children are limited,
July 2022 | Volume 13 | Article 885272
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let alone in the rare group of elite controllers. Dzanibe et al.
recently reported that maternal HIV exposure alters the
proportions of Th17 and Tregs CD4+ T cells in the periphery
of HIV-exposed uninfected infants (HEUs) compared to HIV-
unexposed uninfected (HUUs) control infants (47). Additionally,
while peripheral Tregs showed inverse correlations with known
damage-associated markers in the gut (CCL17, IL-7, CCL20) in
HEUs, Th17 cell population was positively correlated with these
markers. Taken together, these data suggest that there is an
association between markers of gut damage and in utero HIV/
ART exposure on the HEU infants Th17/Treg balance at birth.
However, whether these findings extend to children who
acquired HIV from their mothers is unclear.

T Follicular Helper Cells
Tfh cells are found in secondary lymphoid organs such as tonsils,
spleen, and lymph nodes where ART penetration is not optimal,
rendering them sites for ongoing HIV replication (48). Tfh cells
have been shown to support HIV persistence, and more
interestingly have been demonstrated to be the major HIV
reservoirs within central memory CD4+ T cells in adults with
chronic HIV infection and on ART (49–51). In adult ECs,
however, Garcia et al. demonstrated that peripheral Tfh (pTfh)
cells have smaller HIV reservoirs compared to individuals treated
with combination ART (52). They postulate a possible link
between the low infection of pTfh cells in ECs and their ability
to suppress HIV (52). Functionally, pTfh cells in EC’s have been
shown to have better B-cell helper activity than those in HIV
progressors (53, 54). In children with HIV, the proportion of
circulating Tfh cells are shown to be reduced and correlated with
memory B cells as well as advanced disease (55, 56). Further
research is required to fill the gap in knowledge of the role of Tfh
cells in pediatric ECs as this could provide insight on the role of
these cells in HIV control and in providing help for improved B
cell functions for vaccine design.

Humoral Immunity
HIV disease progression is associated with phenotypic and
functional abnormalities of B cells, several of which are driven
by the chronic immune activation associated with HIV replication.
However, few studies have evaluated the role of the humoral
immune response in spontaneous control of viral replication. In
adults, the median frequency of HIV-specific memory B cells in
ECs was significantly higher compared to that found in individuals
receiving ART (57). While this has not been evaluated in pediatric
ECs, a recent study has highlighted B cell dysfunction as a
hallmark of HIV disease progression in children with HIV. In
this study, a cohort of pediatric long-term non-progressors
(LTNPs; n=20) had lower naïve and resting memory B cell
frequencies compared to uninfected children (58), while tissue-
like memory B cells were lower in LTNPs compared to pediatric
progressors. Interestingly, plasma levels of B lymphocyte
stimulator (BLyS), a known regulator of B cell function and
survival, were lower in pediatric LTNPs compared to
progressors. In adults, BLyS expression levels are unaltered, and
less B cell dysregulation was observed in non-progressors (59).
Frontiers in Immunology | www.frontiersin.org 4
Recent work has highlighted a potential role for non-
neutralizing HIV-specific antibodies in protection from disease
progression and viral control, implicating features that could be
exploited in attempts to achieve HIV cure. Muenchhoff et al.
described that a subset of ART-naïve children with HIV who
maintained normal CD4+ T cells also known as pediatric non
progressors (PNPs) had higher p24-specific IgG levels than
children under ART, and these anti-p24 IgG were mostly of
the IgG1 subclass (60). Meanwhile in PPs, there was a greater
contribution to IgG3 subclass to the p24-specific IgG responses.
IgG1 mediates antibody responses to viral infection while IgG3
regulates proinflammatory effector functions (61). This suggests
that in PNPs viral replication is under control without chronic
inflammation, while PPs have more inflammatory responses.
Interestingly, when compared to uninfected children, PNPs had
no changes in bulk IgG galactosylation, which corresponds to
low immune activation and inflammation (60). In PPs,
agalactosylated IgG glycans were expanded, whi le
digalactosylated glycans were decreased compared to HIV-
uninfected children. Moreover, PNPs demonstrated increased
HIV-specific Fc-mediated IgG effector functions, antibody-
dependent cellular cytotoxicity (ADCC) and phagocytosis
(ADCP), compared to progressors (60). Interestingly, robust
ADCC (62, 63) and overall superior polyfunctional Fc
dependent activity (64, 65) have been consistently observed in
adult ECs. Broadly neutralizing antibodies (bNAbs) arise early
with higher breadth and potency in children than in adults with
HIV (66–68). While bNAbs in children mostly target similar
epitopes to adult bNAbs (69), they also showed remarkable
polyclonalities with some bNAbs targeting up to 4 distinct
epitopes (69, 70). Altogether, these data suggest that successful
monoclonal antibody-based therapeutics for viral remission in
pediatric HIV will likely need to exploit neutralizing and non-
neutralizing properties of HIV-specific bNAbs to control and
mediate clearance of infected cells.

Innate Immunity
Natural Killer Cells
Natural killer (NK) cells are innate lymphocytes that directly kill
cells infected by intracellular pathogens, usually viruses. The
functionality of NK cells is governed by the interaction of both
inhibitory and activating receptors with the MHC-I (71). NK
cells are inhibited from killing uninfected cells that have normal
levels of MHC-I. The absence of MHC-I molecules causes the
loss of inhibitory signals on NK cells, permitting them to directly
kill infected cells (71). Genovese et al. demonstrated an
association between delayed progression to AIDS and the
interaction of protective HLA-B alleles on infected cells and
killer immunoglobulin receptors (KIR) on NK cells (72). The
interactions between NK cell receptors (KIR3DL1 and KIR3DS1)
and the protective HLA-B Bw4-80Ile on target cells are
associated with delayed progression to AIDS has been
documented (73–75). Interestingly, Tomescu et al. have
demonstrated that adult ECs expressing KIR3DL1 on NK cells
and HLA-B Bw4-80Ile on target cells had stronger NK cell
mediated cytotoxicity compared to CD8+ T cell cytotoxicity
July 2022 | Volume 13 | Article 885272
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from the same individuals (76). These findings suggest an
association of NK cell phenotype with development of
elite control.

There is a paucity of research on the distribution and function
of NK cells in pediatric ECs. Given the immature adaptive
immune system in children, NK cell response to infection is an
important initial defense. Interestingly, NK cell populations in
pediatric long-term non progressors (LTNP) are lower than
healthy uninfected individuals but similar to ART-treated
children (77). Research on the NK cell population in pediatric
ECs is required to identify the distributional and functional
correlates of NK cells to HIV control in order to better inform
strategies for HIV cure.

Dendritic Cells
Dendritic cells (DCs) are innate immune cells are that are
specialized in presenting foreign antigens to the adaptive
immune system to mount an effective immune response and
also release cytokines and chemokines to orchestrate adaptive
immune responses. These cells are therefore important in HIV
control as they present HIV antigen to T cells to mount effective
immune responses. A study showed exposure of conventional
DCs to HIV-1 resulted in rapid and sustained production of type
I interferon and importantly stronger capacity to stimulate and
expand HIV-1-specific CD8+ T cell responses in ECs (78).
Furthermore, it was shown that plasmacytoid DCs (pDCs)
from ECs had a higher capacity to reduce HIV production
compared to those from viremic individuals (79). In adult
rhesus chronic SIV infection model, DCs and pDCs influenced
ongoing inflammation and T cell exhaustion in the mucosal
tissues and there by contributed to persistence of viral reservoirs
during ART (80). There is a lack of studies on the role of and
functionality of dendritic cell subpopulations in pediatric ECs.
During HIV infection, dendritic cells in children undergo
numerical and functional deficits. Interestingly, with the
administration of ART, the recovery of myeloid dendritic cells
was observed whereas that of plasmacytoid dendritic cells was
only partial (81).

Other Innate Immune Cells
Monocytes are an innate effector cell population which seem to
be associated with suppression of HIV viremia. Adult ECs, have
overall lower levels of monocyte activation (based on HLA-DR
expression) with a reduced frequency of inflammatory monocyte
(CD14++CD16+) subset compared to viremic subjects (30). In
addition, elite controllers tend to exhibit significantly higher
proportion of CD14+CD16+ monocytes, compared with HIV-
negative controls (82).

Innate lymphoid cells (ILCs) are lymphoid-lineage cells that
are further classified as ILC1, ILC2, and ILC3 based on the
transcription factor they express, and their functions overlap
with that of CD4+ T helper (Th)1, Th2, and Th17 lymphocytes,
respectively. ILCs are severely depleted in the circulation of HIV-
infected children however, initiation of ART at birth preserves
ILC development and function (83). While a role for ILCs has
not been established in elite controllers, the aforementioned
study establishes a connection between the maintenance of
Frontiers in Immunology | www.frontiersin.org 5
ILCs in population and control of HIV replication in
pediatric populations.

Gamma delta T cells (gdT) are a subset of innate-like T-cells
with a transcriptional phenotype that blends characteristics of
both NK and CD8+ T cells, thus exhibit highly cytotoxic activity
(84, 85). Gamma delta T cells represent a small fraction (1-5%) of
the overall T cell population but are more abundant in barrier
sites like the skin, lung, digestive tract, and reproductive organ
mucosa (86). Recent work demonstrated that interleukin (IL)-
17-production by gd T cells was better preserved in PBMCs from
adult ECs than in untreated HIV-infected patients and was
negatively associated with immune activation (87). Moreover,
overall alterations in gd T-cells were less prominent in ECs
compared to untreated HIV- infected adults. The extent to
which gdT cells contribute to natural control of HIV infection
in children and adults remains elusive, however a few studies
have highlighted the ability of gdT cells to inhibit HIV replication
in vitro (88, 89).

Summary
There are several opportunities in the early life immune system that
could be exploited towards an HIV cure. The immunotolerant and
naive immune environment can allow low levels of activation and
immune system maturation is highly adaptable. A better
understanding of the early life immune ontogeny and mechanism
of viral control in pediatric ECs could provide insight into novel
immune-based strategies towards clearance of latently infected cells
and viral remission in children with HIV.
HIV RESERVOIR IN PEDIATRICS

Composition of the Latent Reservoir in
Adults and Children
The latent HIV reservoirs are heterogenous in both cell types and
tissue localizations within the body. Various CD4+ T cell types are
susceptible to HIV infection including naïve cells, long-lived
memory cells (stem cell and central memory cells), and terminally
differentiated cells (90), but central memory cells CD4+ T cells are
the most vital to the maintenance of the latent reservoir (91). HIV-
infected CD4+ T cells exist broadly throughout the body and have
been found in the gut-associated lymphoid tissue, genital tract, and
lymph nodes (92). In addition to CD4+ T cells, myeloid immune
cells have been implicated as HIV reservoirs. Macrophages are
known to be infected by HIV (91, 93) and in vitro infectivity studies
showed that they are not killed by HIV, suggesting that they are
likely HIV reservoirs (93). Tissue resident macrophages are highly
specialized cells and varied in susceptibility to HIV infection.
Alveolar macrophages and microglial cells are susceptible to HIV
infection and contribute to the formation of cell reservoirs in the
lung and brain, respectively (94, 95).

The majority of studies that focused on kinetics and origin of
persistent latent reservoirs that eventually contribute to viral
rebound when ART is interrupted were conducted in adults with
HIV or adult NHPs. Infant NHPs are highly relevant and
translatable models for the study of pediatric HIV infection and
July 2022 | Volume 13 | Article 885272
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persistent latent reservoirs. Several studies using oral infant NHP
Simian-Human Immunodeficiency Virus (SHIV) infection model
that mimic breastmilk transmission of HIV, the gastrointestinal
(GI) tract was identified as major source of viral RNA during ART
and upon viral rebound (96–98). Following ART discontinuation,
while the GI tract showed the most rapid increase in viral RNA,
virus was also detected in the nasal-associated lymphoid tissue
(NALT), axillary lymph node, and spleen (97). An earlier study
described that while the oral mucosa and tonsils are generally the
anatomical location for initial establishment of a small founder
population of infected cells, the anatomical location of persistent
latent reservoirs in SHIV-infected infant NHPs continues to spread
into distal lymph nodes and other organs including the brain, lungs,
intestines, pancreas, and spleen (99).

In addition, due to differences in age-related immune
landscapes, the latent HIV reservoirs in adults and children are
defined by distinct characteristics. In perinatally-acquired HIV in
children, the latent reservoir consists of transitional memory
CD4+ T cells as opposed to the mostly central memory CD4+ T
cells observed in adults (100, 101). Additionally, perinatally-
infected children have the unique opportunity of initiating ART
early, which has been reported to limit the establishment of the
initial latent HIV reservoir (12, 102, 103). A recent study
demonstrated that reactivation of latent HIV reservoirs with
PMA/ionomycin from adolescent who were perinatally-infected
and treated within the first 24-months of life, resulted in similar
rate of cell activation but slower and lower magnitude of proviral
load when compared to infected adults (104), suggesting that
latent viral reservoirs in children were more resistant to ex vivo
reactivation. This study highlights differences in inducibility of
latent viral reservoirs resulting from perinatal versus adult HIV
infections, which could impact strategies toward latent reservoirs
clearance and viral remission in children.

Immune Signatures of the Viral Reservoir
CD4+ T cell immune signatures associated with the size of viral
reservoir in adolescents and children who were vertically infected
with HIV were recently described (105). Rinaldi et al., reported that
while co-expression of PD-1 and TIGIT was associated with CD4+
T cell viral reservoir in both children and adult, the frequencies of
PD-1 and TIGIT expressing CD4+ T cells along with HIV-specific
CD4 T cells were able to discriminate between lower and higher
viral reservoirs in perinatally-infected children (105). This finding
suggests that while some immune signatures that could be targeted
by interventions or therapies towards clearance of latent viral
reservoirs are similar in children and adults, there are also unique
signatures that immune-based strategies aimed at permanent HIV
remission in children could target.
CURRENT IMMUNE-BASED THERAPIES
POTENTIAL FOR PEDIATRIC HIV VIRAL
REMISSION AND CURE

Elimination of latently infected cells that are established early during
infection remains as a major challenge to cure in children and adults
Frontiers in Immunology | www.frontiersin.org 6
living with HIV (8, 106, 107). While ART treatment can achieve
sustained viral suppression, it does not eliminate latently infected
cells, which lack active expression of viral proteins on their cell
surface and therefore are invisible to the immune system. ART
discontinuation reactivates latently infected cells harboring intact
replication competent HIV provirus to produce HIV virions,
resulting in sustained viral rebound in nearly all individuals with
HIV (106–108). This indicates that the host immune system of most
individuals with HIV is unable to eliminate virus producing and/or
infected cells in persistent reservoirs. Therefore, novel strategies with
combinatory effect to induce viral production by latently infected
cells while on ART and to augment the ability of host immune
responses in clearing infected cells are paramount to HIV cure.
Additionally, as the majority of these novel interventions are
currently developed in adults with HIV or preclinical models for
adults, it is imperative to design novel combination strategies that
are tailored to the developing immune system in children for
eradication of pediatric HIV.

Therapeutic HIV Vaccines (T and B Cells)
The goal of therapeutic vaccination is to improve the functional
capacity of the host immune system to kill infected CD4+ T cells
and/or neutralize circulating viruses (109). Several therapeutic
HIV vaccines have been assessed preclinically and clinically for
their safety, immunogenicity, and effectiveness but these studies
have largely focused on adult HIV population or SIV/adult
nonhuman primate (NHP) models (107, 109). It is well
established that perinatally-infected infants and children who
are treated early with ART tend to have a small pool of latent
viral reservoir, normal development of B and T cell
compartments, and a high capacity to regenerate an immune
repertoire (110, 111). While lessons from the “Mississippi baby”
have indicated that early ART treatment is not enough to achieve
life-long HIV remission, such characteristics do render
perinatally-infected children as an ideal group to test
therapeutic vaccines for functional HIV cure (110, 112).
However, to date, only two clinical and one preclinical NHP
therapeutic HIV/SIV vaccine studies have been conducted with a
focus of HIV cure in infants and children (Table 1).

The Pediatric AIDS Clinical Trials Group 218 (ACTG 218 or
NCT00000762) was the first clinical study conducted to evaluate
the safety and immunogenicity of viral envelope proteins as
therapeutic vaccine in infants and children with HIV. The
rationale behind this study was that immunization with HIV
envelope (Env) protein-based vaccines could alter the landscape
of naïve immune responses to HIV and thereby delaying viral
rebound. Three HIV Env-based vaccines were administered to
infants and children with HIV aged 1 month to 18 years at the
time of entry and then at 1, 2, 3, 4 and 6 months later. The
vaccines were well tolerated with no adverse effects, secondary
infections, or change in viral replication status. Around 65% of
vaccinees demonstrated moderate to strong antigen-specific
antibody responses and up to 56% of vaccinees exhibited
vaccine antigen-specific lymphoproliferative responses,
indicative of immunogenicity of the therapeutic vaccine (113).

The First Pediatric Randomized Trial (PEDVAC or
NCT04301154) evaluated safety and immunogenicity of the
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multiclade, multigene HIV DNA therapeutic vaccine (HIVIS) in
10 HIV infected and ART treated children of 6 to 16 years of age.
Administration of an HIV DNA vaccine construct expressing
HIV-1 subtypes A, B, and C, Env, Rev, Gag, and reverse
transcriptase (RT) was well tolerated and exhibited a safe
profile except for local irritation, erythema with or without
swelling or usual itching at the site of injection. Unlike, non-
vaccinated children, vaccinees exhibited increased percentage of
HIV-specific perforin-producing CD8+ T cells, compared to
baseline, highlighting the immunogenicity of therapeutic HIV-
DNA vaccines (114–116). However, there was no evidence that
the vaccine had an impact on latent viral reservoir and
viral rebound.

Preclinical studies demonstrated the promise of therapeutic
vaccination with Ad26/MVA (recombinant adenovirus serotype
26 (Ad26) prime, modified vaccinia Ankara (MVA) boost)
encoding SIV gag, pol, env in combination with a toll-like
receptor 7 (TLR-7) agonist as an adjuvant against Simian
Immunodeficiency Virus (SIV) using an adult NHP model
(117). This vaccine regimen was recently translated to an
infant SIV NHP model that simulated postnatal HIV infection
through breastfeeding with ART-mediated suppression of
viremia (118). In this study, a total of 8 infant NHPs were
orally infected with SIVmac251 and treated with ART at 4 weeks
post-infection followed by multiple immunization with Ad48/
MVA encoding SIV gag, pol env plus TLR7 while remining on
ART. The vaccinated group showed greater magnitude and
breadth of polyfunctional CD4+ and CD8+ T cells when
compared to control group and, as anticipated, the
administration of the TLR-7 agonist (GS-986) led to activation
of monocytes and T cells. This finding was similar to the
observations found in adult NHPs (117). Additionally, the
levels of SIV gp120-specific antibodies were significantly
increased following the MVA boost. However, despite these
robust vaccine-induced cellular and humoral immune
responses, the size of viral reservoirs, time to viral rebound,
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and viral set point following analytical ART interruption (ATI)
were similar in the vaccine and control groups. These findings
suggest that while therapeutic vaccine-induced immunity may
induce antiviral T and B cell responses, these responses may be
insufficient to modulate viral rebound dynamics during ATI.
Thus, there is a need to identify T and B cell responses that could
potentially impact the latently infected HIV reservoir and to
combine therapeutic vaccines with other immune therapies such
as potent latency reversing agents (LRAs), passive transfer of
broadly neutralizing antibodies (bNAbs), and check point
blockade if this approach is pursued as strategy for HIV
remission in children.
PASSIVE IMMUNIZATION STRATEGIES

Broadly Neutralizing Antibodies
Recent development in the use of antibodies for HIV therapy
showed promise in the ability of antibody-based strategies to
reduce plasma viremia and to mediate clearance of infected cells
to further delay viral rebound following ATI (119–123).
Emerging evidence supports the effect of antibody-based
therapies on persistent latent HIV reservoirs, which could
potentially induce viral remission when used alone or in
combination with ART and other novel therapeutic
modalities (121).

Passive infusion with highly potent broadly neutralizing
antibodies (bNAbs) against distinct HIV Env regions may
represent an advantageous strategy due to the ability of bNAbs
to neutralize free virions via the Fab domain and to engage
cognate receptors on host innate and adaptive via the Fc domain.
Passive infusion with single or combination bNAbs is actively
evaluated as therapeutic strategy for HIV remission in the clinics
by measuring the effects of antiviral activities of bNAbs on
plasma viremia and viral suppression following ATI as well as
impact on viral reservoir by delaying viral rebound (121). Most
TABLE 1 | Therapeutic HIV/SIV vaccine studies for pediatric HIV cure.

Key parame-
ters

Clinical Pre-clinical

Study/Trial ACTG218 (NCT00000762) PEDVAC (NCT04301154) –

Infectious
agent

HIV-1 HIV-1 SIVmac251

Therapeutic
vaccine
compound

Env viral proteins; gp160 and
gp120

HIVIS DNA (HIV-1 subtype A, B and C,
encoding Env, Gag, Rev, RT)

Ad48-SIV, MVA-SIV and GS-986

Study
population

Infants and children Children Infant RMs

Age 1 month to 18 years 6 to 16 years 1 month
Vaccination
schedule

weeks 0, 1, 2, 3, 4, 6 weeks 0, 4, 12 and 36 week 22, 30, 38 and 50

Immunogenicity Moderate to strong antigen
specific antibody response.
Vaccine antigen specific
lymphoproliferative responses

Compared to aged match controls,
higher HIV gag-specific cellular immune
response. Lymphoproliferative response
to the gag virion
antigen (HIV-1 MN) was higher in
children than
in adults

Greater magnitude and breadth of polyfunctional CD4 and CD8 T cells
in vaccinated RMs. Levels of SIV specific gp120 specific antibodies
were significantly boosted following MVA vaccination. No effect on viral
reservoir or rebound
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of these studies were conducted in adults with acute or chronic
infections while on ART and similar studies in pediatric HIV
population are lacking. To date, only two ongoing clinical trials
of bNAb therapy as part of an HIV treatment strategy have been
conducted in infants and children (Table 2). Passive infusion of
the unmodified version and the long acting (LS) version of the
CD4 binding site (CD4bs), VRC01, was shown to be safe and
well tolerated in HIV-exposed infants (124, 125). Similarly,
passive infusion of the modified and extended half-life version
of the VRC01 with the LS mutation in combination with the V3-
glycan bNAb, 10-1074, was also safe and well tolerated in the
pediatric population (125). The ability of monotherapy and dual
therapy using bNAbs to maintain viral suppression and delay
viral rebound following ATI in the pediatric HIV population is
still under investigation.

Preclinical data from SHIV infection in adult NHP models
demonstrated that administration of single or combination bNAb
therapy could potentially target, control, and eliminate viral
reservoir, suggesting that ART free remission is attainable
following ATI (126–132). These mono- or dual-bNAb therapies
were administered either alone or in combination with other
interventions strategies, including therapeutic vaccines (126,
127) and immune modulatory agents (130–133). Depletion of
CD8+ T cells resulted in transient increase of plasma viremia in
animals with controlled viral suppression, suggesting that
mechanism of viral control is likely co-dependent on CD8+ T
ce l l immune responses (126 , 127) . The potent ia l
immunomodulatory effect of bNAb therapy on CD8+ T cells
was recently demonstrated in adults in the clinic, in which
administration of combination bNAb therapy (3BNC117 and
10-1074) was associated with an increase in Gag-specific CD8+
T cells in the blood (134). However, whether the increase in HIV-
specific CD8+ T cell immune responses contribute to viral control
and suppression in the absence of ART remains to be seen. Taken
together, these studies highlight the potential of bNAb therapy as
an alternative or adjuvant to ART in mediating viral control and/
or augmenting the host endogenous immune responses for viral
control. Given the unique characteristics of early life immunity as
discussed above, it is imperative that effort to advance the use of
bNAb therapy in pediatric HIV be tailored to the developing
immune system cell composition, activation state, and milieu.
Indeed, the highly tolerogenic and anti-inflammatory immune
environment during early life as well as differences in pathogenesis
between adults and children with HIV may influence efficacy of
bNAb therapy towards viral control and remission the pediatric
HIV population (135). Thus, the endogenous immune responses
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in pediatric HIV could potentially be harnessed towards viral
elimination and clearance of persistent reservoir to achieve viral
remission in the absence of ART. Future studies should aim to
investigate the effect of bNAb therapy alone or in combination
with therapeutic vaccines and other immunomodulatory agents in
augmenting endogenous immune responses as a potential strategy
for HIV cure in the in the context of early life immunity.

Numerous efforts are currently being developed to ensure
consistent high levels of bNAbs in the circulation including
various modifications to extend their half-lives (120, 136–139)
and expression of bNAbs using viral vectors (122, 140, 141).
Additional strategies are currently being developed to enhance
the ability of Fc effector functions, including antibody-mediated
cell cytotoxicity (ADCC) and antibody-dependent cell
phagocytosis (ADCP), to clear HIV-infected cells (121, 122,
142–144). The Fc region enhancement can be accomplished by
(i) altering the antibody isotype (142, 143), (ii) modifying the
antibody Fc domain amino acid sequences (139, 144), and (iii)
modifying the antibody Fc glycans (122, 145). These approaches
modulate antiviral breadth and potency of bNAb therapy by
increasing bNAbs affinity to cognate Fc receptors on host
immune cells and host complement proteins for elimination of
HIV-infected cells. These current novel modalities represent
tremendous opportunities for pediatric HIV cure. Passively
acquired and endogenous ADCC-mediating antibodies
contributed to better disease outcome in infants with HIV
(146–149). This suggests that passive immunization with
bNAbs exhibiting enhanced antiviral functions could be
especially attractive for pediatric HIV treatment.

Engineered Antibody-Like Molecules
One major challenge in bNAb therapy is the emergence of viral
escape to one or more bNAbs due to selection or mutation once
the plasma levels of passively administered bNAbs start to
decline (150). Antibody engineering through generation of bi-
(151, 152) and tri-specific (153–155) bNAbs against HIV have
been demonstrated to increase potency and breadth of
combination bNAb therapy. An attractive option to improve
bNAb performance and overcome their intrinsic limitations is
the development of antibody-like molecules, in which antibodies
are engineered to (i) improve affinity and recognition of viral
epitopes, (ii) combine bi- or tri-specificities, and/or (iii) modify
Fc domains to improve half-life and increase engagement of
effector cells (156). Overall, there are two major classes of bi- or
tri-specific antibody-like molecules: those with or without an
antibody Fc region (157).
TABLE 2 | Antibody (bNAb) therapy for pediatric HIV treatment.

Key parameters Clinical

Study/Trial NCT03208231 (IMPAACT 2008) NCT03707977 (Tatelo Study)
BNAb/combination VRC01 VRC01-LS, 10-1074
HIV Env target site CD4 binding site CD4 binding site, V3 glycan
Primary purpose Treatment Treatment
Dosing Week 0, 2, 6, and 10 Week 0, 4, and 8
Study population HIV-infected infants on ART Antepartum or peripartum HIV-infected children with early ART initiation
Study endpoint Safety, pharmacokinetics, effects on plasma viremia Safety, pharmacokinetics, impact on viral rebound
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Asokan and colleagues constructed four different bi-specific
immunoglobulins (IgGs) composed of independent antigen-
binding fragments with a common Fc region: VRC07×10E8,
VRC07×PGT121, VRC07×PG9-16, and 10E8×PG9-16. All four
bi-specific IgGs neutralized over 94% of antigenically diverse
viruses in a panel of 206 HIV-1 strains, with VRC07xPG9-16
showing the most positive neutralization profile (158). In a step
further in the development of these molecules, a tri-specific
antibody-like molecule was generated to include bNAbs with 3
HIV Env specificities, N6 (targeting the CD4bs), PGDM1400
(targeting the V2 glycan), and 10E8v4 (targeting the MPER).
This tri-specific antibody-like molecule neutralized clade A
SHIV BG505 more potently than any of the parental bNAbs
(154), showing comparable potency but greater breadth than a
previously developed tri-specific molecule including VRC01/
PGDM1400/10E8v4 specificities (153). The newly improved
tri-specific antibody-like molecule (N6-CD4bs/PGDM1400-V2
glycan/10E8v4-MPER) was shown to reduce viremia from 100-
to 1000-fold in viremic SHIV-infected adult NHPs (154)
although transient viral rebound was observed when ART was
interrupted, likely due to decline of antibody-like molecule level.
However, similar to prior observations with mono- and dual-
bNAb therapy, rebound viremia was returned to low levels via
CD8+ T cell mediated viral control (154).

Another interesting approach to engineer antibody-like
molecule against HIV involves combining a domain to target
the virus protein and another domain to target host cell
receptors. Mainly, two different constructs have been
developed following this strategy: Bi-specific T/NK cell
engagers (BiTEs/BiKEs) and Dual Affinity Re-targeting
Molecules (DARTs). BiTEs are composed of antibody domain
targeting the HIV-1 Env protein gp120 through B12 or VRC01
and an anti-human CD3 single chain variable fragment (scFv)
was shown to redirect lysis of HIV gp120-transfected CHO cells
in vitro, as well as inhibited HIV replication in both HIV-
infected PBMCs and macrophages cocultured with autologous
CD8+T cells (159). Similarly, BiKEs are composed of antibody
domains D6 and E11, which bind to human CD16 present on
NK cells, and a soluble CD4 domain, which binds to HIV gp120.
BiKEs activate NK cells in the presence of target cells in and
mediate infected target cell lysis (160). DARTs are novel bi-
specific-based constructs that seem to offer improved stability,
manufacturability, and potency compared to the BiTEs (161).
The variable domains of the two antigen-binding moieties in
DART molecules are incorporated into a disulfide-linked
heterodimer, stabilizing the structure. DART molecules with
HIV-1 Env and CD3 specificities were evaluated for their
capacity to recruit and redirect cytotoxic T effector cells to
primary HIV infected CD4+ T cells.

Unfortunately, all studies with bi/tri-specific molecules so far
focused on cells from adult participants, leaving unknown the
potential as therapy for pediatric infection. Importantly, immune
system development during early life will probably affect the
therapeutic potential of bispecific molecules, and thus children’s
effector cells might have improved activity profiles.
Frontiers in Immunology | www.frontiersin.org 9
Latency Reversing Agents
Latency reversing agents (LRAs) are small-chemical compounds
employed to activate and expose latently HIV-infected cells to the
host immune system (92). LRAs target differentmechanisms of HIV
transcription and replication. The current classes of LRAs induce
epigenetic modification, sequester transcription factors, and target
the HIV Tat protein (162). Among the epigenetic LRAs, there are:
histone deacetylase inhibitors, histone methyltransferase inhibitors,
and bro- and extra terminal domain inhibitors. These drugs act at the
HIV-1 LTR promoter and induce histone modifications at the
chromatin levels, which prevent RNA polymerase from initiating
transcription. There are also single-agonists LRAs like protein kinase
C (PKC), that induce HIV latency reversal in model systems, which
has broad impact activity and could potentially have dangerous side
effects in vivo. The potential broad side effects of LRAs are one of the
major challenges in employment of LRAs in the clinic for pediatric
HIV treatment.

Many anti-tumor drugs approved for use in adults and children
are currently under evaluation for their potential to act as LRAs in
adults with HIV (Table 3). Existing anti-tumor drugs are easily
translatable to LRA discovery because of the shared strategy to
induce epigenetic changes that promote cell cycle arrest, apoptosis,
autophagy, and cell death of cancer-infected cells (163). Several
LRAs have undergone testing in adult clinical trials including the
histone deacetylase inhibitors, such as vorinostat, panobinostat,
belinostat, and romidepsin, as well as immunomodulatory
compound such as IL-15 receptor superagonist complex (N-803).
While some drugs have induced HIV-1 transcription and T-cell
activation, no candidates have effectively reduced the size of the
virus reservoir (162). Clinical trials in adults with HIV and treated
with ART in combination with romidepsin and vorinostat showed
increased levels of plasma HIV RNA and cell-associated unspliced
RNA in CD4+ T cells respectively. However, no significant changes
in virus reservoir size were observed (164, 165). Recently, a regimen
of vorinostat along with hydroxychloroquine and maraviroc was
reported to increase the levels of plasma HIV RNA in a cohort of
adults on ART but no change in the virus reservoir size was detected
(166). In addition, upon ART interruption, no difference in time to
viral rebound between the vorinostat and control groups was
observed (166). Miller et al. reported that escalating doses of the
investigational drug N-803, an IL-15 receptor superagonist complex
(IL-15/IL-15a-Fc) was safe and well-tolerated in adult living with
HIV in Phase 1 clinical trial (167). However, future investigation is
still needed to determine the impact of N-803 on HIV reservoirs.

Currently, there are no clinical trials for evaluation of LRAs in
pediatric HIV populations. However, several of the LRAs in
clinical trials for adults have also been evaluated as anti-tumor
drugs for pediatric cancer treatment (Table 3). The clinical trials
of vorinostat and panobinostat in pediatric cancer populations
showed that the drugs were well-tolerated, suggesting the
potential opportunity to safely translate these drugs into LRAs
to the pediatric HIV population (166, 168). Preclinical studies in
adult rhesus and humanized mouse models showed promising
results in using the mimetics of the second mitochondrial-
derived activator caspases (SMAC) to activate latently HIV-
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TABLE 3 | Latency reversing agents in development for adults and for potential use in pediatric HIV treatment.

Pre-clinical Clinical

– – NCT04341311 NCT04897880 NCT00217412 NCT01422499
– – Phase I Phase II Phase I Phase I/II
SIV HIV Diffuse intrinsic

pontine glioma
Solid tumors Solid tumors Solid tumors

SMAC-mimetic HDACi HDACi HDACi HDACi HDACi

AZD5582 Panobinostat Marizomib Panobinostat Vorinostat Vorinostat
Panobinostat

– 2mg/kg 5 mg/m^2 10mg/m2 180 mg/m2 230 mg/m2

Adult Rhesus
macaque;
adult BLT
humanized
mice

Adult BLT humanized
mice

Children Adult; Children Children Children

– – < 22 years of
age

< 39 years of
age

12 months -
22 years of
age

3-18 years of
age

Latently
infected cells
activated
through the
NFkB pathway
and induced
HIV-
transcription

Histone acetylation
broadly observed,
but no detectable
change in the HIV
RNA, DNA, or latently
infected resting CD4
+ T cells

Ongoing Ongoing Vorinostat is
well-tolerated
at 180 mg/m2
in children and
comparable to
adults

Higher doses
than 230mg/
m^2/day
correlated to
tumor response
and longer
progression free
survival
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Key
parameters

Clinical

Trial
information

NCT04340596 NCT02092116 NCT01365065 NCT02475915
Phase I Phase I/II

Infectious
Agent/
Disease

HIV HIV HIV HIV HIV

Drug class IL-15 Receptor
Superagonist

HDACi HDACi HDACi HDACi

Drug N-803 Romidepsin Romidepsin;
with HIV
immunizations

Vorinostat Vorinostat, with
hydroxychloroquine
and maraviroc

Dose 0.3, 1.0, 3.0 and
6.0 mcg/kg

5 mg/m2 5 mg/m2; 12
mg/mL Vacc-
4x and 0·6 mg/
mL rhuGM-
CSF

400mg daily 400mg daily

Study
population

Adulta Adults Adults Adults Adults, ART
interrupted

Age > 18 years of age – > 18 years of
age

> 18 years of
age

> 18 years of age

Summary Safe and well
tolerated, modest
reduction in the
inducible reservoir
in PBMCs that
persisted for up to
6 months

Increased
plasma
HIV-1 RNA,
but did not
change
reservoir
size

Therapeutic
HIV
immunization
followed by
romidepsin,
resulted in
decline in total
HIV-1 DNA

Increased cell-
associated
unspliced RNA
in CD4+ T cells,
but did not
change plasma
HIV RNA

Increased plasma
HIV RNA, but did
not change
reservoir size
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infected cells via the non-canonical NF-Kb pathway, in which
increased levels of SIV-RNAs were observed in resting CD4+ T
cells derived from tissues following SMAC mimetic (AZD5582)
treatment (169). However, a more recent study by Bricker et al,
r e p o r t e d t h a t wh i l e t h e ph a rma cok i n e t i c s a nd
pharmacodynamics (PKPD) study of repeated AZD5582
dosing was safe in preclinical infant rhesus macaques, the
investigational drug showed weaker latency reversing activity
in infant than in adult rhesus macaques, likely due to altered
pharmacokinetics and less inducibility of infant CD4+ T cells
(170). Therefore, additional studies in both clinical and
preclinical models to investigate the impact of novel latency
reversing strategies, in the context of developing immune system,
on latent viral reservoir reactivation and their combination with
anti-viral immunotherapeutic strategies would highly benefit the
quest for pediatric HIV cure.

Summary
The eradication of persistent latently infected HIV reservoirs will
likely require combinations of multiple immune-based
interventions, whether alone or in combination with ART. In
addition to the treatment regimen composition, dosing and
timing will likely be key elements in efforts to limit initial
establishment of a founder population of infected cells or to
purge latently infected cells harboring replication competent
HIV provirus in children with HIV.
CONCLUSIONS

The unique context of early life immunity and the distinct nature of
persistent viral reservoirs in pediatric settings suggest that pediatric-
specific strategies will likely be required to achieve ART-free
remission in children living with HIV. ART alone is insufficient
and a combination of immune-based interventions that can directly
target and/or augment host immune effector functions will probably
be needed to eliminate latently HIV-infected cells. However, many
of the recent advances in understanding HIV persistence and
strategies to eliminate latent viral reservoirs for HIV cure using
immune-based strategies are conducted in adults, and there is a
paucity in studies involving children living with HIV. Current HIV
cure strategies cannot be directly extrapolated to children due to (1)
unique differences in early life and adult immune systems, (2) the
distinct kinetics of latent virus reactivation in adult and children,
and (3) differences in route of infection or transmission of HIV in
adult and children. Immune-based intervention strategies such as
therapeutic vaccines that target T and/or B cells or passive
immunization using bNAbs or engineered Ab-like molecules in
combination with LRAs will likely need to be adapted to the
pediatric setting. Additionally, these intervention strategies will
likely need to be tailored to both perinatal and postnatal HIV
Frontiers in Immunology | www.frontiersin.org 11
infections in children. ART interruption poses the risk of viral
rebound, emergence of resistance strains, and other unknown risks
(171). However, a study in small subset of perinatally infected
infants (7 infants, age <12 weeks) treated early with ART, planned
treatment interruption resulted in prolonged viral control (median
of 57 weeks off treatment) and that restarting of treatment led to
improvement in CD4+ T cell counts (171).

One of the major limitations of HIV cure research in the
pediatric population is the ethical and risk-to-benefit
considerations around the optimum time to interrupt
treatment in order to assess successful eradication or
prevention of long-term HIV reservoirs establishment (172,
173). The unique immune profiles of pediatric ECs could
provide better understanding of the immune mechanisms
involved in long term viral control in the absence of treatment
and may guide the development of immune-based strategies
targeted towards augmentation of infant early life immune
responses for eradication of latent HIV reservoirs.
FUTURE DIRECTIONS

The use of infant NHP models for both perinatal and postnatal
pediatric HIV infections in the context of ART is crucial in
advancing our understanding of the persistent latent HIV
reservoir and how it can be targeted in the unique setting of
early life immune development. Additionally, development of
infant NHP models that recapitulate the slower disease
progression in pediatric ECs in the absence of treatment would
be highly valuable in investigating the immune mechanisms
involved in viral control and development of immune-based
strategies for pediatric HIV cure.
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