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gd T cells are a distinct subset of T cells expressing gd T cell receptor (TCR) rather than
abTCR. Since their discovery, the critical roles of gd T cells in multiple physiological
systems and diseases have been investigated. gd T cells are preferentially located at
mucosal surfaces, such as the gut, although a small subset of gd T cells can circulate the
blood. Additionally, a subset of gd T cells reside in the meninges in the central nervous
system. Recent findings suggest gd T cells in the meninges have critical roles in brain
function and homeostasis. In addition, several lines of evidence have shown gd T cells can
infiltrate the brain parenchyma and regulate inflammatory responses in multiple diseases,
including neurodegenerative diseases. Although the importance of gd T cells in the brain is
well established, their roles are still incompletely understood due to the complexity of their
biology. Because gd T cells rapidly respond to changes in brain status and regulate
disease progression, understanding the role of gd T cells in the brain will provide critical
information that is essential for interpreting neuroimmune modulation. In this review, we
summarize the complex role of gd T cells in the brain and discuss future directions
for research.
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INTRODUCTION

gd T cells are a subset of T cells expressing gd T cell receptor (TCR) rather than abTCR. gd T cell was
named after discovery of the g gene in 1984 (1, 2). Initially, gd T cells were understudied because
they constitute a very minor portion of immune cells and are heterogenous. However, recent studies
have emphasized the importance of gd T cells in a number of diseases. Despite some exceptions, gd T
cells are unrestricted to major histocompatibility complex (MHC) and considered innate immune
cells (3). In general, the fate of gd T cells is already programmed from the thymus, and they do not
require complex activation mechanisms (3, 4). Therefore, gd T cells are rapidly recruited and
respond to inflammatory cues. Moreover, gd T cells regulate adaptive immune responses (5),
indicating they are an important bridge connecting innate and adaptive immunity.

gd T cells are found predominantly at mucosal surfaces rather than lymphoid organs (6). Under
steady states, they regulate homeostasis and maintain barrier integrity. Upon infection, they are
rapidly activated and regulate immune responses. Vg5+ dendritic epidermis T cells [DETCs;
Tonegawa nomenclature (7)] reside in the skin, Vg7+ cells reside in the gut and form
org May 2022 | Volume 13 | Article 8863971
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intraepithelial cells (IELs), and Vg6+ cells are found in the
dermis, vagina, and meninges. Vg4+ T cells have also been
observed in the dermis and lung. On the other hand, Vg1+ and
Vg4+ T cells, which develop after birth, circulate in the blood or
lymphatic fluid (6). In humans, Vd1+ cells usually reside in the
mucosal area and Vd2+ T cells are circulating cells, although
there are tissue-resident Vd2+ T cells and circulating Vd1+ T cells
(8, 9). Although gd T cells are generally similar across species,
murine and human gd T cells have notable differences (10). Due
to the complexity and differences between mouse and human gd
T cells, their investigation is very difficult. For example,
classification of murine gd T cells is dependent on g chains,
whereas human gd T cells are classified by d chains (8). In
addition, homologous cells for murine Vg5+ DETCs have not
been detected in humans (11). Therefore, many aspects of gd T
cell biology remain unclear and further studies are urgently
needed to understand their role in immune system function.

Although most mucosal barriers are in contact with the outside
andexposed topotential pathogens,meninges are sterile because they
encounter the inner side of the central nervous system (CNS) (12).
Classically, the CNS has been regarded as an immune privileged
organ.A study showed allografts in theCNSwere not rejected, unlike
allografts in the skin (13). Though circulating immune cells are
strongly restricted to enter parenchyma, recent studies re-discovered
meningeal lymphatics that drain waste, including CNS antigens (14,
15). Interestingly, antigen presentation in the meningeal spaces and
CNS-draining lymph nodes occurs actively (16). Thus, our immune
system actually surveils the CNS. However, there are many things
concerning the role of the immune system in the CNS that remain
elusive. Surprisingly, current data have shown that various immune
cells reside or circulate in the meninges (17). Meningeal cytokines
interact with parenchymal neurons, astrocytes, or microglia, though
the exact mechanisms underlying these interacts are incompletely
understood. Meninges-parenchyma interactions regulate multiple
neurological functions under homeostasis (18). In addition,
meningeal lymphatics and immune system rapidly respond to CNS
status and regulate pathology of neurodegenerative diseases and
neuroinflammation. gd T cells are among the multiple immune
cells that reside in meninges (19). Recent studies showed meningeal
gd T cells regulate memory formation and behaviors via cytokine
release (19, 20). Furthermore, parenchymal infiltration and the
immunological role of gd T cells in multiple CNS diseases,
including experimental autoimmune encephalomyelitis (EAE),
CNS tumors, and infections, have been discovered (8, 21). Because
gdT cells serve as a “safeguard” for themucosal barrier, gdT cells are
expected to have an indispensable role in themeninges.However, the
exact mechanisms concerning how gd T cells act is lacking. To help
identifydirections for future studies,wediscuss the roleof gdTcells in
homeostasis and disease, with a specific focus on the brain.
gd T CELLS

T cells are adaptive immune cells that are restricted to MHC-
mediated antigen presentation. T cells typically exit from the
thymus as naïve cells. Antigen presentation accompanied with
multiple inflammatory cues activates T cells and trigger immune
Frontiers in Immunology | www.frontiersin.org 2
reactions (22). However, there are innate-like T cells that have
invariant TCRs, such as gd T cells, natural killer (NK) T cells, and
mucosal associated invariant (MAI) T cells (23). gd T cells are
known to be usually independent on MHC-mediated antigen
presentation and recognize stress-related molecules, microbial
molecules, or phosphoantigens through gdTCR and/or NK
receptors, such as NK group 2D (NKG2D) (24). gd T cells are
highly heterogenous and various subsets have been identified.
Though some gdTCR ligands have been identified, a
comprehensive identification of all ligands is lacking. Functional
similarities are shared among multiple gd T cell subsets and there
are two functional subsets. The first functional subset is interferon
(IFN)-g-producing and T helper (Th) 1-like subset and the second
functional subset is interleukin (IL)-17-producing and Th17-like
subset (Figure 1A). The expected roles of gd T cells are similar to
CD4 T cells. IFN-g-producing gd T cells are usually antiviral and
antitumoral cells, whereas IL-17-producing gd T cells are antifungal
or related to autoimmune diseases such as EAE (8). The detailed
functions of gd T cell subsets are more classified by their circulating
capacity. In general, gd T cells are tissue-resident cells in the mucosal
tissues, Vg5+ cells are DETCs in the skin, Vg4+ cells are dermis- or
lung-resident cells, Vg6+ cells are residing in vagina, meninges, and
dermis, and Vg7+ cells are gut-resident IELs. On the other hand,
Vg4+ and Vg1+ cells generated postnatally are circulating cells (6). In
humans, Vg9Vd2 T cells are predominant circulating gd T cells,
whereas Vd1+ cells and fetal gd T cells are commonly tissue-resident
cells (8, 9). gd T cells are usually rapidly reacting innate cells that
connect innate immune responses to adaptive immune cells and
function as a “safeguard”. In addition to their ability to release
cytokines, subsets of gd cells possess NK-like cytotoxicity via NK
receptors, such as NKG2D (25). However, studying gd T cells has
been technically difficult because of the low number and
heterogeneity. Following the recent development of high-
throughput analytic tools, such as single cell RNA sequencing, gd
T cell study has progressed tremendously. A number of recent
studies have demonstrated the indispensable role of gd T cells in
multiple contexts. Recently, meningeal gd T cells were identified as a
main source of IL-17A in the CNS under homeostasis (19, 20).
Currently, cytokines are regarded as neuromodulators because of
their ability to directly interact with neurons (18). In addition, IL-
17A is one of the most important cytokines for the neurological
system and Vg6+ cells, which reside in meninges, produce IL-17A
(19). On the other hand, other gd T cells can invade into the
parenchyma under disease conditions and regulate multiple
immune responses. For example, circulating gd T cells can invade
into glioblastoma multiforme (GBM) tissues, leading to antitumor
responses (26). Although gd T cells seem to be critical immune cells
in the CNS, many aspects of their biology remained unclear.
DEVELOPMENT AND MAINTENANCE OF
gd T CELLS

gd T Cell Development
Similar to other T cells, gd T cells are generated from the
thymus (23). Common lymphoid progenitor cells from the
May 2022 | Volume 13 | Article 886397
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FIGURE 1 | Characteristics and development of gd T cells. (A) gd T cell subsets are heterogenous. Functionally, gd T cells can be divided into two groups: one is IL-17-
producing cells and the other is IFN-g-producing cells. IL-17-producing cells are commonly antifungal cells or promoting autoimmune diseases and inflammation. IFN-g-
producing cells are usually antiviral or anti-tumoral cells. Both subsets can be further divided by circulation ability. Although the majority of gd T cells are tissue-resident
cells in the mucosal barriers, some gd T cells can circulate body. (B) T cell development occurs in the thymus. T cell development can be divided by expression of CD44
and CD25 (DN1: CD44+CD25-; DN2: CD44+CD25+; DN3: CD44-CD25+; DN4: CD44-CD25-). Although DN2 or DN3 cells can be gd T cells, commitment usually occurs
after DN3 stage. Strong TCR signal enhances gd T cell fate. DN4 ab T cells become CD4+CD8+ DP cells. By their interaction with MHC class I or MHC class II, DP cells
become a CD8 T cells or CD4 T cells, respectively. gd T cells can be IFN-g-producing cells by strong TCR signal. On the other hand, weak TCR signaling induces IL-17-
producing cells. (C) Different gd T cell subsets can be generated in the fetal thymus. At embryonic (E) 14, Vg5+ dendritic epidermal T cells (DETCs) are generated and
migrate into the skin epidermis. SKINT1 is important for Vg5+ DETC development and selection. At E16.5, Vg6+ cells can be developed. These cells migrate into the
multiple organs such as uterine, vagina, testis, lung, or meninges. They become a tissue-resident cells in those tissues. Cognate ligand for their TCR is not identified. At
E17.5, IL-17-producing Vg1/4+ cells are made. They can migrate into the skin dermis, lung, or liver. They are also tissue-resident cells. Although several factors have been
known for their development, cognate TCR ligand is not identified. After E18, Vg7+ intraepithelial cells (IELs) are generated. They migrate into the gut and become gut-
resident cells. BTNL proteins are critical for development and maintenance of Vg7+ IELs. After birth, Vg1/4+ cells are further generated. They can circulate and are
observed in the blood or lymphoid organs.
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bone marrow enter the thymus and become CD4-CD8- double
negative (DN) T cells. DN T cells are subdivided into four
differentiation stages (DN1: CD44+CD25-; DN2: CD44+CD25+;
DN3: CD44-CD25+; DN4: CD44-CD25-) (Figure 1B). During
the DN stage, pre-TCR are formed when pre-TCRa and TCRb
rearrangement induces progression into the CD4+CD8+ double
positive (DP) stage. Then, DP T cells interact with cortical
epithelial cells expressing MHC molecules with self-antigens,
which leads to a selection process where too weak signaling
induces DP cell apoptosis. Moderately reactive DP T cells
become single positive (SP) T cells. Thymocytes that interact
with MHC class I become CD8 T cells and cells what interact
with MHC class II become CD4 T cells or initial signaling
strength determines fates of T cells (27, 28). SP T cells are
further selected by negative selection by medullary epithelial
cells. Other unconventional T cells, such as NKT cells and
MAIT cells, are generated from the DP stages. Uniquely, gd T
cells develop from the DN stages (23). gd T cell fate is
commonly determined at the DN3 stage. However, some gd T
cell subsets are derived from the DN1 or DN2 stages. In mice,
gd T cell development begins in the fetal thymus and gd T cells
constitute the major T cell subset at this early stage due to a lack
of ab T cell development (29). Initial mouse gd T cell
development occurs in the fetal thymus, generating DETCs
expressing Vg5 (Figure 1C). At embryonic (E) 14, DETCs are
produced and preferentially migrate into the epidermis (30).
Interestingly, a study revealed DETCs do not originate from
hematopoiesis in bone marrow. However, DETC progenitors
were derived from yolk sac like Langerhans cells (31). Vg6+ cells
are a type of intraepithelial lymphocytes (IELs) of reproductive
organs and meninges. Vg6+ cells usually express IL-17A and
develop at E16.5. Vg4+ and Vg1+ IL-17A-producing cells
develop at E17.5 (32). Development of gut-homing Vg7+ IELs
begins at E18 and continues postnatally (30). Some intestinal
IELs are thought to be developed extrathymically (33). Some
IFN-g-producing liver-resident gd T cells are extrathymically
developed from Lin-Sca-1+Mac1+ hematopoietic stem cells and
progenitor cells in the liver (34). Similarly, human gd T cells
arise from the fetal liver (35). Vg9Vd2 T cells can be observed at
the fetal liver at 5-7 weeks gestation, whereas thymic Vg9Vd2 T
cells are detected at 8 weeks gestation (36). Fetal Vg9Vd2 T cells
are relatively invariant and have public clones. Postnatally,
Vg9Vd2 T cells are rarely generated, whereas Vd1+ and Vd3+

T cells are preferentially generated. TCR repertoire of Vd1+ and
Vd3+ T cells is largely dependent on microbial exposure (37).
Although fetal Vg9Vd2 T cells slowly turn over and have self-
renewal capacity, adult-derived Vg9Vd2 T cells can also be
generated and be a major source human gd T cells in the blood
(38). Recent observation showed the fetal thymus produces
hybrid T cells that expressing both abTCR and gdTCR (39).
These hybrid cells, which can produce IFN-g, IL-17A, and
granulocyte-macrophage colony-stimulating factor, are
hyperactive. The hybrid cells underwent positive ab-selection.

After birth, the majority of newly generated gd T cells are
Vg4+ and Vg1+ cells. Although both cells can produce IL-17 and/
or IFN-g, Vg1+ cells are usually association with IFN-g
Frontiers in Immunology | www.frontiersin.org 4
production and Vg4+ cells are commonly associated with IL-
17A production (6). Their fate is determined during thymic
development. CD27+CD44int cells actively secrete IFN-g,
whereas CD27-CD44hi cells produce IL-17A (8). As this
process is not well understood, identifying factors that
determine gd T cell fate has been of great interest. Although
various factors can be involved, TCR strength may be the most
important factor for determining gd T cell fate. Before gd T cell
commitment, TCR strength is important for gd T cell identity. If
gdTCR is weak, cells tend to preferentially differentiate into ab T
cells (40). These commitments are known to occur after TCR
expression. It was dependent on extracellular signal-regulated
kinases (ERKs)-mediated early growth response activation (41).
Overexpression of friend leukemia integration 1 (Fli1) prevents
progression of DN T cells into DP T cells (42). As a result, Fli1
overexpression may create a preferential environment for gd T
cell development, which was mediated by strong TCR mimicry.
Strong TCR activation results in CD73 expression. Although
CD73- gd T cells retain the potential develop into ab T cells,
CD73+ cells commonly become gd T cells (43). After gd T cell
commitment, TCR strength may determine whether the gd T
cells become IL-17-producers or IFN-g-producers. Usually, a
strong TCR signal tends to make gd T cells become a
CD44+CD45RB+T-bet+ IFN-g-producing cells. On the other
hand, a weak TCR signal induces CD44hiRORgt+ IL-17A-
producing gd T cells (44). This mechanism was dependent on
the ERK pathway. Mechanistic target of rapamycin (mTOR)
complex 1 (mTORC1) and Notch signaling also determine ab/gd
fate via metabolism (45). Likewise, metabolic pathways are also
important for gd T cell fate. IFN-g-producing cells are dependent
on glycolysis and IL-17A-producing cells are dependent on
oxidative phosphorylation. These dependencies are imprinted
from thymic development to peripheral maintenance (46).
Environmental cytokines also regulate the function of gd T
cells. For example, IL-1b and IL-23 induce extrathymic
commitment of CD27+CD122- Vg4+ cells to become an IL-
17A-producer (47). Vg4+ T cells that have never made IL-17A
can produce IL-17A de novo by IL-1b and IL-23 (48). In parallel,
IFN-g-producing cells can be generated by IL-12 and IL-18 (49).
Transcription factors are also important regulators of gd T cell
fate. Fetal-derived gd T cells may be marked by promyelocytic
leukemia zinc finger protein (PLZF) (50, 51). IFN-g+ gd T cells
need T-bet, but not Eomes. On the other hand, IL-17A+ gd T cells
need RORgt, but not RORa and BATF (52). Co-stimulatory
molecules, such as CD27 or ICOS, also support gd T cell fate
determination (53, 54).

Ligands for gdTCR
As mentioned above, TCR signaling is important for gd T cell
development and maintenance. Thus, identifying gdTCR ligands
and their roles is indispensable to further understand gd T cell
biology. Though major subsets of gd T cells are not dependent on
MHC-mediated antigen presentation, gd T cells are dependent
on MHC-like molecules, stress-induced molecules, and
phosphoantigens (24). The most well-known gdTCR ligands
are selection and upkeep of intraepithelial T cells protein 1
May 2022 | Volume 13 | Article 886397
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(SKINT1) and butyrophilin-like proteins (BTNL) molecules
(Figure 1C). Vg5+ DETCs are dependent on SKINT1 (55).
SKINT1 expression is restricted to the thymus and skin
keratinocytes. SKINT1-mediated TCR signaling is not only
important for development of DETCs, but also epidermal
maintenance (56). Likewise, BTNL molecules are important for
Vg7+ IELs. BTNL1 and BTNL6 are necessary for murine Vg7+

IELs and BTNL3 and BTNL8 are needed for human intestinal
Vg4+ T cells (57). T10/22, a MHC class Ib molecule, is also
important for gd T cell development (58). The most well-known
gdTCR ligands in humans are BTN3A1 and BTN2A1.
Phosphoantigens induce a conformational change in BTN3A1-
BTN2A1 dimers, which binds to Vg9Vd2 TCR (59). Endothelial
protein C receptor (EPCR)-Vg4Vd5 TCR (60), Annexin A2-Vd2
TCR (61), tRNA synthetases-Vg3Vd2 TCR (62), ephrin type-A
receptor 2 (EphA2)-Vg9Vd1 TCR (63), and R-phycoerythrin-
Vd1 TCR (64), CD1c/d-Vd1 TCR have been reported (65, 66).
Contrary to a number of reports that argued fetal thymus-
derived gd T cells are invariant, adult-derived gd T cells have
relatively variant TCR chains (67). Likewise, there are some gd T
cell subsets that are dependent on MHC-mediated antigen
presentation (68). Thus, studying gd T cells and their ligands is
complex. In some cases, gd T cells can be activated without TCR
signaling, but activated by stress-induced molecules, such as
MHC class I chain-related protein A/B (MICA/B) or retinoic
acid early inducible 1 (Rae-1), via NKG2D receptor (8, 69). In
conclusion, TCR ligands should be considered in the context-
dependent manner to understand the role of gdTCR. A study
showed murine gdTCR depletion antibodies could not remove gd
T cells, but made the cells undetectable via intracellular uptake of
gdTCR (70). Because this system depletes functional gdTCR from
cellular surfaces, gdTCR depletion antibodies could be used to
investigating the role of gdTCR. Unfortunately, ligands for Vg6+

cells have not been identified. However, administration of anti-
gdTCR inhibits meningeal gd T cell functions (19). Thus, TCR-
mediated signal is required for cytokine secretion in the
meninges. Identifying the ligand(s) that regulate meningeal gd
T cell homeostasis and activation is critical to understand the
role of gd T cells in brain physiology.
gd T CELLS IN BRAIN HOMEOSTASIS

Maintenance and Recruitment of
Brain gd T Cells
Vg6+ cells, which are enriched in the meninges, reproductive
organs, and dermis, are the major gd T cell subset in these organs
(6). In addition, they are a major source of IL-17A; however, they
do not express IFN-g. Although a study claimed ZAP70-deficient
mice had less IL-17A-producing gd T cells, including Vg6+ cells,
compared to wild type (WT) mice (71), previous study has
proposed that weak TCR signaling is important for
development of IL-17A-producing gd T cells, including Vg6+

cells (44). It is important to note that the dispensable role of TCR
signaling in thymic development of gd T cells does not mean that
it is also dispensable for peripheral maintenance and cytokine
Frontiers in Immunology | www.frontiersin.org 5
secretion. A series of studies have emphasized that tonic TCR
signal from tissue-specific niches is important for maintaining
tissue-resident gd T cells (72, 73). Vg6+ cells gd T cells being
developing at E.17.5 (23). Furthermore, experiments using bone
marrow chimeras demonstrated that adult thymus could not
produce IL-17A-producing gd T cells, suggesting Vg6+ cells may
be fetal-derived, self-renewing, and long-lived cells (32).
However, it remains unclear how Vg6+ cells are recruited into
the meninges and maintained. In the uterus, Vg6+ cells are the
dominant gd T cells in homeostasis (74). However, pregnancy
induces recruitment of Vg4+ cells into the placenta (75).
Although the relation of Vg4+, Vg6+ cells, or IL-17A to
outcomes of pregnancy is controversial, allogenic pregnancy
experiments revealed that recruitment of gd T cells in the
uterus is dependent on allotype (75, 76). In parallel, certain
inflammatory cues can recruit different gd T cell subsets in the
meninges or brain parenchyma (21, 77). It has shown that brain
injury or inflammation can recruit Vg1+, 4+, 6+ cells in the
parenchyma (78–80). CCR6 is important for migration of IL-17-
producing gd T cells (81), and a study showed most meningeal gd
T cells expressed CCR6 (20). However, another study showed
meningeal gd T cells expressed large amounts of Cxcr6 and Ccr2.
In addition, Cxcr6-deficient mice showed gd T cell reduction in
the meninges (19) and their functions may be dependent on
gdTCR, but not cytokines, such as IL-1b or IL-23 under
homeostasis (19, 20). However, other factors affecting
meningeal gd T cells should be further addressed. Taken
together, meningeal gd T cells have crucial roles maintaining
brain homeostasis and behaviors of animals. However, further
study is needed to uncover the exact mechanisms governing how
they are recruited, activated, and maintained.

The Role of Meningeal gd T Cells in the
Homeostatic Brain
Decades ago, heat shock protein 70 (HSP70) was the most well-
known ligand for human multiple sclerosis (MS) gd T cells (82).
Interestingly, a study observed that oligodendrocytes,
postischemic neurons, and microglia express HSP70 under
heat exposure (83). This study suggested gd T cells may be
cytotoxic to brain cells. Also, this study revealed that different
types of gdTCRs are expressed in the cortex, hypothalamus, and
medulla of postmortem samples. Another study showed that
normal CNS tissue contains gd T cells (84). Although this study
may have technical limitations, the gd T cells from normal CNS
tissue expressed low CD45RB levels, which may suggest these
cells are meningeal IL-17A-producing cells. Currently, many
people agree that gd T cells do not exist in the normal CNS
parenchyma. However, a large amount of gd T cells are present in
the meninges (Figure 2A) (19). Furthermore, these cells are IL-
17A-producing cells, but not IFN-g-producing or IL-22-
producing. Also, these cells are rarely observed in the
arachnoid and choroid plexus. This study also showed that
meningeal gd T cells are present three days after the postnatal
period (P3). They showed tissue-resident phenotypes that were
not derived from circulation. Adult meningeal gd T cells were not
Ki67+ and showed poor incorporation of BrdU, indicating they
May 2022 | Volume 13 | Article 886397
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FIGURE 2 | The role of gd T cells in brain immunology. (A) Upon brain parenchyma, multiple layers surround brain. Under skull, dura mater (periosteal layer, meningeal
layer) is situated. Under meningeal layer, arachnoid and subarachnoid space exist. In the meninges, Vg6+ cells are populated. They seem to be affected by commensal
microbiota. Under steady state, Vg6+ cells produce IL-17A. IL-17A from meninges can be delivered into the parenchyma. Direct signal from IL-17A into neurons can
regulate anxiety-like behavior. On the other hand, IL-17A can regulate short-term memory via glial BDNF. (B) gd T cells are related to progression and severity of brain
autoimmune diseases. Mouse Vg4/6+ cells or human Vd1/2+ cells are known to be related to these diseases. Usually, IL-17A from gd T cells initiate or further promote
diseases. (C) gd T cells are involved in injury-induced inflammation in the brain. Vg4/6+ cells usually produce IL-17A which recruits neutrophils. They are known to be
regulated by commensal microbiota. As an early inducer, gd T cells further promote inflammations. (D) gd T cells are also related to neurodegenerative diseases. IL-17A
may be strongly associated with development of diseases such as Alzheimer’s disease. (E) gd T cells can infiltrate into the infected brains. Multiple pathogens can infect
into the brain. Usually, IFN-g-producing gd T cells resolve viral infections. However, TNF or IL-17A is associated with infection-induced inflammation.
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 8863976
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are not proliferative and self-renewal. They produce IL-17 under
steady states, which may be dependent on TCR signaling.
Commensal-derived signaling also contributes to gd T cell IL-
17A production. However, the number of meningeal gd T cells
was not dependent on bacterial signals. This study also revealed
that meningeal gd T cell-derived IL-17A regulates anxiety-like
behaviors of mice. Although how meninges-derived cytokines
arrive at parenchyma is unclear, IL-17A can directly affect
excitatory glutamatergic neurons in the medial prefrontal
cortex (mPFC). Notably, IL-17 receptor A (IL-17Ra) is
expressed by multiple brain regions. A direct IL-17A signal
may promote neurotransmitter release from excitatory
presynaptic terminals of mPFC neurons to induce anxiety-like
behaviors. However, IL-17A did not affect intrinsic neuronal
excitation. This finding may explain how animals can rapidly
respond to environmental stresses. On the other hand, Tcrd-
deficiency did not affect spatial memory task performance, social
preference, or foraging behavior. According to an interesting
study by the Ribot group, Tcrd-deficient mice did not show
deficits in exploratory behavior, motor function, and anxiety
(20). However, these animals showed impaired short-term
spatial working memory, but not long-term memory
formation. Critically, these findings were dependent on IL-17A.
IL-17A directly signals to glial cells inducing production of
brain-derived neurotrophic factor (BDNF) in glial culture
system. However, because these phenotypes were not repeated
under microglia- or astrocyte-specific deletion of IL-17R, direct
evidence linking IL-17A and memory formation is still lacking
and should be further addressed. Nonetheless, IL-17A-mediated
BDNF seems to be involved in long-term potentiation of neurons
during short-term memory formation. Taken together, gd T cells,
as main source of IL-17A, regulate multiple functions of the
brain under steady states.

Maternal IL-17A is also important for progeny behavior. Poly
I:C-induced maternal immune activation (MIA) mimicking
infections showed autism-like behavior of progenies (85).
Because Il17a expression was not detected in fetal brain at
E14.5, IL-17A may be derived from the mother under MIA.
MIA resulted in impaired cortex development of offspring. Given
the authors showed conditional deletion of Rorc using CD4-Cre
mice, they concluded CD4 T cells are responsible for IL-17A
production. This data excluded participation of gd T cells,
lymphoid tissue inducer cells, and innate lymphoid cell type
3s. In addition, intestinal dendritic cells stimulate CD4 T cells via
IL-1b, IL-23, and IL-6, which leads to IL-17A production in a
maternal microbiota-dependent manner (86). Although they
clearly showed CD4 T cells are critical, the contribution of
uterine gd T cells or fetal gd T cells to behavioral impairment
in offspring would be an interesting study to explore. Moreover,
dietary salt also induces CD4 T cells to produce IL-17A via
serum/glucocorticoid regulated kinase 1 (SGK1) (87). Similarly,
IL-17A-inhibiting Lactobacillus murinus was reversed by salt-
uptake, resulting in elevated IL-17A (88). Maternal salt uptake
also induces abnormal behaviors of offspring (89, 90). Dietary
salt has been shown to induce cognitive dysfunction by gut-
initiated Th17 responses (91). Taken together, maternal CD4 T
Frontiers in Immunology | www.frontiersin.org 7
cell-derived IL-17A affects offspring cognitive functions and
behaviors. In addition, the role of gd T cells in MIA-induced
autism-like behaviors and cognitive dysfunction under salt
uptake or other environmental changes should also be
addressed. On the other hand, intrauterine inflammation
without systemic inflammation induces neutrophil infiltration
into the decidua. In parallel, neutrophils and macrophages were
increased in the fetal liver. In the fetal brain, granulocytes and
activated microglia were increased. Among immune cells, Gr1+

gd T cells were the most rapidly responding cells, which produce
IFN-g rather than IL-17A (92). Thus, other kinds of MIA rather
than systemic poly I:C should be also considered.
THE ROLE OF gd T CELLS IN
BRAIN DISEASES

Autoimmune Diseases in CNS
In 1991, it was revealed that human peripheral blood-derived gd
T cells can kill fresh human brain-derived oligodendrocytes ex
vivo (93). Furthermore, gd T cells were observable in the plaques
and cerebrospinal fluid (CSF) of MS patients. This study
suggested the possibility of gd T cell participation in MS
progression. Although CD4 T cells are important for chronic
MS, gd T cells were the most activated cells in recent onset MS
patients (94), and the activated gd T cells were oligoclonal. This
study suggested gd T cells can be expanded by MS antigens and
are the initiating cells in MS pathology (Figure 2B).
Demonstrated with a murine EAE model, administration of
anti-gdTCR (UC7-13D5) worsened EAE pathology (95). These
data suggested the regulatory role of gd T cells in disease
progression. As mentioned above, anti-gdTCR administration
does not deplete gd T cells, rather it inhibits TCR signaling (70).
Thus, this finding showed TCR-reactive gd T cells have
regulatory role in the EAE. Another study using a murine EAE
model revealed gd T cells are associated with IFN-g levels (96).
On the other hand, early IL-17A production from gd T cells
promotes later activation of Th17 cells (97), indicating
heterogenous gd T cells participate in MS or EAE. In human
samples, Vd1+ cells were largely observed in the blood and CSF
of MS patients. On the other hand, Vd2+ T cells have strong
cytotoxicity against oligodendrocytes (98). Under MS, long-term
treatment of IFN-b expands Vd1-Vd2-Vg9- gd T cells, which
were related to better outcome of MS patients (99). Taken
together, human data also suggested a heterogenous role of gd
T cells in the MS progression. In the murine EAE model, gd T
cells infiltrate into the brain parenchyma using integrin beta 2
family, and its expression was rapidly reduced after infiltration
(100). Another study showed that gut L. acidipiscis reduces Vg4+

cells while Vg1+ cells were increased. Because gut L. acidipiscis
was related to better EAE outcomes, Vg4+ and Vg1+ cells may
have opposing roles (101). IFN-g-producing and IL-17A-
producing gd T cells have been shown to have opposing roles
as IFN-g- or IFN-gR-deficient mice have enhanced EAE (102,
103). It would be interesting to investigate the contribution of
meninges-derived IL-17A or Vg6+ cells using an EAE murine
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model. gd T cells are also related to Rasmussen’s encephalitis
(RE) pathology. Although CD8 T cell response is critical for RE
inflammation, more innate cell types could be associated with
disease initiation (104). This study revealed Vd1+ cell clonal
expansion in the parenchyma of RE patients. Because microglial
activation via TLRs can enhance IL-17A-producing gd T cells
through IL-1 and IL-23, microglial inflammation can be a trigger
for multiple CNS inflammations (105).

gd T Cells in Brain Injury
Infiltration of gd T cells in the brain parenchyma is also
observable following ischemic injury (106). While CD4 T cells
induce tumor necrosis factor (TNF) production by macrophages
via IFN-g, gd T cells promote neutrophil infiltration through IL-
17A (Figure 2C). IL-17A and TNF synergistically induce CXCL1
expression by astrocytes, which further promotes neutrophil
infiltration (107). Another interesting study showed intestinal
microbiota regulates outcomes of ischemic stroke via gd T cells.
Intestinal microbiota regulates dendritic cells, which promotes gd
T cell activation. IL-17A produced from gd T cells enhances
stroke pathology. On the other hand, antibiotics uptake increases
Tregs and reduces gd T cells resulting in better outcomes for
stroke mice (77). Taken together, IL-17A from gd T cells is a
critical cytokine that promotes inflammation after brain injury.
Two studies showed IL-17A is predominantly expressed by
infiltrating Vg4+ or Vg6+ cells (79, 108), and CCR6 seems to be
important for Vg4+ or Vg6+ cell migration. Furthermore, the
regulatory role of gd T cells was demonstrated using a NaIO3-
mediated retinal pigment epithelium injury model. gd T cells
produce IL-4 and IL-10 to reduce injury in an aryl hydrocarbon
receptor (AhR)-dependent manner (109). In the case of perinatal
brain injury, injury delays neurophysiological maturation. This
was related to gut microbiota, Klebsiella, which has been
associated with an increase in gd T cells expressing IL-17A and
VEGF-A (110). On the other hand, both the Kipnis group and
Colonna group showed that skull bone marrow provides myeloid
cells and B cells to the meninges and parenchyma (111, 112).
Direct production of immune cells via skull bone marrow might
be involved in brain injury progression. However, these two
studies suggested T cells are derived from the peripheral blood,
not the skull bone marrow. It may be due to T cell maturation
occurs at the thymus. However, de novo development of gd T
cells in the skull bone marrow or meninges should be
experimentally tested to clarify this. Also, gd T cells promote
bone regeneration after injury via IL-17 (113). Thus, meningeal
gd T cell-derived IL-17 may be able to regulate skull regeneration
resulting in recovery after brain injury.

Neurodegenerative Diseases
A number of studies have shown that inflammation is associated
with severity of neurodegenerative diseases, including dementia,
Parkinson’s diseases, and Huntington’s diseases (114). Clonal
expansion and antigen reactivity of T cells have been observed
in multiple neurodegenerative diseases (115–117). Because
microglial-intrinsic inflammatory gene regulation can induce T
cell infiltration in the parenchyma and neuroinflammation (118),
immune reaction may be associated with initiation and
Frontiers in Immunology | www.frontiersin.org 8
development of multiple neurodegenerative diseases. During the
initial stage of MS, pioneer cells enter the CNS and initiate further
inflammation without pathologies (119). On the other hand, gd T
cell activation, rather than ab T cells, has been observed in CNS
inflammation in early onset MS (94, 106). Thus, gd T cells may
regulate the first wave of neuroinflammation in neurodegenerative
diseases, though there is no direct evidence conclusively
demonstrating this. TRG genes can be detected in both the
human brain and blood. The brain has less TRGV9 clones than
the blood. However, the brain contains more TRGV2, 4, and 8
genes. In this study, it was shown that aging is known to reduce the
TRG repertoire. In addition, an Alzheimer’s disease (AD)-
associated TRG pattern was observed among AD patients (120).
This study has technical limitations because tissues were not
perfused and TRG transcript could be expressed by non-T cell
lineages (121). Nonetheless, these data suggest a possible
relationship between gd T cells and AD. Consistently, IL-17-
producing cells, including gd T cells, accumulate in the brain
and meninges of the 3xTg-AD mouse model (122). This study
demonstrated IL-17 triggers AD onset independent of amyloid b
and tau pathology (Figure 2D). Thus, gd T cells may be a “pioneer
cells” of neurodegenerative diseases. Likewise, gd T cells were
increased in the blood and CSF from Parkinson’s disease (PD)
patients compared to other neurological diseases (123). In
summary, gd T cells can contribute to progression and initiation
of multiple neurodegenerative diseases. Despite the lack of a direct
connection, gd T cells may be related to early trigger of diseases.
The diverse roles and mechanisms of gd T cells in multiple
neurodegenerative diseases should be further addressed.

Brain Infections
Microbe infections can also induce neuroinflammation and
neurological symptoms. For example, toxoplasma infection can
induce toxoplasmic encephalitis. A study showed IL-6 deficiency
was associated with more cyst and necrosis of the brain. IL-6
knock out mice have more CD8 T cells and less CD4 T cells and
gd T cells compared to WT mice (124). This suggested gd T cells
may be related to inflammation in toxoplasmic encephalitis.
Malaria infection can also induce brain inflammation.
Infection by Plasmodium yoelii induces brain inflammation of
BALB/c mice. However, DBA/2 mice are resistant to infection.
IL-2-mediated gd T cell infiltration in the brain was critical for
susceptibility to Plasmodium yoelii infection (125). Another
study also showed gd T cell deficiency reduced intracranial
mesocestoides corti-mediated neurocysticercosis pathology
(126). Thus, gd T cells contribute to infection-induced brain
inflammation (Figure 2E).

gd T cell infiltration was observed following West Nile virus
(WNV) infection. The majority of infiltrating gd T cells were
Vg1+ and Vg4+ cells that produce IFN-g and TNF, respectively
(127). IFN-g has antiviral functions, whereas TNF was associated
with worse symptoms. This study also showed aging increases
Vg4+ cells but reduces Vg1+ cells. Vg4+ cells also produce IL-17A
following WNV infection (128). According to this study, Vg4+

cells also inhibited the Vg1+ cell response and associated IL-10
production. Regarding oral herpes simplex virus type 1 (HSV-1)
infection, C57BL/6 mice are resistant to infection while BALB/c
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mice are susceptible. In C57BL/6 mice, HSV-1 replication is
limited to the brain stem. However, HSV-1 replication was
observed throughout the whole CNS in BALB/c mice.
Although CD8 T cells, NK cells, and NKT cells were crucial
for limiting viral infection in the CNS, gd T cells were important
for inhibiting viral spreading in the trigeminal ganglia (129).
Epstein-Barr virus (EBV) is one of the most important CNS
viruses because it is largely related to MS progression and onset.
Longitudinal analysis showed that high prevalence of EBV is
related to MS (130). Consistently, a study showed antibodies
derived from clonally expanded B cells in MS can bind to EBV
Epstein-Barr nuclear antigen 1 (EBNA1) and CNS-derived
GlialCAM protein. Furthermore, the presence of EBNA1/
GlialCAM antibodies was associated with severe MS (131). A
study showed EBV reactivation after hematopoietic stem cell
transfer was negatively correlated with Vd2+ T cells (132). This
study showed gd T cells exhibit cytotoxicity against EBV-infected
cells in vitro. Thus, gd T cells may have role in EBV-mediated
MS. Likewise, gd T cells are highly associated with
cytomegalovirus (CMV) infection (133). Because herpesviruses
such as human CMV or HSV seem to be related to multiple
neurodegenerative diseases (134–136), gd T cells may have
critical role preventing CNS viral infection-mediated
neurological disorders.
Frontiers in Immunology | www.frontiersin.org 9
Brain Tumors
Recently, the role of gd T cells in multiple tumors has been
emphasized. A study showed gd T cell were mostly correlated to
better prognosis among multiple tumor-infiltrating immune cells
(137). Different subsets of gd T cells can be identified in the tumor
microenvironment (Figure 3). Functionally, gd T cells can be
subdivided into IL-17A-producing cells and IFN-g-producing cells
(8). IFN-g-producing cells tend to be cytotoxic cells, with some
exceptions. A recent study showed IL-17A-producing gd T cells
are protumor cells and IFN-g-producing cells are antitumor cells
using subcutaneous murine tumor models (46). This tendency was
conserved across multiple tumors (8). Also, our group showed gd
T cells are associated with longer survival of brain tumor patients
(138). However, ab T cells showed the opposite tendency.
Meanwhile, using a murine high-grade glioma (HGG) model,
we showed depletion of NK cells, gd T cells, CD8 T cells, or CD4 T
cells did not affect survival of HGG-bearing mice. We discovered
that hypoxia was positively related to increased glioma grade and
negatively related to gd T cell infiltration. Although further
examination should follow, we have concluded gd T cells are the
most HGG-reactive cells, and are suppressed by tumor hypoxia. If
we used metformin to block tumor cell respiration, hypoxia-
induced suppression of gd T cells was reduced, which resulted in
a recovery of their antitumor functions. Though IL-17A and
FIGURE 3 | gd T cells in the brain tumor microenvironment. High-grade brain tumors such as glioblastoma multiforme (GBM) are known to be immunosuppressive
“cold tumors”. Due to strong immunosuppression mechanisms, conventional T cells are malfunctional. However, gd T cells are known to be potent strong anti-brain
tumor immune cells. Human Vg9Vd2 T cells or murine CD27+ gd T cells are known to infiltrate the tumor microenvironment. They may fight with tumor cells through
both of gdTCR and NK receptors, including NKG2D. However, gd T cell reactivity is suppressed in the brain tumor microenvironment via severe hypoxia. Additionally,
other mechanisms such as chemotherapy-induced cell death can be involved in suppression of gd T cell reactivity. Thus, gene-editing to generate resistant gd T cells
or developing combination therapies can enhance gd T cell immunity in the brain tumor microenvironment.
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IL-17F were not related to survival of HGG mice, NKG2D
expression of IFN-g-producing gd T cells was critical for anti-
HGG immunity. Due to high NKG2D-ligand expression of tumor
cells, NKG2D-expressing gd T cells were the most critical immune
cells in the HGG microenvironment. In this study, anti-gdTCR
antibody administration also abrogated gd T cell-mediated
antitumor functions. This finding suggested that gdTCR also
participates in anti-HGG immunity. Despite lack of a direct
connection, this study suggested dual ligation of gdTCR and
NKG2D is needed, which could be the reason why other
NKG2D-expressing cells, such as NK cells, did not respond to
metformin treatment.

gd T cells have been considered a good target for next-generation
anti-brain tumor therapy (139). Among malignant brain tumors,
GBM is the most frequent and aggressive tumor type (140). Despite
traditional therapies, including surgery, radiotherapy, and
chemotherapy, overall survival of GBM patients is around 1-2
years (141). Despite the recent development of immunotherapy,
such as anti-PD-1 therapy, clinical trials of immunotherapy to treat
GBM showed disappointed results (142). Although it is too early to
definitively conclude, these negative results may be due to the poor
immune profile of GBM microenvironment. GBM is classified as a
“cold tumor,” which showing less neoantigen and immune cell
infiltration compared to “hot tumors” (143). Thus, modulation of
existing immune cells could have limitations. According to our
results, gd T cells could be a better alternative target for anti-GBM
therapy (138). In addition, preferential infiltration of Vg9Vd2 T cells
in the GBM patient tissues was also observed (26). Because pre-
existing T cells are not sufficient to eradicate tumors, interest in
adoptive cell therapy has gained traction (144). However, adoptive
therapy using in vitro expanded conventional T cells has shown low
effectiveness (145). It may be that expanded conventional T cells are
derived from low mutational and neoantigen burden in
combination with downregulated antigen processing which
resulting in GBM immune evasion despite controversies (146–
148). In vitro studies have shown gd T cells have cytotoxicity
against multiple GBM cells, but not normal brain cells (149).
Vg9Vd2 T cells were also able to target glioma stem cells (GSCs).
Stereotaxic administration of Vg9Vd2 T cells with TCR stimulation
by bromohydrin pyrophosphate or zoledronate efficiently
controlled GSC-derived brain tumors in animal models (150).
However, splenocyte-derived gd T cell injection did not increase
survival period of immunocompetent GL261-bearing mice.
Consistently, gd T cell deficiency did not affect survival of mice
(151). The authors of this study suggested that gd T cells are highly
apoptotic in the GBM microenvironment. Consistently, our group
has proposed that tumor hypoxia may contribute to gd T cell
apoptosis in the GBM microenvironment (138). Thus, gd T cell
therapy combined with anti-hypoxia strategy could have a beneficial
effect. Our study also showed gd T cell therapy in combination with
metformin or pretreatment of HIF1A inhibitor dramatically
increased survival of tumor-bearing mice. In addition,
chemotherapy-mediated cell death could be another detrimental
factor for gd T cell activity. Thus, engineered gd T cells which are
resistant to chemo/radiotherapy may be an alternative approach
(152). Allogenic gd T cell therapy has a distinct advantage because
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gd T cells are not dependent on MHC-mediated antigen
presentation. Thus, gd T cell therapy for tumors, including GBM,
is expected to be a “game changer”. Because the beneficial effect of
gd T cells in low-grade glioma (LGG) was clearer than HGG (138),
gd T cells may also have antitumor effects against other brain
tumors, such as meningioma. Further studies should address the
origins of gd T cells (e.g. meninges, circulation), which ligands gd T
cells recognize, and mechanisms of gd T cell infiltration (e.g. directly
derived from peritumoral blood vessels, leptomeninges,
choroid plexus).

CONCLUSION

Several lines of evidence have demonstrated the contribution of
gd T cells to CNS inflammation, antitumor immunity, and
maintenance of CNS homeostasis. Under homeostasis, IL-17A-
producing gd T cells are located in the meninges. IL-17A derived
from gd T cells regulates multiple brain functions, including
memory formation and behaviors. Brain inflammation also
induces parenchymal infiltration of multiple subsets of gd T
cells. Although it is difficult to completely understand due to the
complexity of gd T cell biology, it is clear that gd T cells play a
critical role in a number of brain diseases. Multiple studies have
suggested IL-17A-producing gd T cells are associated with
inflammation initiation. On the other hand, IFN-g-producing
gd T cells are beneficial for removing tumors and pathogens.
Furthermore, gd T cells tend to be associated with early onset of
diseases rather than late stages. Thus, gd T cells can be considered
as an early sensor for inflammation and may act as a connecting
bridge with further inflammation. Because gd T cells actively
surveil and rapidly respond to brain diseases, understanding
their role is important for neuroimmunology research. Further
study investigating different gd T cell subsets in different contexts
and at different time points will give critical insights into
mechanisms regulating neuro-immune interactions.
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