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Antiviral activity of extracellular
vesicles derived from respiratory
syncytial virus-infected airway
epithelial cells

Tiziana Corsello1*, Yue Qu1, Teodora Ivanciuc1,
Roberto P. Garofalo1,2 and Antonella Casola1,2*

1Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston,
TX, United States, 2Department of Microbiology and Immunology, The University of Texas Medical
Branch at Galveston (UTMB), Galveston, TX, United States
Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract

infections in children and elderly. No vaccine or effective treatment is currently

available for RSV. Extracellular vesicles (EVs) are microvesicles known to carry

biologically active molecules, including RNA, DNA and proteins (i.e. cargo). Viral

infections can induce profound changes in EV cargo, and the cargo can

modulate cellular responses of recipient cells. We have recently shown that

EVs isolated from RSV-infected cells were able to activate innate immune

response by inducing cytokine and chemokine release from humanmonocytes

and airway epithelial cells, however, we did not investigate the potential

antiviral contribution of EVs to a subsequent infection. The objective of this

study was to assess the presence of innate immune mediators, including type I

and III interferons (IFNs) in EVs released from airway epithelial cells infected

with RSV, and their potential role in modulating viral replication in recipient

cells. EV-derived from cells infected with RSV were associated with significant

amounts of cytokine and chemokines, as well as IFN-b and -l, compared to

EVs isolated from mock-infected cells. Cells treated with RSV-EVs showed

significantly lower levels of viral replication compared to untreated or mock-

EV-treated RSV infected cells. Cellular pretreatment with Cerdulatinib, an IFN

receptor signaling inhibitor, inhibited the antiviral activity of RSV-EVs in

recipient airway epithelial cells. Furthermore, treatment of A549 cells with

RSV-EVs induced the expression of IFN-dependent antiviral genes, supporting

the idea that RSV-EVs exerts their antiviral activity through an interferon-

dependent mechanism. Finally, we determined the concentrations of soluble

and EV-associated IFN-b and IFN-l in five nasopharyngeal secretions (NPS) of

children with viral infections. There were significant levels of IFN-l in NPS and

NPS-derived EVs, while IFN-b was not detected in either of the two types of

samples. EVs released from RSV-infected cells could represent a potential

therapeutic approach for modulating RSV replication in the airways.
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Introduction

Respiratory syncytial virus (RSV) is a negative-sense single-

stranded RNA virus belonging to the Pneumoviridae family (1).

It is the single most important virus causing acute lower

respiratory tract infections in children and a major cause of

severe respiratory morbidity and mortality in the elderly (2).

About 45% of hospital admissions and in-hospital deaths due to

RSV occurred in children younger than 6 months (3) and 1.5

million RSV episodes in older adults in industrialized

countries in 2015 (4). In addition to acute morbidity, RSV

infection has been linked to both the development and the

severity of asthma. No vaccine or effective treatment is

currently available for RSV (5).

Extracellular vesicles (EVs) are a type of secretory vehicle

released from cells and isolated from various bio-fluids as

bronchial lavage, breast milk, blood, and saliva (6–10). EVs are

characterized by diameter (size), and specific EV markers,

including CD63, CD9, ALIX, and TSG101 (11). EVs contain

nucleic acids, lipids, and proteins, known as the EV cargo, and

have been shown to transfer their biologically active cargo

between neighboring cells and to distant sites, therefore

participating in cell-to-cell communication, inflammation, and

disease pathogenesis (12, 13). Previous studies in selected viral

infections have suggested that EVs can play an important role in

viral pathogenesis, by contributing to viral replication and

spread, as well as to modulation of virus-host cellular

interactions (14–16). Conversely, other groups have shown a

protective role of these vesicles, conferring host cell resistance to

viral infections, as in the case of Dengue virus in an in vitro

model of infection (17). Although it is known that infections can

alter the molecular cargo associated with EVs (15), their role in

viral replication and pathogenesis remains largely unexplored,

particularly in the context of single stranded RNA viruses.

We have previously described that RSV infection of A549

cells is associated with changes in EV cargo, which are not a

simple reflection of changes occurring within infected cells.

Importantly, we showed that EVs isolated from RSV-infected

cells can activate innate immune responses by inducing release

of cytokine and chemokine from EV-exposed (i.e. recipient)

monocytes and airway epithelial cells (18). In the present study,

we investigated whether EVs released from airway epithelial cells

infected with RSV would carry a specific cargo of cytokines,

chemokines and IFNs and tested whether RSV-EVs affected viral

replication of exposed/recipient cells that were subsequently

infected. We found that EV-derived from cells infected with

RSV were associated with significant levels of cytokine and

chemokines, as well as IFN-b and -l, compared to EVs

isolated from uninfected cells. Moreover, recipient epithelial

cells treated with RSV-EVs showed significantly lower levels of

viral replication compared to untreated or mock-EV-treated

RSV infected cells. Pretreatment of recipient cells with
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Cerdulatinib, an IFN receptor signaling inhibitor, inhibited the

antiviral activity of RSV-EVs. Furthermore, treatment of A549

cells with RSV-EVs induced the expression of IFN-dependent

antiviral genes, suggesting that RSV-EVs exert their antiviral

activity via an interferon-dependent mechanism. Finally, we

determined the concentrations of soluble and EV-associated

IFN-b and IFN-l in five nasopharyngeal secretions (NPS) of

children with viral infections and found significant levels of IFN-

l, but not IFN-b in NPS and NPS-derived EVs.
Materials and methods

Cell cultures and RSV infection

Human airway epithelial cell line A549 (human alveolar type

II cell line -American Type Culture Collection, USA) were

cultured and maintained in F12K culture media, supplemented

with 10% FBS (HyClone, GE Healthcare USA), 100 U/mL

penicillin G, 100 mg/mL streptomycin and 2 mM glutamine.

RSV stocks and viral pools were prepared as previously

described (18, 19). Primary small airway epithelial (SAE) cells

(Lonza Inc., San Diego, CA, USA), derived from the terminal

bronchioli of cadaveric donors, were grown in culture medium

containing 7.5 mg/mL bovine pituitary extract (BPE), 0.5 mg/mL

hydrocortisone, 0.5 µg/mL hEGF, 0.5 mg/mL epinephrine,

10 mg/mL transferrin, 5 mg/mL insulin, 0.1 µg/mL retinoic

acid, 0.5 µg/mL triiodothyronine, 50 mg/mL gentamicin, and

50 mg/mL bovine serum albumin. SAE cells were switched to

basal media (no supplemented added) several hours prior to

RSV infection. When A549 cells were used to isolate EVs, they

were changed to exo-free FBS medium, 4 hours before and

throughout the length of the experiment. At 90 to 95%

confluence, cell monolayers were infected with RSV at

multiplicity of infection (MOI) of 1. An equivalent amount of

30% sucrose solution was added to uninfected A549 or SAE cells

as a control (mock cells). The culture media, from both mock

and RSV-infected cells, were collected after 24 hours p.i. and

processed for the next analyses. Viral titers were measured by

plaque assay in HEp2 cells as described in (20).
Extracellular vesicles isolation and
purification

Culture media collected from 2 × 107 mock-infected or RSV-

infected cells (24 hours) and nasopharyngeal secretions (NPS)

samples of patients were subjected to debris removal by

centrifugation at 3,000 g for 15 min at 4°C. The clear media

and NPS samples were subjected to further cleaning by filtration

through 0.22 mm sterile filter to remove any remaining debris.

The filtered media was transferred to Amicon® Ultra-15
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centrifugation filters (Millipore, Billerica, MA, USA) and

centrifuged at 2500 g for 35 min. Exoquick-TC (System

Biosciences, USA) reagent was added to the filtered media or

NPS, mixed thoroughly, and incubated overnight at 4°C to

precipitate EVs. Next morning the mixture was subjected to

centrifugation at 1,500 g for 30 min, the EV pellets were washed

and resuspended in filtered PBS. To remove contaminating viral

particles, EVs were subjected to CD63 immuno-purification

using CD63 exosome isolation reagents (System Biosciences,

USA), following manufacturer’s instructions. The purified EVs

were eluted from the bound CD63 beads in an average of 300 ml
and used for experimental procedures. Protein concentration

was determined using a protein assay kit from Bio-Rad, USA.

Purified EVs from cells were screened for presence of replicating

virus, to avoid using contaminated preparations. This screening

was done by plaque assay, inoculating a fraction of the EV pool

onto HEp2 cells.
Extracellular vesicles characterization

EV size distribution and number of particles were analyzed

using the NanoSight™ LM10-HS10 system (Malvern

Instruments, UK). NanoSight™ tracking analysis (NTA)

software was used to produce the mean and median vesicle

size together with the vesicle concentration (in millions).

Samples were measured 3 times to ensure reproducibility. The

instrument was rinsed between samples using filtered water. EV

markers were analyzed by Western Blot assays. EV samples were

lysed in a buffer (50mM Tris NaCl, 0.5% Triton, 300 mM NaCl)

supplemented with a protease and phosphatase inhibitor

cocktail. Equal amount of protein, 15 µg in total, were

processed as described previously (18). The primary antibodies

for Western blot were rabbit anti-human CD63 (1:1000; System

Biosciences), anti-human Alix (1:500; Santa Cruz), anti-human

apoB (1:500; Novus Biologicals) and mouse anti-human GM130

cis –Golgi (1:800; Santa Cruz).
Cytokine and chemokine analysis

Intact and lysed (pretreated with Triton 1%) EV samples

were used to measure the levels of cytokine/chemokines and

IFNs. EV fractions were quantified using the NanoSight

instrument and normalized to the same particle number prior

to IFN and cytokine assays. Cytokines and chemokines were

measured using the Bio-Plex Cytokine Human Multi-Plex panel

(Bio-Rad Laboratories, Hercules, CA) according to the

manufacturer’s instructions. Immunoreactive IFN-b and IFN-

l 2/3 were measured using commercial enzyme-linked

immunosorbent assays (ELISAs), following the manufacturer’s

protocol (PBL Biomedical Laboratories, Piscataway, NJ, USA).
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EV treatments of cells

A549 cells were placed in 24-well plates and grown

overnight. The next day the cell media was removed, cells

were washed with PBS, and fresh media containing equal

amounts of mock- or RSV- EVs (15 µg/well) was added.

Mock- or RSV- EVs were isolated and purified using a two-

step EV purification method, Exoquick-TC followed by CD63

immuno-EV purification. The cells were allowed to incubate in

the presence of EVs for 24 hours. Negative control wells were

included that consisted of mock or RSV-infected cells not treated

with EVs. For inhibition of IFN signaling, cells were pretreated

with 5 mM of Cerdulatinib (Selleckchem, TX) 1 h prior to and

throughout the EV treatment. At the end of the EV treatment,

media were removed, and cells were infected with RSV for 24h.

After infection, media were collected from each well and stored

at -80°C for further analyses.
Reverse transcription - qPCR

RNA was extracted from A549 cells using an Aurum Total

RNA Mini Kit (BioRad, Hercules, CA, USA) according to the

manufacturer instructions. RNA samples were quantified using a

DS-11 Spectrophotometer (DeNovix Inc., Wilmington, DE,

USA). Synthesis of cDNA was performed with 1 mg of total

RNA in a 20 mL reaction using iScript Reverse Transcription

Supermix reagent according to the manufacturer’s instructions

(BioRad, Hercules, CA, USA). PCR amplification was done

using 1 mL of cDNA in a total volume of 25 mL using a SYBR

Green Fast qPCR mix (ABclonal, Woburn, MA, USA). 18S RNA

was used as a housekeeping gene for normalization. PCR assays

were run in the BioRad CFX Connect Real-Time System.

Triplicate CT values were analyzed in Microsoft Excel using

the comparative CT (DDCT) method. The amount of target

(2−DDCT) was obtained by normalizing the endogenous

reference (18S) sample. Primer sequences of Mx1, DDX58 and

ISG15 genes are available upon request.
Western blot

Total cell lysates were prepared with RIPA buffer (Cell

Signaling, 9806) and protein concentration was determined with

Pierce BCA Protein Assay Kit (ThermoFisher, 23225). Equal

amounts (15 mg) of proteins were separated by SDS-PAGE and

transferred onto polyvinylidene difluoride (PVDF) membrane.

Nonspecific binding was blocked by immersing the membrane in

Tris-buffered saline-Tween (TBST) blocking solution containing

5% skim milk powder. After blocking, the membranes were

incubated with the primary antibody overnight at 4°C, followed

by the appropriate secondary antibody diluted in TBST for 1h at
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room temperature. Proteins were detected using enhanced

chemiluminescence (ECL). The primary antibody used for

phospho-STAT1 was from Cell Signaling, cat#9167S. b-Actin
was used as loading control protein to normalize the target

proteins expressions from whole cell extracts (Sigma-

Aldrich, cat#A1978).
Nasopharyngeal secretions samples
collection

NPS were collected as part of an ongoing IRB-approved

study on the pathogenesis of lower respiratory tract infections in

children up to 2 years of age. After written informed consent was

provided by the parent or legal guardian, NPS samples were

collected from patients at the time of the visit in the ER, or

within 24 hours after hospital admission. Control NPS were

children admitted to the Pediatric Intensive Care Unit following

surgery for conditions unrelated to airways disease and negative

for viral infections. Samples were immediately transported to the

lab in ice and tested for respiratory viruses, using the multiplex

RT-PCR-based Luminex xTAG Respiratory Viral Panel (RVP,

Luminex Molecular Diagnostics) to detect simultaneously 19

viral targets. An aliquot of NPS was used for direct analysis of

IFN-b or IFN-l 2/3 and another aliquot for the isolation of EVs

as described in the previous section.
Statistical analysis

A two-tailed Student’s t test using a 95% confidence level was

performed in all experiments. Significance is indicated as a p

value of <0.05 (*). Fold change of RT-PCR experiments was

calculated by 2-DDCt method and represent mean ± SEM using

GraphPad Prism v4 (GraphPad Software).
Results

Cytokines and interferons in EVs derived
from airway epithelial cells

Studies over the last few years have identified EVs as a non-

canonical mechanism by which cytokines can be secreted into

the extracellular space and modulate functions of neighboring

and distant cells. They can be membrane-associated or

encapsulated withing the EVs, reviewed in (21), although the

cytokine packaging mechanisms into EVs is not fully known. To

determine whether immune mediators such as cytokines,

chemokines and IFNs were associated with EVs released from

airway epithelial cells infected with RSV, we first isolated and

purified EVs from A549 cells using a two-step EV purification

method, Exoquick-TC followed by CD63 immuno-EV
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purification as previously published from our laboratory (18).

We used a precipitation reagent-based EV enrichment, followed

by CD63 antibody based immuno-magnetic isolation, which

results in EV preparations mostly devoid of RSV particles (18).

Equal numbers of intact EVs derived from mock (mock-EVs) or

RSV-infected cells (RSV-EVs), or EVs lysed with 1% Triton x

solution (22), (mock-EVs Triton or RSV-EVs Triton), were used

to measure surface-associated and encapsulated cytokines and

chemokines by Bio-Plex Cytokine Multi-Plex array.

Concentrations of IFN-b and IFN-l in intact or lysed EVs

were measured by ELISA. IL-1b, IL-1ra, IL-15, IL-17,

TNF-a, MIP-1b and PDGF-bb were significantly increased in

both RSV-EVs and RSV-EVs Triton purified from A549 cells,

compared to mock-EVs or mock-EVs Triton. Significantly

higher concentrations of IL-6, IL-8, IL-9 and RANTES were

detected in RSV-EVs compared to mock-EVs, while MIP-1a
concentration was significantly increased in RSV-EVs Triton

compared to mock-EVs Triton (Figure 1).

As type I and III IFNs secreted from infected cells represent

the main host defense system against viral infections (23, 24), we

also assessed IFN-b and IFN-l levels in EVs isolated from A549

cells. We detected IFN-b and IFN-l in intact and Triton lysed

RSV-EVs, but not in mock-EVs (Figure 2A), with a trend of

higher levels detected in Triton lysed EVs. We then confirmed

the presence of IFNs in EVs released from normal human SAE

cells, which showed results similar to A549 cells with the

exception of levels of IFN-b associated with Triton lysed RSV-

EVs, which was lower than the one present in intact

EVs (Figure 2B).
Antiviral activity of RSV-EVs on exposed
cells occurs via an IFN-mediated
mechanism

To investigate whether EVs could exert an antiviral effect on

recipient cells, A549 cells were pre-treated with 15 µg of mock or

RSV-EVs for 24 hours, were then infected with RSV for 24 hours

and harvested to collect cell supernatants to measure viral titers.

In our previous study, we observed a functional effect in A549

cells treated with EVs (10 mg/well). This time, we increased and

selected 15 mg/well EV-dose for a stronger anti-viral effect of EVs
than the previous dose. We observed a significant decrease in

RSV replication in cells treated with RSV-EV, compared to

untreated and mock-EV treated infected cells (Figure 3A),

indicating that RSV-EV cellular exposure confers protection

against a subsequent infection. To determine whether the

observed antiviral effect of RSV-EVs treatment was due to the

presence of IFNs in RSV-EVs, recipient cells were treated with

Cerdulatinib, an IFN receptor signaling inhibitor, prior to RSV-

EV addition and subsequent infection. Cerdulatinib

pretreatment resulted in loss of RSV-EV antiviral activity, with

increased viral replication in recipient cells treated with the
frontiersin.org
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inhibitor, compared to recipient cells treated with RSV-EVs

only, indicating that IFNs carried by RSV-EVs are biologically

active (Figure 3B).

To confirm that RSV-EV exposure was associated with the

induction of an antiviral gene response in recipient cells, A549

cells were treated with 15 µg of mock- or RSV-EVs for 24 hours

and harvested to collect total RNA. Levels of the antiviral gene

Mx1, DDX58 and ISG15 mRNA were assessed by RT-qPCR. We

found that cell exposure to RSV-EVs induced a significant

increase of Mx1, DDX58 and ISG15 gene expression,

compared to basal levels in untreated (mock) cells (Figure 4A).

Surprisingly, exposure to mock-EVs resulted in a significant

inhibition of the basal levels of these antiviral genes. Engagement

of both type I and III IFN receptors leads to activation of STAT1

and 2 proteins, through their tyrosine phosphorylation, which

together with IRF9 form the ISGF3 complex necessary for

induction of antiviral genes. To confirm activation of this

pathway following RSV-EV treatment, A549 cells were treated

with 15 µg of mock- or RSV-EVs for 24 hours and harvested to

prepare total cell lysates. Levels of tyrosine phosphorylated

STAT1 (pSTAT1) were then assessed by Western blot assay.
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Only stimulation of cells with RSV-EV led to activation of

STAT1, with no phosphorylation induced by mock-EV

(Figure 4B). Collectively, these results support the concept that

RSV-EVs can exert an antiviral activity in exposed cells through

an interferon-dependent mechanism.
IFN content of EVs isolated from NPS of
children with viral infections

We collected NPS from five children < 2 years of age who

were admitted to the hospital for a lower respiratory tract

infection or from two children negative for viral infections and

who were admitted to the Pediatric Intensive Care Unit

following surgery for conditions unrelated to airways disease

(control sample). Presence of respiratory viruses was confirmed

by the Luminex xTAG Respiratory Viral panel. Children were

positive for RSV, rhinovirus (RV) and SARS-CoV-2. We isolated

EVs from the NPS using the two-step purification protocol and

we confirmed by immunoblot that they expressed the marker

CD63 and Alix, and were negative for the Apolipoprotein B
FIGURE 1

Cytokine concentrations associated with EVs released from mock- and RSV-infected A549 cells. Cytokines were measured using a human
multi-plex panel array as intact or Triton lysed EVs. Data are presented as mean ± SEM. * indicates a statistical difference comparing RSV- EVs or
RSV-Triton versus Mock-EVs or Mock-Triton, respectively (*p value < 0.05). Data represents the average of three independent experiments.
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(ApoB) and cis-Golgi matrix protein GM130 (Figure 5A). EV

size and particle number of NPS-derived EVs were measured by

Nanosight instrument (Figure 5B). The average size of NPS-

derived EVs of virus positive patients was 170 nm, and the

average number of particles was 1.95 × 109 particles/mL, while

the average size of EV from control patients was 145 nm, with an

average number of particles of 2.1 × 108 particles/mL.

Next, we determined the concentrations of IFN-b and IFN-l
in NPS (Figure 5C) and NPS-derived EVs (Figure 5D) of these

seven children. While IFN-b levels were below the limit of

detection in both NPS and NPS-derived EVs of all children,

IFN-l was detected in five of the seven NPS samples (patients #3

and #4 had values below the limit of detection of the assay), with

values ranging from 300 to 5,160 pg/mL. In addition, significant

levels of IFN-l were found to be associated with five NPS-

derived EVs (upper values, 1693 pg/mL) from infected patients,

excepted for the two patients with no viral infections (patients #6

and #7). Slightly higher concentrations of IFN-l were detected

in lysed (Triton-treated) EVs compared to intact EVs derived
Frontiers in Immunology 06
from those viral infected NPS samples with detectable IFN-l,
while we found IFN-l only in the Triton lysed but not intact EVs

isolated from the two infected NPS sample. EVs isolated from

the airway secretions of two “control” infants negative for viral

infections showed no detectable levels of IFN-l in intact or

Triton lysed EVs. Overall, our results suggest that IFN-l is

associated with EVs isolated from airway secretions during

episodes of viral respiratory infections.
Discussion

Each year in the United States, RSV leads to approximately

58,000 and 177,000 hospitalizations of children younger than 5

years old and adults aged 65 years or older, respectively (25). No

effective drug or vaccine is currently available for RSV (5). There

is a huge demand to develop therapeutic approaches and

vaccines to treat respiratory viral infections such as RSV. The

aims of this study were to 1) evaluate the innate immune
A

B

FIGURE 2

IFN-b and IFN-l concentrations associated with EVs released from mock- and RSV-infected A549 (A) and SAE cells (B). IFN-b and IFN-l were
measured by ELISA as intact or Triton lysed EVs. Data are presented as mean ± SEM. * indicates a statistical difference comparing RSV- EVs or
RSV-EVs Triton versus Mock-EVs or Mock-EVs Triton, respectively (*p value < 0.05). Data represents the average of three independent
experiments.
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mediator cargo of EVs derived from airway epithelial cells with

RSV infection, and 2) investigate the potential antiviral activity

of EVs isolated from infected airway epithelial cells.

In our previous published work, we isolated, purified, and

characterized EVs from airway epithelial cells. We found

significantly higher levels of cellular RNA species, named small

non-coding RNAs, in EVs than in infected cells. EVs isolated

from infected RSV cells carried viral RNAs as well as selected

viral proteins, although they were not able to transmit infection

to uninfected cells. These previous results underlined the

changes of EV-cargo associated with RSV infection (18). In

the current study, we show for the first time that EV-derived

from cells infected with RSV carry a significant amount of

cytokine, chemokines and IFN cargo, compared to EVs

isolated from mock-infected cells. In the past few years, there

has been a growing literature indicating that EVs can function as

alternative carriers for the delivery of cytokines and chemokines,

specifically these mediators can be packaged into microvesicles

released from cells or can be secreted in membrane-bound form

through vesicles-like exosomes, reviewed in (21). In a

comprehensive study of cytokine association with EVs,

Fitzgerald and colleagues have shown that that cytokine

encapsulation into EVs can be found in vitro, ex vivo and in

vivo biological experimental models, and that encapsulation in

EVs is not associated with a specific cytokine but rather with the

specific system and stimulus investigated (22). The same authors
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also provided evidence that the EV-associated cytokines were

biologically active, by using reporter cell lines that needed

specific cytokines to proliferate (22). EV-associated cytokines

have been shown to possess a wide range of functions in multiple

biological processes. For instance, in HIV-infected individuals,

plasma-derived exosomes were highly enriched in a variety of

cytokines, and exposure to these exosomes resulted in the

induction of CD38 expression on naive and memory CD4+

and CD8+ T cells, a mechanism that could contribute to HIV

propagation via bystander cell activation (26). Obregon et al.

showed that EVs derived from lipopolysaccharide (LPS)-

activated dendritic cells are important carriers of tumor

necrosis factor (TNF)-a, which is important for the induction

of proinflammatory mediators from epithelial cells upon

internalization (27). In the cancer literature, transforming

growth factor b (TGF-b) associated with tumor-derived EVs

has been shown to promote tumor progression by stimulating

the migration of cancer cells, by inhibiting T-cell responses, and

by inducing differentiation offibroblasts into myofibroblasts that

support tumor growth, vascularization, and metastasis, reviewed

in (21).

In this study, we found that both IFN-b and IFN-l were

present in significant concentrations in EVs released from RSV-

infected cells, while no measurable levels of IFNs were found in

EVs originated from uninfected A549 and SAE cells (Figure 2).

Treatment with Triton resulted in some increase in the detected
A B

FIGURE 3

Effect of EV treatment on RSV replication. (A) A549 cells were infected with RSV alone (RSV) or treated with Mock-EVs (RSV+Mock-EVs) or RSV-
EVs (RSV+RSV-EVs) (15 mg) for 24 hours and then infected with RSV (MOI of 1). (B) A549 cells were infected with RSV alone (RSV), pretreated
with RSV-EVs (15 mg) 24 hours prior to RSV infection (RSV+RSV-EVs), infected with RSV and treated with Cerdulatinib (5 mM) 1h prior to infection
(RSV-Cerd), or were pretreated with RSV-EVs for 24 hrs, treated with Cerd 1h prior to infection and then infected with RSV at a MOI of 1 (RSV
+RSV-EVs+Cerd). Supernatants of infected cells were collected at 24 hours post-infection and viral titers were determined by plaque assay.
Data are expressed as mean ± SEM. * indicates a statistical difference compared to RSV alone, while # indicates a difference between RSV-EV
treated and RSV-EV treated plus Cerdulatinib groups (* or # for p ≤ 0.05). Data represents the mean average of three independent experiments.
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levels of IFNs in RSV-infected A549, but not in SAE cells (with

even less IFN-b in Triton-treated compared to untreated ones).

We do not know at this point the reason for this finding,

although we can speculate that treatment of EVs with Triton,

which is a milder detergent compared to other chemicals, may

not lead to a full lysis of SAE-derived EVs, may interfere with the

measurement of IFNs, or affect some of the experimental steps

that precede the measurement of these mediators. Nonetheless,

future studies will address the question regarding the relative

distribution of cytokines and IFNs within the epithelial cell EVs,

in particular those mediators that are surface-bound or

encapsulated (22).Both type I and III IFNs are expressed in a

variety of epithelial cells and released in response to viral

infections, to induce an antiviral state in host cells (23, 28–30).

IFN-l was also present in EVs derived from NPS samples of

children with viral respiratory infections, while there was no

detectable IFN-b either in the NPS-EVs or in the originating

samples. We recognize that our data are representative of a small

group of young patients or controls purposely selected based on

different viral pathogens that were associated with episodes of

lower respiratory tract infections. Thus, this study was not
Frontiers in Immunology 08
designed to address statistical differences in EV-associated

IFNs levels between viral pathogens or other clinical

parameters, rather to extend our in vitro observation to

human-derived samples of airway EVs. Although larger

clinical studies that will include a diverse spectrum of viral

respiratory pathogens will be necessary to confirm our findings,

recent elegant studies using nasal cell organoids have shown that

RSV is indeed a strong inducer of IFN-l (31). The biological

significance of our discovery was supported by: 1) evidence that

exposure of recipient cells to RSV-EVs was associated with

significantly reduced replication of a subsequent RSV

infection; 2) pre-treatment with an IFN receptor signaling

inhibitor abolished this protective effect; and 3) treatment of

recipient cells with RSV-EVs induced activation of STAT1

protein and a significant increase of IFN-inducible antiviral

genes Mx1, DDX58 and ISG15, which have been shown to

control RSV replication (32). These data altogether support the

idea that IFNs carried by epithelial RSV-EVs function as

messengers to help blocking viral replication in neighbor cells.

Although initial studies have shown that EVs may promote

pathogen transmission and spreading of viral infections (HCV/
A

B

FIGURE 4

A549 cells were treated with Mock- or RSV- EVs (15 mg) for 24 hours and harvested to either extract total RNA or to prepare total cell
lysates.A549 control cells with no EVs treatment are represented by checkered bar plot (A). RNA extracted from A549 mock cells with or
without EV treatment was subjected to RT-qPCR to measure the expression of antiviral genes MX1, DDX58 and ISG15. Fold changes in antiviral
gene expressions were determined by 2-DDCT method and represent mean ± SEM normalized to 18S. Cell treated with RSV- or Mock- EVs
versus mock cells (*p value < 0.05; **p value < 0.01). Data represents the average of three independent experiments. (B). Total cell lysates were
subjected to western blot analysis using an antibody anti-phospho-STAT1 (pSTAT1). Membrane was stripped and re-probed with anti-b-actin for
loading control. Western blot figure is representative of two independent experiments.
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HIV) (33–35), other studies demonstrate on the contrary that

EVs have a protective role by limiting viral replication, as it has

been shown for Dengue virus (17), Rift Valley Fever virus (36)

and influenza virus in a rodent model of infection (37). Our

study reports for the first time a significant association of

cytokines, chemokines and IFNs with EVs released from

airway epithelial cells following RSV infection. Furthermore,

our finding of type III IFN associated with EVs isolated from

respiratory secretions of children infected with respiratory

viruses support the concept that the packaging of innate

immune mediators in EVs could be indeed an important

mechanism to modulate innate and antiviral responses both

close and far from the site of initial viral entry or infection.

These mediators can be concentrated within EVs and exert

their activity at the surface of other cells that might not

otherwise be targeted by cytokines in soluble, circulating

form (22). Also, the lipid bilayer structure of EVs has been
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shown to protect the antiviral molecules from extracellular

degradation during the cell-to-cell communication via EVs

and facilitate cytokine delivery and targeting to distant cells

(38). Better understanding of the cargo and antiviral and

immunomodulatory properties of EVs released from airway

epithelial cells following respiratory virus infection could

provide insight into the regulation of viral-induced responses

and be the basis for potential EV-mediated antiviral strategies to

treat/prevent infections.
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FIGURE 5

Characterization of NPS-derived EVs from children with and without viral infections. (A) Western blot analysis of equal amounts of purified EVs
(5 mg) for CD63, Alix, ApoB and GM130. #1 and 2 indicates EV samples isolated from two representative patients. (B) Absolute size (left graph)
and concentration (right graph) determined by Nanosight analysis of EVs isolated from virus negative (open bars) or virus positive (black bars)
NPS. IFN-l concentrations were measured by ELISA in NPS samples (C) or NPS-derived EVs (D) of children with or without viral lower
respiratory tract infections. Patients #1 and #2 = RSV; Patient #3 = SARS-CoV-2; Patients #4 and #5 = Rhinovirus (RV), Patients #6 and #7 =
Virus-negative.
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