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Physicochemical Heuristics
for Identifying High Fidelity,
Near-Native Structural Models
of Peptide/MHC Complexes
Grant L. J. Keller , Laura I. Weiss and Brian M. Baker*

Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame,
IN, United States

There is long-standing interest in accurately modeling the structural features of peptides
bound and presented by class I MHC proteins. This interest has grown with the advent of
rapid genome sequencing and the prospect of personalized, peptide-based cancer
vaccines, as well as the development of molecular and cellular therapeutics based on T
cell receptor recognition of peptide-MHC. However, while the speed and accessibility of
peptide-MHC modeling has improved substantially over the years, improvements in
accuracy have been modest. Accuracy is crucial in peptide-MHC modeling, as T cell
receptors are highly sensitive to peptide conformation and capturing fine details is
therefore necessary for useful models. Studying nonameric peptides presented by the
common class I MHC protein HLA-A*02:01, here we addressed a key question common
to modern modeling efforts: from a set of models (or decoys) generated through
conformational sampling, which is best? We found that the common strategy of decoy
selection by lowest energy can lead to substantial errors in predicted structures. We
therefore adopted a data-driven approach and trained functions capable of predicting
near native decoys with exceptionally high accuracy. Although our implementation is
limited to nonamer/HLA-A*02:01 complexes, our results serve as an important proof of
concept from which improvements can be made and, given the significance of HLA-
A*02:01 and its preference for nonameric peptides, should have immediate utility in select
immunotherapeutic and other efforts for which structural information would
be advantageous.

Keywords: peptide, major histocompatibility complex, neoantigen, structure, prediction, support vector machine
INTRODUCTION

Genomic instability can result in thousands of mutations within transformed cells (1). During
normal housekeeping, peptide fragments containing mutations can be bound by class I major
histocompatibility complex (MHC) proteins and presented extracellularly where they are surveilled
by CD8+ T cells of the cellular immune system. However, while cellular immunity is generally
capable of distinguishing between self and non-self, most mutant peptides are not recognized as
org April 2022 | Volume 13 | Article 8877591
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non-self. This results in part from thymic selection, during which
self-reactive T cells are culled, as well as various peripheral
tolerance mechanisms which prevent T cell reactivity towards
self antigens. Thus, mutant peptides bound to an MHC protein
must overcome self-tolerance to constitute immunogenic
“neoantigens” which induce T cell responses. Those mutant
peptides that do overcome tolerance can lead to naturally
occurring tumor immune responses or are candidates for
therapeutic peptide-based vaccines (2–6). Identifying those
mutated peptides which overcome tolerance and are most
likely to initiate anti-tumor immunity, however, remains a
significant challenge (7, 8)

Two non-exclusive mechanisms by which a mutant peptide
can overcome self-tolerance are by enhancing peptide binding to
MHC proteins and altering the structural and physical features
presented to T cell receptors (TCRs). The former mechanism can
lead to presentation of novel antigens, whereas the latter allows a
mutated self antigen to be perceived as foreign. Enhanced
binding to MHC can be addressed by various bioinformatics
tools for estimating peptide-MHC binding affinities e.g., (9–12).
Identifying changes in structural and physical features, however,
is more challenging (13). Although some general structural
features can normally be predicted with some confidence (for
example, which peptide side chains are “up” and available for
TCR contacts) (14), predicting fine details and changes that
occur with mutations necessitates atomistic detail. The scope of
the challenge is highlighted by recent results showing that
neoantigen immunogenicity can be driven by subtle structural
changes that occur away from the site of a mutation (15).

Recent work from our lab demonstrated the utility of peptide-
MHC three-dimensional models in generating hypotheses for T
cell immunogenicity with different peptides (7, 8, 16), assessing T
cell receptor binding and specificity towards specific peptide-
MHC complexes (17–19), and in predicting peptide
immunogenicity (20). This work, and related work of others
(21–29), demonstrates the value of structure in T cell-based
therapeutic target prioritization, the development of
personalized cancer vaccine approaches, and assessments of
potential off-target epitopes. However, as opposed to general
protein modeling, which has recently seen significant advances
(30, 31), accurate modeling of peptides bound to MHC proteins,
and class I MHC in particular, is particularly difficult, requiring
high fidelity prediction of backbone and side chain positions, and
for neoantigens, subtle structural changes that might emerge
from mutations.

Modern structural modeling procedures commonly employ
Monte Carlo or other sampling procedures to explore
conformational space, resulting in the generation of numerous
candidate models, typically referred to as decoys. A key question in
these efforts is: which of these decoys is most representative of the
actual structure? Although the lowest energy decoys are usually
presumed to be the most accurate, work in other fields has shown
that this is often not the case (32–35), an issue attributable in part
to inaccuracies, tradeoffs, and simplifications in energy functions
(35, 36). Here, we systematically examined the accuracy of
peptide-MHC structural modeling procedures. We show that
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ranking and selecting decoys by energy is ineffective at
reproducing known peptide-MHC structures. After identifying a
more optimal sampling approach, we explored the applicability of
system-specific functions based on structure-derived
physicochemical properties for predicting deviations between a
decoy and its actual structure. Trained on a large database of high-
resolution structures of nonameric peptides presented by the class
I MHC protein HLA-A*02:01, our functions significantly
outperform decoy selection by energy, leading to substantially
improved prediction of peptide structural features. Although
currently restricted to nonamers presented by HLA-A*02:01, our
improved methods suggest a way toward achieving the high
fidelity needed for accurate identification of peptide-MHC
structures in silico and may be of immediate use for evaluating
nonamers presented by HLA-A*02:01.
METHODS

Collection of Experimental Structures
Experimentally determined peptide-MHC structures used to
evaluate modeling protocols were collected from the RCSB
Protein Data Bank (PDB) using the REST API service (37).
The submitted query specified b2-microglobulin (b2m), the
MHC heavy chain allele HLA-A*02:01, and a chain of nine
residues (the peptide). Structures with resolutions ≥ 3.0 Å and
those containing proteins other than peptide-MHC complexes
were excluded. This list was filtered for structures with
unambiguous peptide electron density using Coot to inspect
2Fo-Fc electron density maps (38). PDB ID 2GTW was excluded
due to its register shifted decamer-like conformation (39). For
structures with more than one molecule per asymmetric unit,
only the first copy was used. The final set contained 103 high-
resolution structures of non-redundant nonameric peptides
bound to HLA-A*02:01. Of these, six structures (PDB IDs
5EU3, 6O4Z, 6PTB, 6VR5, 7KGO, and 7LG3) were excluded
from training. These six, selected randomly from the structures
not included in our previous study (20), were set aside to be used
as a test set for evaluation of trained functions. All structures
used are listed in Table S1. The same approach and criteria were
used for selection of nonameric peptides bound to other class I
MHC proteins.

Structural Modeling of HLA-A*02:01-
Presented Nonameric Peptides
Structural modeling of peptide-MHC complexes was conducted
as previously described (20). Briefly, PyRosetta 4.0 (40, 41) was
used with either the talaris2014 (42) or ref2015 (43) energy
function as indicated, with starting coordinates from PDB 3QFD
(44). As noted previously (20), when modeling performance was
evaluated as a function of different template structures, 3QFD
performed best, although the difference between templates was
small (~0.2 Å heavy atom RMSD) and template choice is thus
expected to have little influence on overall results. The template
crystal structure was energy minimized using the FastRelax
protocol in Rosetta (41, 45) with harmonic restraints of 0.02
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kcal/mol, which we found optimally balanced reduction in
energy with changes in atomic coordinates. Template peptide
side chains were then replaced with those of the target peptide
sequence. Next, all amino acid sidechains in the peptide and the
MHC were repacked to energetically favorable rotamers using
Rosetta PackRotamersMover (this was the extent of the “repack”
protocol used as a negative control and assesses template-
dependent bias). Peptide side chain and backbone atoms were
then minimized using either 50 iterations of fragment insertion
followed by simulated annealing CCD via LoopMover_
Refine_CCD or neighbor-sensitive dihedral angle sampling
followed by simulated annealing KIC with a maximum
segment length of 12 via LoopMover_Refine_KIC. As
structural modeling via Rosetta relies on Monte Carlo
sampling, multiple independent models (decoys) were
generated for each peptide-MHC. The number of decoys
generated during modeling and used in specific analyses is
noted where appropriate. “Rosetta energy” refers to the sum of
weighted terms from the indicated Rosetta energy function for all
residues of the peptide-MHC complex. Where indicated,
“peptide energy” is only the sum of these for residues in the
peptide chain.

Scoring of Decoys for Regression and
RMSD Calculations
For each residue of the peptide in each decoy generated, terms
from the ref2015 energy function, total solvent accessible surface
area (SASA), and hydrophobic solvent accessible surface area
(hSASA) were calculated in Rosetta after modeling. SASA and
hSASA calculations utilized a 1.4 Å radius probe. Data was
filtered for regression to include only terms which exhibited non-
zero variance for all decoys and were not specific to residue
identity (e.g., tyrosine ring planarity was excluded). This resulted
in 129 structural and energetic terms. For RMSD calculations,
the target crystal structure was first superimposed on the heavy
chain of the modeling template via the Ca atoms of residues 1-
180. The root mean square deviation (RMSD) of atomic
positions was then calculated between peptide residues only
and is reported between either Ca or all non-hydrogen heavy
atoms (HA).

Regression Analysis of Full-Atom RMSD
vs. Energetic Terms
Regression models (referred to as functions) for fitting heavy
atom RMSDs between decoys and corresponding crystal
structures to the 129 structural/energetic terms were calculated
in R. Data was centered around the mean, scaled by term
standard deviation, and randomly partitioned into a training
set of 80% of cases for fitting functions and a test set of 20% for
less biased evaluation of regression function performance, so
training and test set had comparable RMSD distributions.
Ordinary least squares (OLS) and partial least squares (PLS)
functions were fit using the train function of the caret package
and the pls package implementation in R. PLS functions were fit
using 10 components after evaluation. Support vector machine
regression (SVR) functions were trained using the e1071
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implementation of SVR with an ϵ-insensitive loss function and
either no kernel (linSVR) or a Gaussian radial basis function
(radSVR) as the kernel function. The linSVR grid search covered
regularization (C) values from 10-8 to 108. For radSVR, values
spanned 10-4 to 1010 for C, and 10-11 to 102 for the width of the
Gaussian radial basis function (g). Final functions were trained
with hyperparameter combinations that displayed the lowest
root mean square error (RMSE) from this grid search. OLS,
PLS, and SVR functions were subjected to 10-fold cross
validation during grid search and training.

Recombinant Protein
Production, Crystallization, and
Structure Determination
The purified complex of AVGSYVYSV with HLA-A*02:01 was
generated by refolding heavy chain and b2m from bacterial
inclusion bodies according to standard procedures (46), followed
by purification using anion exchange and size-exclusion
chromatography. Peptide was synthesized by Genscript at >90%
purity. Crystals of the AVGSYVYSV complex were grown by
hanging-drop vapor diffusion at 4°C in 15% PEG 3350 and 0.1 M
MES, pH 6.5 from a concentration of 5.1 mg/mL diluted 1:1 with
mother liquor. Crystals were harvested and cryoprotected in ~8%
glycerol and ~92% mother liquor and then immediately frozen in
liquid nitrogen. Data for the complex were collected at the NE-
CAT 24ID-E beamline at the Advanced Photon Source at
Argonne National Laboratories. Data integration and scaling
were performed using the HKL2000 suite (47). Data reduction
was performed in Aimless. The structure was solved by molecular
replacement using Phaser in PHENIX (48), with PDB 3PWL with
the peptide removed used as a search model (49). Multiple steps of
restrained refinement were performed using PHENIX Refine (48).
Evaluation of models and fitting to maps were performed using
Coot (38). MolProbity was used to evaluate structures during and
after refinement (50).

Code Availability
Modeling scripts and regression functions have been deposited at
the Zenodo repository, available at https://doi.org/10.5281/
zenodo.6049929.
RESULTS

Updated Structural Modeling Methods
Improve Peptide-MHC Modeling
Accuracy Yet Identifying Optimal
Decoys Remains a Challenge
Previously, we developed a rapid approach for modeling class I
peptide-MHC structures (20). Tested against a dataset of 53
high-resolution crystallographic structures of nonameric
peptides presented by HLA-A*02:01, the most accurate
structural models (hereafter referred to as decoys) exhibited
average peptide heavy atom (HA) and a carbon (Ca) root
mean square deviations (RMSD) from crystallographic
coordinates of approximately 1.8 Å and 0.9 Å, respectively.
April 2022 | Volume 13 | Article 887759
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While this performance was comparable to other published
methods for modeling peptides bound to class I MHC proteins
(23, 25, 26, 51–61), the RMSD range was large, with some final
models deviating from crystal structures by more than 3 Å.

Structural modeling is dependent on both sampling
algorithms and the energy (or score) functions used to evaluate
conformers. Our previous approach used cyclic coordinate
descent (CCD) loop modeling with the talaris2014 energy
function. To gauge the effect of iterative changes to our
approach, we evaluated replacing CCD with kinematic loop
modeling (KIC). Both the CCD and KIC algorithms were
developed to solve the inverse kinematics problem in robotics,
although their application to protein loop modeling differs
considerably: CCD in Rosetta relies on insertion of database-
derived fragments followed by torsion angle adjustments, while
KIC stochastically samples backbone torsions in a neighbor-
dependent fashion with gradually decreasing weights on
repulsive and Ramachandran components of the energy
function. Although computationally more expensive, in direct
comparisons KIC reliably sampled near-native loop
conformations more frequently than CCD (62).

We also evaluated the energy function, replacing talaris2014
with the newer ref2015. The ref2015 energy function was the first
Rosetta energy function to be parameterized on small molecule
data in addition to polypeptides and statistical terms. It also
incorporates more realistic electrostatic and solvation terms than
previous functions and demonstrated improved performance
over talaris2014 in ranking decoys and modeling loops (32). As
a negative control, we evaluated talaris2014 with side chain
repacking and no backbone dihedral modification (referred to
as the “repack” protocol, which also controls for template bias).

In exploring these iterative changes, we focused exclusively on
nonameric peptides presented by the human class I MHC allele
HLA-A*02:01, as these dominate the corpus of experimentally
determined human peptide-MHC structures. We expanded our
dataset of high-resolution structures from 53 to 103, selecting
those with resolutions <3.0 Å and unambiguous peptide electron
density (Table S1). As previously performed, we initially
generated only 10 decoys for each of the structures in our
dataset. From these, we selected the actual best decoy, as
measured by lowest peptide HA RMSD from the crystal
structure (i.e., the most accurate structural model for the
peptide as identified by comparison to the known structure).
Note that in calculating RMSDs here and throughout, the Ca
atoms of only the peptide binding grooves were superimposed
and differences between peptide coordinates computed.
Surprisingly, we found that implementing KIC and ref2015
resulted in little improvement in overall modeling accuracy as
measured by average peptide Ca and HA RMSD, although both
decreased the variance in RMSD (Figure 1A). To investigate how
increased sampling impacted accuracy, we increased the number
of decoys generated per protocol 20-fold to 200. The additional
sampling did not lead to an improvement in the best decoys
generated with the control talaris2014 repack protocol (again
measuring lowest HA RMSD from crystal structure). There was
however slight improvement in talaris2014 CCDHA RMSD, and
Frontiers in Immunology | www.frontiersin.org 4
the increased sampling significantly improved performance of
ref2015 CCD and ref2015 KIC modeling as determined by a one-
tailed Wilcoxon matched-pairs signed-rank test (Figure 1A; blue
and green).

We next asked if the greater sampling and updated energy
function permitted better identification of optimal models based
on lowest energy, the most frequently used criteria for selecting
decoys when structures are unknown. We found though that
despite improved modeling accuracy, the common problem of
identifying the most optimal decoy remained, as the HA RMSD
of decoys selected by lowest Rosetta energy did not differ
significantly between the protocols used (Figure 1B). Thus,
even with improved sampling that can generate better
structural models, scoring by Rosetta energy is insufficient for
identifying the best structural model for nonameric peptides
presented by HLA-A*02:01. Two examples of how scoring by
energy alone poorly accounted for peptide structural details are
illustrated in Figure 2. Of the 200 decoys for each peptide-MHC
target modeled with ref2015 KIC, most differ only by a few
Rosetta energy units (REU) while spanning a HA RMSD range of
nearly 3 Å relative to the crystal structure, as shown in Figure 2A
for PDB IDs 4NNY (sequence RQASLSISV) and 6O4Z
(sequence KLVVVAVGV). Two of the lowest energy decoys of
4NNY differ by only 4 REU (approximately 0.3%). However,
while the conformation of one decoy is nearly identical to the
crystallographic coordinates, with Ca/HA RMSD values of only
0.63/1.63 Å, the other, lower energy decoy exhibits poorer Ca/
HA RMSD values of 1.76/2.93 Å. The conformation of this better
scoring decoy deviates substantially from the crystal structure,
fully exposing the position 5 side chain which in the structure
serves as a secondary anchor and is thus buried in the MHC
binding groove (Figure 2B). 6O4Z presents a similar case
(Figures 2A, C): the actual best decoy is again close to the
crystal structure (Ca/HA RMSD = 0.55/1.33 Å), whereas a lower
energy decoy differs substantially from the structure (Ca/HA
RMSD = 1.71/2.69 Å), with the peptide backbone at positions 4-6
modeled incorrectly. Thus, despite generating more accurate
structural models, improved sampling and an updated energy
function do not necessarily translate into improved structural
predictions if lowest energy is used to select optimal decoys as is
commonly performed.

Training Regression Functions to
Predict the Deviations of Decoys
From Actual Structures
To explore improved methodologies for identifying the most
accurate structural model from a set of decoys, we took
inspiration from two sources. First, some methods that predict
peptide affinity for MHC proteins consider position-specific
features determined by the different structures and chemistries
of the pockets that line the MHC binding groove (9, 63). Second,
efforts to improve protein structure prediction have explored
using machine learning to selectively weight terms in energy
functions, resulting in optimized decoy selections approaches
trained for specific systems or tasks (28, 33, 34, 64–66).
Accordingly, we explored regression approaches in which
April 2022 | Volume 13 | Article 887759
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peptide position-dependent structural and energetic terms were
differentially weighted to yield functions optimized for
identifying near-native decoys of nonamers bound to
HLA-A*02:01.

Training effective regression functions requires a range of
responses. While the ref2015 energy function with either CCD or
KIC performed comparably when considering the overall range
of RMSD from target selected by energy (Figure 1B), the per-
target variance of the ref2015 KIC protocol decoys was higher
than the other protocols, indicating greater sampling
(Figure 1C). We therefore standardized on this protocol and
increased the number of decoys generated to 500 and used only
these for training and selection.

We tested the efficacy of three types of regression functions in
predicting decoy RMSD from crystal structure using energetic
features of the peptide as described by the Rosetta ref2015 energy
function. We first used ordinary least squares (OLS), the most
common type of regression. OLS involves determining a
multiplicative weight factor for each term in a linear equation
and including an additive intercept term. An advantage of OLS is
Frontiers in Immunology | www.frontiersin.org 5
the weights are straightforward to interpret. After generating 500
decoys for each target peptide-MHC in Table S1 (excluding the
six used for validation as indicated in the table), we calculated the
Ca and HA RMSD between the peptide chain of that decoy and
the corresponding crystal structure. As we performed previously
(20), energetic (from ref2015) and structural features were
calculated for each residue of the peptide, describing
interactions between peptide atoms, interactions of peptide
atoms with surrounding MHC atoms, and interactions of
peptide atoms with (implicit) solvent. As shown in Table S2,
we included van der Waal’s interactions, hydrogen bonds,
solvation potential , rotamer and backbone dihedral
probabilities, and both hydrophobic and total peptide solvent
accessible surface area. A linear function was trained to fit these
sets of per-residue features for all decoys included in the training
set to the HA peptide RMSD of that decoy from its crystal
structure, such that the resulting function would predict RMSD
from structure for any provided decoy. The resulting weights in
the OLS function associated with per residue peptide features
used as input are listed in Figure S1.
A B

C

FIGURE 1 | Performance of structural modeling protocols. (A) Distribution of peptide heavy atom (HA) and a carbon (Ca) RMSDs of the most accurate (lowest HA
RMSD from crystal structure) decoys generated for 103 target peptide-MHC complexes when modeled by the four different protocols indicated. RMSDs were
calculated for peptides only after superimposition of the HLA-A*02:01 peptide binding grooves (Ca atoms of heavy chain residues 1-180). Mean is indicated by a red
star, boxes represent the first to third interquartile range, and horizontal lines show the median. The medians of 10 and 200 decoys are connected by red lines.
Implementing ref2015 and KIC alone had little effect on accuracy, although decreased the variance in RMSD. Moving from 10 to 200 decoys resulted in significant
improvement when using ref2015. (B) Distribution of peptide HA RMSDs of the most accurate of the 200 decoys from panel A (black outline) and the decoys with
the lowest Rosetta energy (green outline). Mean is indicated by a red star; medians are connected by red lines. Colors for the modeling protocols are the same as in
panel (A). (C) Distribution of peptide HA RMSD from crystal structure (y axis) for 200 decoys of each target peptide-MHC (x axis), illustrating coverage of
conformational space. The mean per-target variance, or degree of conformational sampling, of the ref2015 KIC protocol (0.27) was slightly higher than ref2015 CCD
(0.22), and much higher than either talaris2014 CCD (0.017) or talaris2014 repack (0.0044). Points are colored across the spectrum for clarity.
April 2022 | Volume 13 | Article 887759
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In addition to OLS, we trained a partial least squares (PLS)
function to predict decoy RMSD from the same input features.
Unlike OLS, PLS transforms features into a reduced dimensional
space, similar to principal component analysis, which maximizes
variance in response. We reasoned that a PLS function may
account for relationships between input features, as PLS is less
sensitive than OLS to feature collinearity while resulting in
weights which can still be interpretable. We compared cross-
validation RMSE and percent of variance explained in both input
energy function features and RMSD from crystal structure upon
inclusion of additional components, up to a maximum of 30. The
improvement in explained variance and RMSE diminished past
inclusion of 10 components, which we chose as the number of
components to include in the final PLS function.

The third type of function we used to predict quality of
structural models was support vector machine regression
(SVR) (67). In the simplest case, SVR is similar to OLS
regression with the addition of an “error insensitive” boundary
term, where errors between predicted and actual response less
than the boundary value are ignored, helping to reduce the
influence of noise. SVR functions can be further extended via a
kernel trick that increases dimensionality, allowing for better
accounting for complex non-linear relationships. SVR functions
have been employed in a number of biochemical and structural
prediction problems (33, 68). We refer to a linear SVR function
that does not employ a kernel trick as “linSVR” and a function
which employed a Gaussian radial basis function as a kernel trick
as “radSVR.”

Choice of SVR hyperparameters is critical, especially the
regularization parameter C which represents a balance between
error and function complexity (69). We conducted a
logarithmically spaced massively parallel grid search to identify
pareto-optimal hyperparameter combinations. The grid search
to identify an optimal linSVR regularization hyperparameter
Frontiers in Immunology | www.frontiersin.org 6
presented a trough of error values (Figure S2A), from which
the lowest RMSE value for C was selected. The radSVR grid
search yielded an apparent local minimum (Figure S2B);
however, it was not bounded on increasing values of g, which
corresponds to a wider Gaussian in the radial basis function and
thus less influence on the decision boundaries of other support
vectors. Due to overfitting concerns with high g values, the search
was not extended and the value for g was selected that yielded the
local minimum in RMSE.

To evaluate model bias, we compared the predictions for all
functions to our training and test set to the actual RMSD and
computed the cross-validation RMSE. The cross-validation
RMSEs for OLS, PLS, linSVR, and radSVR were 0.37, 0.42,
0.14, and 0.22, respectively. The prediction frequencies for all
models corresponded well with the actual RMSD, which did not
implicate severe overfitting as an issue, although the radSVR
function erroneously predicted a HA RMSD of 2.5 Å for some
decoys regardless of actual RMSD, which was exacerbated in test
set predictions and suggests some overfitting in this function
(Figure S3).

Trained Regression Functions Outperform
Decoy Selection by Rosetta Energy
The trained selection functions generated by PLS, OLS, linSVR, and
radSVR were then used to compare predicted vs. actual HA RMSD
from the crystal structure for the 500 decoys for each peptide-MHC
in Table S1, excluding the six test structures. The trained OLS, PLS,
and SVR functions significantly outperformed prediction by
Rosetta energy for the complex or peptide alone, for which there
was no correlation between predicted and actual RMSD
(Figures 3A, B). The trained functions showed good correlations,
with the linSVR and radSVR functions showing superior
performance compared to OLS and PLS (Figures 3C–F).
The erroneous HA RMSD values of 2.5 Å for the radSVR data
A B

C

FIGURE 2 | Structurally divergent decoys can have similarly low energies. (A) Rosetta energy vs. peptide HA RMSD from crystal structure for 200 decoys generated
using ref2015 KIC for two peptide-MHC complexes (PDB IDs 4NNY and 6O4Z, colored as indicated). Decoys exhibit a wide range of RMSD values despite similarly
low energies. Decoys shown in panels (B, C) are indicated with magenta/green circles and highlighted by the black arrows.(B) Visual comparison of two decoys for
4NNY. The crystal structure is colored cyan. The best decoy (lowest RMSD from structure) is magenta (-1253 REU, 1.63 Å HA RMSD, 0.63 Å Ca RMSD). A lower
energy but poorer decoy is green (-1257 REU, 2.93 Å HA RMSD, 1.76 Å Ca RMSD). (C) Comparison for 6O4Z. The crystal structure is cyan, the best decoy (lowest
RMSD from structure) is magenta (-1242 REU, 1.33 Å HA RMSD, 0.55 Å Ca RMSD), and a lower energy but poorer decoy is green (-1250 REU, 2.69 Å HA RMSD,
1.71 Å Ca RMSD).
April 2022 | Volume 13 | Article 887759
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seen in validation (Figure S3) were apparent in this analysis
(Figure 3F), which raised caution about this function.

We used the four trained functions to predict the lowest HA
RMSD decoy for each peptide-MHC structure, excluding the six
test structures. For comparison, we also selected decoys based on
Frontiers in Immunology | www.frontiersin.org 7
lowest Rosetta energy for the whole peptide-MHC or the peptide
alone. For each structure we also again identified the actual best
decoy, as measured by lowest HA RMSD from the structure. We
then compared these decoys to their crystallographic structures.
The decoys selected by SVR functions exhibited Ca/HA RMSD
A B

D

E F

C

FIGURE 3 | Trained functions better rank decoys in order of peptide RMSD from crystallographic structures. The peptide HA RMSDs for all 500 decoys for each of
the crystallographic structures in Table S1 (excluding the six test structures) were plotted against Rosetta energy of the peptide-MHC (A), peptide alone (B), or
predicted HA RMSD from each of the trained functions (C–F). There was no correlation between RMSD and Rosetta energy. In sharp contrast, predicted RMSD
from trained functions correlate well with RMSD from structure (C–F), with excellent correlations seen with the SVR functions (E, F). A sharp split in the trend of the
radSVR predictions around 2.5 Å likely reflects overfitting as discussed in the text (see also Figure S3). R2 values are indicated in each plot; 95% confidence
intervals are shown, but only apparent in panels (A, B).
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distributions very similar to those for the best decoys (Figure 4).
In fact, there was no significant difference between RMSDs of the
best decoys and those selected by SVR (one-tailed t-test p=0.21),
nor was the difference between radSVR and linSVR performance
significant (two-tailed t-test p=0.10). In contrast, selection with
either OLS or PLS resulted in decoys with significantly higher
RMSD, as did selection by total energy or peptide energy. These
results highlight that, pending additional improvements to the
accuracy of generated decoys (for example, through improved
sampling or more accurate energy functions), little improvement
in selection accuracy is likely to be found beyond these SVR-
based regression functions.

To further validate performance, trained functions were used to
select decoys for the six nonameric peptides presented by HLA-
A*02:01 whose structures are available but were not included in
training: PDB ID 5EU3 (70), 6O4Z (71), 6PTB (20), 6VR5 (72),
7KGO (73), and 7LG3 (74). For each target peptide-MHC, we
generated 500 decoys using the same template and ref2015 KIC
modeling protocol as above. We then ranked decoys for each target
from best (rank #1) to worst (rank #500) by HA RMSD from the
crystal structure (the true rank), Rosetta energy (lowest to highest),
and the two SVR-based predictive functions. Decoys ranked by
Rosetta energy correlated poorly with true decoy rank (Figure 5A).
However, for 4 of the 6 targets, the SVR-based predictor ranking
was highly correlated with the true rank (Figures 5B, C). For
example, 6PTB ranking by linSVR correlated with the true rank
with a Spearman correlation of 0.95, in sharp contrast to a 0.03
correlation between Rosetta energy and true rank. The overall
correlation between true rank by HA RMSD and predictor ranks
was 0.61 and 0.51 for linSVR and radSVR respectively, compared to
0.22 for Rosetta energy. The improvement of decoy selection by
linSVR over Rosetta energy for 6PTB is illustrated in Figure 5D,
where the top decoy selected by linSVR clearly matches the
crystallographic structure better than the lowest energy structure.

Notably, for 5EU3 the correlation between true and predicted
rank was poor for both SVR functions. However, when we
Frontiers in Immunology | www.frontiersin.org 8
compared actual to predicted HA RMSD (Figure S4), we found
the deficiency in ranking was a result of limited sampling around a
conformation very close to the crystallographic structure, with all
decoys tightly clustered around a HA RMSD of 1.4 Å (i.e., there
were no good vs. bad decoys for the functions to discriminate
between) (Figure S4B). For two of the six targets (7KGO and
7LG3), the predicted HA RMSD values from radSVR were
monotonic, despite a high range of actual HA RMSD sampled
(Figure S4C). This was not seen with linSVR. Together, these
results reinforced the accuracy of the SVR functions over Rosetta
energy in selecting optimal decoys and suggested further that
linSVR is a more appropriate predictor than the radSVR function.

Application to a Relevant
Tumor Neoantigen
As a test of our modeling and trained selection approaches, we
deployed it against a novel tumor neoantigen whose structure
has not yet been reported. The neoantigen AVGSYVYSV was
identified in a melanoma patient and shown to induce a T cell
response in a healthy donor (75). We crystallized and
determined the structure of AVGSYVYSV bound to HLA-
A*02:01 at a resolution of 1.9 Å (Table S3). The peptide
adopted a typical nonameric conformation through the
binding groove, with valine at position 6 serving as a
secondary anchor and facing down into the groove
(Figure 6A). We modeled 500 decoys using the ref2015/KIC
protocol. The decoy with the lowest Rosetta energy deviated
from the actual structure with Ca and HA RMSDs of 0.46 Å and
1.09. The decoy selected by our linSVR function, however, was
better, with Ca and HA RMSDs of 0.38 Å and 1.02 Å,
respectively (for comparison, the OLS and PLS functions
selected a decoy with a HA RMSD of 1.56 Å, and the radSVR
function selected a decoy with a HA RMSD of 1.88 Å, all poorer
than those selected by either Rosetta energy or linSVR).

A key error in the structure with the lowest Rosetta energy
was an incorrect positioning of the peptide backbone from Ser4
FIGURE 4 | SVR functions outperform least squares functions and energy scores in identifying the best decoy. For each of the structures in Table S1 (excluding the
six test structures), the trained functions were used to select the most optimal decoy from the 500 produced. The best decoy (lowest peptide HA RMSD from
structure) was also identified, as were the lowest scoring by total or peptide-only Rosetta energy. These decoys were then used to calculate Ca (left) and HA RMSD
(right) from experimental structure, indicated by each violin. Distributions are sorted from left-to-right by ascending mean. The SVR functions clearly outperform other
methods of decoy selection (RE peptide, Rosetta energy for the peptide alone). Mirroring the data in Figure 3, the two SVR functions were statistically
indistinguishable from one another, as well as from the best decoy. Boxes span the first and third quartiles, lines indicate the median.
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D
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FIGURE 5 | SVR selection functions show improved performance in a non-biased test set. 500 models for six structures not included in training were generated
with the ref2015 KIC protocol. All decoys were ranked by peptide HA RMSD from the crystal structure (“true rank”) and compared to the ranking by Rosetta energy
(A) the linSVR function (B) and the radSVR function (C). The legends in (A–C) indicate the peptide-MHC PDB ID and the associated Spearman correlation between
HA RMSD and Rosetta score or function prediction, as well as the overall correlation. The linSVR function is the strongest performer, ranking four out of six of the
structures with high accuracy. A fifth (5EU3) was poorly ranked due to limited sampling around a highly accurate model as discussed in the text. (D) Example of
performance with 6PTB, comparing the peptide crystallographic coordinates with the decoy with the lowest Rosetta energy (top) and the optimal decoy selected by
linSVR (bottom). Ca/HA RMSD values are indicated for each case.
A B

C

FIGURE 6 | The linSVR function selects a more accurate model for a novel neoantigen structure. (A) Structure of the AVGSYVYSV neoantigen bound to HLA-
A*02:01, with 2Fo-Fc electron density at 1s shown. (B) Comparison of lowest energy decoy and the linSVR selected decoy for AVGSYVYSV after modeling (peptide
backbone shown only). The lowest energy decoy has the backbone incorrectly modeled from Ser4 through Val6, leading to a 3.1 Å displacement in the carbonyl
oxygen at Tyr5 as shown in the inset. (C) Structure and decoy comparison, showing the entire peptides. The error in the position of the Tyr5 side chain is
exacerbated in the low energy decoy. Colors are the same as in panel B.
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to Val6, reflected by a 3.1 Å error in the placement of the Tyr5
carbonyl oxygen (Figure 6B). The positions of backbone
hydrogen bond donors and acceptors in the centers of peptides
have previously been shown to substantially impact TCR binding
and T cell sensitivity (39); thus the error in the low energy decoy
could be significant. The side chain of Tyr5 of the peptide is
incorrectly modeled in both cases, but in the low energy decoy,
this error is exacerbated by the error in the backbone
(Figure 6C). This test demonstrates the applicability of the
linSVR function for improving biologically relevant
structural predictions.

Error by Position Reveals the Central
Bulges of Peptides Are the Most
Challenging to Correctly Model
We next asked how peptide positions and amino acid types were
contributing to error in our modeling and selection approaches.
For each structure in Table S1, we compared the best decoy
(lowest HA RMSD from crystal structure), the decoy selected by
lowest Rosetta energy, and the best decoy selected by the linSVR
function, stratified by amino acid identity at each position of the
peptide. Amino acids were only considered if they were
represented in three or more peptides at a particular position
(for example, tryptophan was present at position 5 in at least
three peptides in the structures in Table S1). The data are
represented in Figure S5 and compiled into average deviations
by peptide position and amino acid in Figure 7. Several themes
emerge from this data. The best decoy data shows the accuracy
and limitations of the ref2015/KIC Rosetta modeling protocol.
Generally, the peptide backbone at positions 1-3 can be well
modeled (average RMSD < 0.4 Å), while deviations are larger at
positions 7-9 (Figure 7A; average RMSD near 0.7 Å). Errors in
the backbone of the centers of the peptides are higher (average
RMSD near 1.0 Å), reflecting the bulges present in nonameric
peptides bound to class I MHC proteins. These trends generally
hold for side chains, although the range of RMSD is larger, as
expected (Figure 7B).

Examining the position-dependent deviations by decoy selection
method reveals deeper insight and further validates the linSVR
selection function (Figures 7A, B). Decoys selected by lowest energy
are substantially error-prone for positions 4-6 for the backbone
(particularly at position 5) and positions 4-7 for the side chains.
Decoys selected by linSVR are also error-prone at these positions,
but the errors are much smaller. Indeed, the linSVR data are
essentially indistinguishable from the best decoy data in many
positions, reflecting the agreement seen in Figure 4.

Interestingly, the amino acid side chain data do not reveal clear
trends by amino acid type (Figure 7C). Once again, the linSVR
decoy data closely matches the best decoy data. Data for selection by
lowest energy is poorer for nearly all amino acids, but particularly so
for the large and chemically complex side chains of phenylalanine,
histidine, methionine, arginine, tryptophan, and tyrosine.

Applicability to Other MHC Haplotypes
We last examined the extent to which our modeling and selection
processes were generalizable to other HLA haplotypes, despite
Frontiers in Immunology | www.frontiersin.org 10
being trained on data from only HLA-A*02:01. We did not
consider different peptide lengths given the template-based
structural modeling and the fact that selection models were
trained on pockets associated with nonameric peptides. We
were substantially limited by the number of non-HLA-A*02:01
structures with nonameric peptides that met our criteria for high
resolution and clear peptide electron density. However, in five
other HLA-A systems, the linSVR function led to selection of a
more accurate decoy than did Rosetta energy in only two cases
(Figure S6). In 64 HLA-B systems, a more accurate decoy was
selected in only 12 cases, and in eight non-classical HLA systems
a more accurate decoy was selected in only two cases.
Assessments on murine class I MHC proteins were similar,
with two of three cases selected more accurately by linSVR for
H-2Dd, three of seven for H-Kb, and three of eight for H-2Kd. For
H-2Db, for which 38 high resolution structures of nonamers were
available, linSVR did not select a more accurate decoy for any of
them. These results confirm that the selection function trained
on HLA-A*02:01 is applicable only to HLA-A*02:01, reflecting
the sequence and structural differences among the various class I
MHC allotypes and how the regression on structural and
energetic terms accounts for unique features of HLA-A*02:01.
DISCUSSION

There has been long-standing interest in accurate prediction of
structural features of peptides bound and presented by class I
MHC proteins. This interest has grown with the advent of rapid
genome sequencing and the prospect of personalized, peptide-
based cancer vaccines, as well as the development of TCR-based
molecular and cellular therapeutics. However, while speed and
accessibility have improved over the years, improvements in
peptide-MHC modeling accuracy have been modest. Accuracy is
crucial in peptide-MHC modeling, as TCRs are highly sensitive
to subtle perturbations, and small changes in peptide backbone
or side chain positions can separate a strong agonist from an
irrelevant peptide (15, 76, 77). Here, we explored methods to
improve the accuracy of peptide-MHC structural modeling,
focusing on nonamers presented by the human class I protein
HLA-A*02:01. We addressed a key question common in
modeling efforts: from a range of structural models, or decoys,
which among them is the closest to the actual three-dimensional
structure and thus appropriate to use as a predicted structure?

Modern structural modeling methods typically involve the
generation of multiple decoys through various forms of Monte
Carlo sampling, frequently using algorithms incorporated into
the widely adopted Rosetta modeling suite (41). Most commonly,
a final decoy is selected based on the criteria of lowest computed
energy. However, across multiple systems, structurally divergent
decoys can be very similar in energy, and sometimes the lowest
energy decoy is not the most accurate (32–34). While in some
cases this could reflect the existence of protein dynamics, a
growing consensus is it is more often attributable to
inaccuracies and the necessary tradeoffs and simplifications in
energy functions (35, 36). Thus, the answer to the question of
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which decoy is most accurate can be a significant question that,
left unaddressed, can lead to errors and uncertainties in
structural modeling experiments and the conclusions drawn
from them.

Here, we examined the accuracy of Rosetta-based peptide-
MHC structural modeling procedures. As has been seen in other
cases where high fidelity is required, we show that scoring and
selecting decoys by energy is indeed poorly effective at
reproducing known structures (35). After identifying a more
optimal sampling approach, we used a large database of high-
resolution peptide/HLA-A*02:01 structures to train system-
specific functions to better predict the most accurate structural
model from a set of decoys. The functions included terms from
the ref2015 Rosetta energy function used to generate the decoys,
weighted for each amino acid of a nonameric peptide and its
molecular environment when bound to HLA-A*02:01, as well as
general structural features of the peptide-MHC complex. The
most accurate functions were implementations of support vector
machine regression, which compared to simpler least squares
analysis reduces the impact of noise in the data (linSVR) and
further allows for more complex relationships among data to be
considered (radSVR) (67). The SVR functions identified the
Frontiers in Immunology | www.frontiersin.org 11
most accurate model with extremely high fidelity, with our
linSVR function proving the most reliable. Indeed, across a
large dataset, the SVR selected decoys were indistinguishable
from the best computationally generated structure.

Thus, for nonamers bound by HLA-A*02:01 at least, further
improvements can only come from improvements in the actual
modeling protocols themselves. Areas for improvement include
more accurate energy functions and additional conformational
sampling. For the latter, comprehensive sampling of the atoms of
the MHC protein could be included: our protocols resulted in no
changes to in the backbone and only a 0.21 Å average variation in
the side chains of the peptide binding groove. Experimentally, the
values are also small (0.48 ± 0.07 Å for the backbone and 1.04 ±
0.08 Å for the side chains), but individual cases can show larger
variations that are likely coincident with peptide structural
features (49). Allowing select amino acids known to be more
conformationally labile (such as the short region linking the
short and long components of the class I MHC a2 helix) may
lead to further improvements. We might also consider the
influence of crystal l ine environments at cryogenic
temperatures, which may limit overall accuracy with energy
functions that incorporate other data (78).
A B

C

FIGURE 7 | Stratification of peptide RMSD from crystal structure by peptide position and amino acid reveals peptide central bulges are the most difficult to model,
without clear trends in amino acid type. (A, B) Average RMSDs from crystal structures by peptide position for backbone atoms (A) and side chain atoms (B). Data
for the best decoys, optimal decoys selected by linSVR, and decoys selected by lowest Rosetta energy are indicated. The central regions of peptides are the most
difficult to model correctly. Once again, decoys selected by linSVR are more accurate than those selected by Rosetta energy. (C) As in panels (A, B), but heavy
atoms by amino acid type. There are no clear trends for modeling accuracy, but selection by Rosetta energy score performs particularly poorly with the large and
chemically complex side chains of phenylalanine, histidine, methionine, arginine, tryptophan, and tyrosine.
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Not unexpectedly, the most difficult region of the peptide to
model (and the largest contributor to error) is the central bulge
that includes positions 4-6 of nonameric peptides. One route to
improving modeling in this region could be the incorporation of
knowledge-based restraints such as amino acid preferences for
secondary anchors and their structural dispositions in peptide/
HLA-A*02:01 complexes. Similar restraints are already
incorporated into energy functions used in modeling generally,
where statistical potentials are used to assess favorability of
residue-specific backbone dihedrals and side chain rotamers.

A limitation of our work is the trained decoy selection functions
are applicable only to nonamers presented by HLA-A*02:01. On
one hand, HLA-A*02:01 represents one of the most common class I
MHC proteins in human populations, and nonamers are most
frequently presented by HLA-A*02:01 (79). On the other hand,
neoantigens or other relevant epitopes are very frequently associated
with other HLA proteins. Similarly, peptides of other lengths are
relevant for all classical class I MHC proteins. One route past these
limitations is to generate additional experimental structural data for
other class I MHC proteins and peptide lengths, which could be
used for similar training on other alleles and peptide lengths. While
not insurmountable, this approach is not practical in the near term.
A more rapid route could be inclusion of features describing the
variety of MHC residues directly interacting with peptides and
developing functions that are either agnostic to or incorporate
various peptide lengths, similar to tools for predicting peptide-
MHC binding affinity that utilize pseudosequences or gapped
alignments (9, 80). As mentioned above, these features could also
be treated with knowledge-based restraints or statistical potentials.
While these steps await future work, our current results nonetheless
serve as an important proof of concept. Importantly, given the
significance of nonamer/HLA-A*02:01 complexes, our selection
functions (and linSVR in particular) should have immediate
utility in select immunotherapeutic and other efforts for which
structural information would be advantageous.
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