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Stéphanie Boisson-Dupuis7,10,11, Jacinta Bustamante 7,10,11,13,
Richard E. Randall6, Timothy D. McHugh14,
Adrian J. Thrasher8,15 and Siobhan O. Burns 1,2*†

1Institute of Immunity and Transplantation, University College London, London, United Kingdom,
2Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust,
London, United Kingdom, 3School of Medicine, Universidad Complutense, Madrid, Spain,
4Department of Immunology, Hospital Universitario Son Espases, Palma, Spain, 5Research Unit,
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Purpose: Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from

multiple cytokine receptors, including interferon alpha/beta and gamma

(IFN-a/b and IFN-g), which are important for viral and mycobacterial

protection respectively. We previously reported autosomal recessive (AR)

hypomorphic JAK1 mutations in a patient with recurrent atypical

mycobacterial infections and relatively minor viral infections. This study tests

the impact of partial JAK1 deficiency on cellular responses to IFNs and

pathogen control.

Methods:We investigated the role of partial JAK1 deficiency using patient cells

and cell models generated with lentiviral vectors expressing shRNA.

Results: Partial JAK1 deficiency impairs IFN-g-dependent responses in multiple

cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed

B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1
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deficiency reduced phagosome acidification and apoptosis and resulted in

defective control of mycobacterial infection with enhanced intracellular

survival. Although both EBV-B cells and primary dermal fibroblasts with

partial JAK1 deficiency demonstrate reduced IFN-a responses, control of

viral infection was impaired only in patient EBV-B cells and surprisingly intact

in patient primary dermal fibroblasts.

Conclusion: Our data suggests that partial JAK1 deficiency predominantly

affects susceptibility to mycobacterial infection through impact on the IFN-g
responsive pathway in myeloid cells. Susceptibility to viral infections as a result

of reduced IFN-a responses is variable depending on cell type. Description of

additional patients with inherited JAK1 deficiency will further clarify the

spectrum of bacterial and viral susceptibility in this condition. Our results

have broader relevance for anticipating infectious complications from the

increasing use of selective JAK1 inhibitors.
KEYWORDS

JAK1, IFN immunity, immunodeficiency, mycobacterial disease, viral susceptibility
Introduction

The widely expressed Janus kinase (JAK) family of tyrosine

kinases are essential for signal transduction through interleukin

(IL) and interferon (IFN) cytokine receptors. JAK family

members (JAK1, JAK2, JAK3 and TYK2) associate with

receptors individually or in pairs resulting in recruitment and

phosphorylation of signal transducers and activators of

transcription (STAT) proteins and transcription of STAT-

responsive genes (1–3). In total the JAK/STAT pathway

regulates multiple cellular functions including growth,

differentiation and homeostasis although individual JAK/STAT

molecules play specific roles in different cell types (4).

The roles of several members of the JAK family for immune

cell function have been clarified through investigation of human

and murine deficiency states (5, 6). For example, autosomal

recessive (AR) complete JAK3 deficiency typically cause severe

combined immunodeficiency (SCID) characterized by absence

of autologous T and NK cells, highlighting the importance of

JAK3 signaling from interleukin (IL)-2 receptor subunit gamma

(IL-2RG)-containing IL receptors for development of these

lineages (7–10). On the other hand, AR complete TYK2

deficiency result in susceptibility to mycobacterial and viral

disease as a result of impaired signaling from the IL-12/IL-23/

IL-10 and IFN-a/b receptors respectively (5, 11–13). AR partial

P1104A-TYK2 deficiency has limited predisposition to

mycobacterial disease due to selectively impaired responses to

IL-23 but not other cytokines (13, 14), highlighting that

complete and partial deficiencies can have different cellular
02
and clinical phenotypes. Autosomal dominant (AD) JAK1 gain

of function (GOF) mutation was reported in patients with severe

multisystem autoinflammatory disease (15). However, defining

the specific effect of JAK1 deficiency on the immune system has

been hampered by perinatal lethality in murine models of

complete JAK1-deficiency as a result of neurological defects (1).

We have reported the first, and to date only, case of human

inherited AR partial JAK1 deficiency associated with two

germline homozygous missense mutations in the pseudokinase

domain of JAK1 (16). Together these mutations had a

hypomorphic effect on JAK/STAT signaling associated with

reduced kinase function and a slight reduction in JAK1

protein expression (16, 17). Although JAK1 cooperates with

JAK3 for common gamma chain (gc) receptor signaling,

lymphocyte development and function were relatively well

preserved. Instead, recurrent atypical mycobacterial disease

was the dominant clinical phenotype, grouping JAK1

deficiency with other diverse genetic defects of the IFN-g
immunity as a cause of syndromic mendelian susceptibility to

mycobacterial disease (MSMD, Supplementary Table 1), (18).

Somewhat surprisingly given the partnership of JAK1 with

TYK2 for IFN-a/bR signaling (12, 19–26), serious viral

infections were not seen. Flat forehead warts, which are

unusual in immunocompetent individuals, were present but

not sampled for virus identification. These features suggest a

non-redundant role for JAK1 in IFN-gR signaling but its relative

importance for IFN-a/bR signaling remains unclear.

In our previous analysis of AR partial JAK1 deficiency,

responses to IFN-a and IFN-g were defective in primary
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dermal fibroblasts and in whole blood analysis (16). As partial

deficiency of another JAK family protein, TYK2, has different

impact depending on the specific cell type examined (13), we

set out to expand our previous findings and test the impact of

partial JAK1 deficiency on pathogen control. Here, using a

combination of patient cells and knock down cell lines,

including fibroblasts, B- and myeloid cells, we specifically

investigate the impact of partial JAK1-deficiency on IFN

signal ing in hematopoiet ic and non-hematopoiet ic

cell lineages.
Materials and methods

Patients cells and human cell lines

THP-1 cells were obtained from the American Type

Culture Collection (ATCC #TIB-202). EBV-B cells from

patients and healthy controls were derived from peripheral

blood mononuclear cells (PBMCs) (27). Informed written

consent was obtained in accordance with the Declaration of

Helsinki and ethical approval from the Great Ormond Street

Hospital for Children NHS Foundation Trust and the

Institute of Child Health Research Ethics Committee

(Reference Number: 06/Q0508/16). For cell culture details,

see Supplemental Methods.
Lentivirus preparation and transductions

JAK1 knock down (KD) and scrambled control (Sc) cell lines

were generated using lentiviral vectors expressing short hairpin

RNA (shRNA) sequences as previously described (17). For

further information, see Supplemental Methods.
Determination of mRNA levels by real
time-quantitative polymerase chain
reaction and reverse transcription
polymerase chain reaction

THP-1 cells were stimulated or left unstimulated with 50 ng/

ml IFN-g (Invitrogen) for 24h. Total RNA from cells was

extracted using RNAeasy kit (Qiagen) and converted to cDNA

by reverse-transcription using Quantitect reverse transcription

kit (Qiagen). Determination of mRNA level was performed by

RT-PCR using specific primers (Supplementary Table 2) and

QuantiTect SYBR® Green PCR Kit (Qiagen) according to

manufacturer’s instructions. Fold changes were calculated

using the DDCT2 (-Delta Delta C(T)) method and results

normalized with respect to the values obtained for the

endogenous ACTIN and GAPDH cDNA. See supplemental
Frontiers in Immunology 03
methods for assessment of MX1 and OAS1 following IFN-

a stimulation.
Flow cytometry analysis of
STAT phosphorylation

THP-1 cells were stimulated with 103 IU/ml IFN-a2b or 50
ng/ml IFN-g. EBV- B cells were stimulated with 105 IU/ml

IFN-a2b or 500 ng/ml IFN-g for 10 min. Cells were fixed using

fix buffer I and permeabilized using Perm Buffer III (BD

Biosciences) for 30 min at 4°C, and labelled with anti-

pSTAT1 (clone 4a, BD Biosciences) or anti-STAT1 (clone 1/

Stat1, BD Biosciences) antibodies for 60 min at room

temperature. At least 10000 gated events were acquired on a

BD LSRFortessa cytometer and data were analyzed using

FlowJo software (Tree Star Inc., USA). Data on graphs is

shown as relative increase (mean fluorescence intensity

(MFI) of stimulated cells – MFI of unstimulated cells/MFI

unstimulated cells).
Infection models with bacteria in vitro

For details of Mycobacterium bovis Calmette–Gueŕin

(BCG) and Salmonella typhimurium, including culture, see

Supplemental Methods. THP-1 cells were differentiated into

macrophages using 10 ng/ml of phorbol myristate acetate

(PMA) for 48 h and then were left unstimulated or stimulated

with IFN-g 50 ng/ml for 18 h before infection. Cells were

infected using stocks (BCG) or bacteria in mid-log grow

phase (Salmonella), using a multiplicity of infection (MOI)

of 20:1 for BCG expressing-mCherry and 10:1 for BCG and

Salmonella. Monolayers were incubated for 4 h with BCG

and 30 min with Salmonella at 37°C in 0.5% CO2.

Infected cells were washed to remove extracellular bacteria.

To kill extracellular bacteria after Salmonella infection, cells

were incubated in complete medium with Gentamicin (100

µg/ml) for two hours. Subsequently, macrophages were

incubated in fresh complete medium, in the presence or

absence of IFN-g (50 ng/ml) for different time points

(detailed in the legends).
Harvest of infected macrophage lysate
for CFU plating

Cells were lysed at 3 days for BCG infection or 24 h for

Salmonella infection with 0.05% SDS w/v in H2O and serial

dilutions plated out on Middlebrook 7H11 or LB agar plates

followed by incubation at 37°C for 14 days for BCG infection or

12 h at 37°C after Salmonella infection. Bacterial survival,
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measured as CFU for each condition, was expressed as a

percentage of the CFU counted in the untreated Sc control.
Quantification of the infected cells by
flow cytometry

Macrophages differentiated from Sc and KD THP-1 cell lines

using PMA, were left unstimulated or stimulated with IFN-g
(50ng/ml) before infection with BCG expressing-mCherry

strains (MOI 20:1). After phagocytosis, cells were washed and

incubated in complete medium in the presence or absence of

IFN-g (50 ng/ml) for the given time points. Cells were removed

from the plate using Accutase® solution (A6964, Sigma Aldrich),

washed with PBS, fixed in 4% paraformaldehyde (PFA) for 10

min and analyzed by flow cytometry (BD LSRFortessa)

using FlowJo.
Microscopy

200,000 THP-1 cells were differentiated on 35mm glass

bottom dishes (Fluorodish) for microscopy experiments. For

further details see Supplemental Methods.
pH sensitivity of pHrodo-labelled BCG

BCG-lux were labelled with pHrodo™ (Invitrogen) at a

concentration of 25mM according to the manufacturer’s

instructions, except for omission of the 100% methanol step.

Approximately 100,000 CFU were resuspended in 500 µl buffer

at pH 7. Samples were then acquired on a BD Fortessa flow

cytometer (BD LSRFortessa), and pHrodo fluorescence was

measured in the PE-Texas Red channel, and analyzed

using FlowJo.
Apoptosis assays

Macrophages were left unstimulated or stimulated with IFN-

g (50ng/ml) before BCG infection (MOI 10:1). Percentage of

apoptosis was determined using APC Annexin V apoptosis

detection kit with PI (BioLegend 640932) according to

manufacturer ’s instructions by flow cytometry (BD

LSRFortessa), and analyzed using FlowJo.
Viral assays

Primary dermal fibroblast and EBV-B cells viral assays were

performed as previously described (24, 28–31). For further

details see Supplemental Methods.
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Statistical analysis

Statistical analysis was performed with Graph Prism Version

5.01. The following tests were used: One-way ANOVA;

Wilcoxon-Signed Rank for pairwise comparisons; Mann-

Whitney for unpaired comparisons. Results were expressed as

mean ± SEM. P-values < 0.05 were considered significant.
Results

Partial JAK1 deficiency impairs STAT1
phosphorylation and expression of
IFN-g-inducible genes in THP-1 cells

As the patient with AR partial JAK1 deficiency presented

predominantly with MSMD (Table S1), we sought to establish

a model to examine the role of JAK1 in myeloid cells during

mycobacterial infection. As patient blood was not accessible,

for this study we generated a THP-1 monocytic cell line with

sub-total JAK1 knock-down (KD) to model partial JAK1

deficiency using lentiviral vectors expressing short hairpin

RNA (shRNA) sequences. The JAK1 KD model does not

fully recapitulate the impact of the patient’s variants which

preserved expression of mutant JAK protein that had reduced

signaling function (16) but allows assessment of reduced JAK1

function by reducing protein expression. Compared to control

shRNA, JAK1 shRNA substantially reduced JAK1 messenger

RNA expression for three out of four hairpins tested (Figure

S1A). THP-1 cells transduced with JAK1 shRNA #3 were

utilized for further studies. Compared with shRNA control

cells, 25-30% JAK1 protein expression was detected in JAK1

shRNA #3 cell lines using western blotting, in keeping with

partial knock down (Figure S1B). To test whether the level of

JAK1 reduction was sufficient to impair JAK1 protein function,

we studied JAK1-mediated phosphorylation of STAT1 in

response to IFN-g stimulation, using flow cytometry. We

observed a significant decrease in STAT1 phosphorylation

following IFN-g stimulation in the THP-1 JAK1-KD

cells compared to scrambled control shRNA cell lines (Sc)

(p<0.05) (Figures 1A, B). Surprisingly, STAT1 phosphorylation

in response to IFN-a stimulation was not significantly reduced

(Figures 1C, D), suggesting that partial impairment of JAK1

function affects predominantly the IFN-g response in THP-1

cells. Following stimulation with IFN-g, upregulation of

interferon regulatory factor 1 (IRF1) and Class II

Transactivator (CIITA) mRNA was significantly lower in the

KD than Sc lines, indicating impaired downstream gene

transcription in JAK1 deficiency (Figures 1E, F). In contrast,

upregulation of 2’-5’-oligoadenylate synthetase 1 (OAS1) and

MX1 in response to IFN-a stimulation was preserved

(Figures 1G, H). Our findings were unlikely to be due to
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alterations in the surface expression of IFN-g or IFN-a
receptors as surface levels of IFNGR1 and IFNAR2 were

comparable between JAK1 KD and Sc cell lines at baseline

and after stimulation with their ligand (Figures S2A–D). As

seen in THP-1 cells, partial JAK1 deficiency had a clear impact

on IFN-g signaling in primary dermal fibroblasts and EBV B-

cells from the patient with AR JAK-1 deficiency, resulting in

significantly reduced STAT1 phosphorylation following IFN-g
stimulation (Figures 1I, J) and (Figures S3A, B), albeit to a

lesser degree that seen in fibroblasts from a patient with

complete IFN-gR deficiency (16) (Figure S3B).
Frontiers in Immunology 05
Partial loss of JAK1 function enhances
mycobacterial and salmonella survival in
myeloid cells

To test the impact of reduced JAK1 function on IFN-g-
mediated host defense to intracellular pathogens we utilized

BCG as a well-established model for mycobacterial infection

(32). Macrophages differentiated from the THP-1-JAK1 KD and

Sc cell lines were infected with BCG, with or without prior IFN-g
stimulation. JAK1 KD and Sc THP-1 cells were capable of

internalizing BCG, as seen by confocal microscopy
A B

D

E F G

IH J

C

FIGURE 1

STAT1 responses are impaired in JAK1-deficient THP-1 cells, fibroblasts and EBV-B cells. (A–D) Analysis of JAK/STAT signaling by flow cytometry
(FC) in THP-1 cells after IFN-g/IFN-a stimulation. (A) and (C) display a representative experiment, (B) and (D) are from four independent
experiments. Two-tailed Mann Whitney test. (E, F) RTqPCR analysis of IRF1 and CIITA expression from THP-1 cells after IFN-g stimulation. Data is
from five independent experiments. Two-tailed Mann Whitney test. (G, H) RT-qPCR analysis of MX1 and OAS1 expression in THP-1 cells after
stimulation with 1000 IU/ml IFN-a. Graphs represent the mean of three experiments. Data was compared using unpaired t-test. (I, J) Analysis of
JAK/STAT signaling by FC in control and patient fibroblasts and EBV-B cells after stimulation with IFN-g. Data are from four independent
experiments. Two-tailed Mann Whitney test. *P <0.05; NS, not significant.
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(Figure 2A). Using confocal analysis and a lysotracker dye which

increases fluorescent intensity in low pH (33), both Sc and JAK1

KD cell lines were observed to traffic a proportion of internalized

BCG into acidified compartments (Figure S4A).

To better quantitate BCG infection, THP-1 macrophages

were co-cultured with mCherry-expressing BCG and analyzed

by flow cytometry. Similar levels of bacteria were internalized by

KD and Sc lines at 4 hours, and this was largely unaffected by

IFN-g stimulation (Figures 2B, C), indicating that loss of JAK1

does not significantly impact phagocytosis. As expected, at both

24 and 72 hours, IFN-g stimulation significantly reduced

mCherry fluorescence in Sc lines consistent with lower

bacterial survival. In contrast, IFN-g had no significant impact

on mCherry levels in KD lines (Figures 2B, C). To confirm that

JAK1 deficiency promotes intracellular BCG survival, KD and Sc

lines were lysed on culture plates 3 days after infection and BCG

titers were quantitated by counting colony forming units (CFU/

ml). As seen in flow cytometry assays, BCG survival was higher

in KD lines indicating an important role for JAK1 in controlling

mycobacterial infection (Figure 2D). Similar findings were

obtained with Salmonella typhimurium (Figure 2E), another

intracellular pathogen known to require IFN-g for control of

the bacterial infection, with significantly higher bacterial survival

seen in KD than Sc cells. Together these results demonstrate that

JAK1-deficient myeloid cells permit enhanced intracellular

mycobacterial and salmonella survival in vitro.
Partial JAK1 deficiency impairs IFN-g-
induced phagosome acidification and
apoptosis in myeloid cells

To further explore the mechanisms promoting enhanced

bacterial intracellular survival in myeloid cells with reduced

JAK1 function, phagosome acidification and apoptosis were

tested as these are key IFN-g-dependent steps in the control of

mycobacterial infection (34–39). Following infection of THP-1-

derived macrophages with pHrodo-labelled BCG, phagosomal

acidification was measured by measuring fluorescence, which is

released in the context of low pH. Even in the absence of IFN-g
stimulation, both Sc and KD THP-1 cells had relatively high

levels of pHrodo fluorescence, which relates to the high baseline

lysosomal content in PMA differentiated THP-1 macrophages

(40) (Figure 3A and Figure S4B). Fluorescence intensity was

increased after IFN-g-stimulation in Sc cells lines consistent with

additional IFN-g-mediated induction of acidification

(Figures 3A, B). In contrast there was no increase in

acidification in the KD cell line following IFN-g stimulation.

To test whether partial JAK1 deficiency is sufficient to impair

IFN-g-induced apoptosis, Annexin V/PI staining was measured

by flow cytometry. Sc control and KD THP-1 cells had similar

baseline levels of apoptosis which was not significantly increased

5 days after BCG infection alone (Figures 3C, D). In contrast,
Frontiers in Immunology 06
IFN-g pre-treatment induced significant apoptosis at both 3 and

5 days after BCG infection in Sc control cells compared with

untreated Sc control cells, an effect that was abrogated in KD

cells (Figures 3C, E and Figure S5). Together our data suggest

that defective intracellular bacterial killing in myeloid cells with

reduced JAK1 function is at least in part due to impaired IFN-g-
induced phagosome maturation and apoptosis.
Partial JAK1 deficiency impairs anti-viral
response in EBV-B cells but not in
fibroblasts

To test viral susceptibility in JAK1 deficient cells, we utilized

established viral infection models in both fibroblast and EBV-B

cells (24, 41, 42). We have previously demonstrated reduced

STAT1 phosphorylation following IFN-a stimulation in

primary dermal fibroblasts from the patient with AR partial

JAK1 deficiency (16). We also observed reduced STAT1

phosphorylation following IFN-a in EBV-B cells from the

same patient with AR partial JAK1 deficiency, albeit to a lesser

degree than that seen in IFNAR-deficiency (Figures S6A, B). For

fibroblast infections, we used Parinfluenza virus 5 (PIV5) and

highly attenuated recombinant strains of PIV5 (PIV5VDC) that
lack defined functional IFN antagonists (33, 34). This virus is

weakly virulent forming only pinpoint plaques in cells that

produce and respond to IFN but with ability to form large

plaques if the IFN system is impaired. As previously shown (41),

fibroblast monolayers from patients with complete STAT2

deficiency supported the formation of large plaques (infected

cells) of PIV5 and PIV5VDC, demonstrating uncontrolled viral

infection resulting from failure of the IFN-a response

(Figure 4A). Fibroblast monolayers from heathy control and

the patient with partial JAK1 deficiency prevented large viral

plaque formation indicating successful viral control (Figure 4A).

This assay relies on production of endogenous IFN-a by infected

fibroblasts and therefore reflects cellular response to

physiological concentrations of IFN.

We also tested whether partial JAK1 deficiency altered the

capacity of fibroblasts to respond to exogenous addition of IFN-

a to control PIV5 infection. Using immunostaining to visualize

intracellular virus, loss of viral fluorescence was seen during

successful suppression of viral infection in healthy control

fibroblasts treated with IFN-a (Figure 4B). Comparable viral

suppression was mediated by patient fibroblasts after IFN-a
stimulation suggesting partly preserved IFN-a responses in

fibroblasts with reduced JAK1-function (Figure 4B). Using a

separate model, fibroblasts from healthy controls and patient

were infected with herpes simplex virus-1 (HSV-1), showing

control of viral infection 24h after treatment with exogenous

IFN-a (Figure S7).

To further test the impact of partial JAK1 deficiency on

host viral protection we used a separate model in which EBV-
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B cells are infected with VSV. As expected, healthy control

EBV-B cells controlled viral infection when treated with

exogenous IFN-a, evidenced by lower viral titers compared

with untreated cells at 24h and 48h after infection (Figure 4C).

In contrast, EBV-B cells from the patient with AR partial

JAK1-deficiency exhibited no reduction in viral titers in the

presence of IFN-a indicating a significantly reduced response

to IFN-a. In this assay, VSV titers in infected patient EBV-B

cells were comparable to STAT1-deficient EBV B-cells after

24h and 48h of infection (Figure 4C). Together these results

suggest that partial JAK1 deficiency results in impaired viral
Frontiers in Immunology 07
protection with variable impact according to the cell

type involved.
Discussion

An increasing number of disease-causing mutations have

been described in type I and type II IFN pathways (5, 18, 21, 25,

26, 41, 43–46) (Table S1). Defects of IFN-g-mediated immunity

give rise to mycobacterial susceptibility (MSMD) while loss of

IFN-a/b function results in viral infection of varying severity,
A

B

D E

C

FIGURE 2

JAK1-deficient THP-1 cells show increased mycobacterial and Salmonella survival after IFNg stimulation. (A) Internalization of mCherry-BCG by
THP-1 cells, unstimulated or stimulated with IFN-g. A is from a representative experiment. (B, C) FC quantitation of mCherry-BCG in THP-1
cells; mCherry fluorescence was measured in the PE-Texas Red channel. Black line – BCG infected cells, gray line – BCG infected cells + IFN-g
stimulation. B displays a representative experiment; C is from five independent experiments. (D, E) Bacterial survival in THP-1 cells infected with
BCG or Salmonella strains, with or without IFNg stimulation. Data is from six and four independent experiments respectively. Two-tailed Mann
Whitney test. *P <0.05; NS, not significant.
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ranging from relatively mild to fatal disease (18, 21, 24, 25, 41,

42, 45–49). Typically, overlap of mycobacterial and viral

phenotypes occurs where the defective signaling molecule is

shared by both pathways, for example in TYK2 or STAT1

deficiency (24), although the degree of infection susceptibility

depends on how and to what extent signaling is impaired (50).

We previously identified homozygous mutations in JAK1

causing AR partial JAK1 deficiency in a patient with

mycobacterial susceptibility (16). Although JAK1 is shared by

both IFN-g and IFN-a/b/l signaling pathways, severe viral

infections were absent into adulthood. In contrast with other

inherited defects of IFN-a/b/l signaling (43), vaccine strain

measles, mumps and rubella as well as wildtype CMV, EBV and
Frontiers in Immunology 08
VZV were tolerated normally in this patient without serious

clinical disease.

Here we investigated the specific impact of partial JAK1-

deficiency on IFN-g and IFN-a/b signaling using several

different cell line models generated either from our patient,

where mutations in the pseudokinase domain resulted in a

slightly reduced level of JAK1 protein which lacked full kinase

function (16), or using shRNA to reduce wild type JAK1 protein

expression. While the shRNA JAK1 KD model does not fully

recapitulate the patient’s variants, it remains a useful model to

assess the effects of partial JAK1 function on cell function. Using

in vitro infection models with BCG and Salmonella, myeloid

lineage THP-1 cells generated using shRNA to achieve partial
A B

D E

C

FIGURE 3

Phagosome acidification and apoptosis is reduced in JAK1-deficient THP-1 cells. (A, B) FC measurement of phagosome acidification using
detection of pHrodo-labelled BCG post infection of THP-1 cells, with or without prior IFN-g stimulation. Data is from six independent
experiments. (C–E) Percentage of apoptosis quantified by FC using annexin V/PI staining in THP-1 cells at different time points following BCG
infection, with or without IFN-g stimulation. C displays a representative experiment 5 days post infection. D and E are from four independent
experiments, showing 5 day (D) and 1, 3 and 5 day (E) timepoints. Statistical comparisons in E are for Sc+BCG+IFN vs. KD+BCG+IFN. Two-tailed
Mann Whitney test. *P <0.05; NS, not significant.
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JAK1-deficiency (25-30% residual JAK1 protein expression)

supported enhanced bacterial survival after IFN-g stimulation,

reminiscent of uncontrolled mycobacterial replication

previously reported in IFN-gR1-deficient human iPSC-derived

macrophages (51). IFN-g-activated healthy macrophages are

more resistant to mycobacterial infection by the induction of

several discreet mechanisms that promote mycobacterial killing

(52–55), such as expression of IFN-g-inducible genes (IRF1 and
CIITA), phagosome maturation and apoptosis (35–37, 56, 57),

all of which were found to be reduced in the JAK1 knock down

cell line after IFN-g stimulation. Therefore, we concluded that, in

myeloid cells, JAK1 is non-redundant for multiple aspects of the

IFN-g-response required to control intracellular bacterial

infection. Our data shows that partial disruption of JAK1
Frontiers in Immunology 09
signaling is sufficient to impair anti-mycobacterial protection,

which has implications for the expected phenotype of

hypomorphic JAK1 mutations and for the increasing use of

JAK1 inhibitors in other areas of medicine. In our THP-1

macrophage model, expression of JAK1 protein was reduced

by 70-75% which significantly reduced STAT1 phosphorylation

and gene expression following IFN-g stimulation but supported

relatively normal pSTAT1 and gene expression after IFN-a
stimulation. Further work is required to determine what levels

of residual JAK1 expression and signaling function are required

to preserve immune competence against mycobacteria in vitro

and, more importantly, in vivo.

Given the known role of JAK1 in signaling from the IFN-a/b
receptor, we studied the ability of dermal fibroblasts and EBV-B
A B

C

FIGURE 4

Variable in vitro antiviral response in fibroblasts and EBV B cells of the patient with JAK1 deficiency (A) Relative plaque sizes of the PIV5/PIV5VDC
virus visualized by immunostaining in fibroblasts from patients with partial JAK1, complete STAT2 deficiency and healthy control. (B)
Visualization of PIV5 virus-infected cells by immunofluorescence in control and JAK1 deficient patient fibroblast, with or without IFN-a pre-
treatment. Data display a representative experiment from three independent experiments. (C) Determination of VZV viral load in EBV-B cells
from the patient with partial JAK1, complete STAT1 deficiency, and two healthy controls (C1 and C2), with or without pre-treatment with IFN-a.
Data is from three independent experiments. One-tailed Mann Whitney test. *P <0.05; NS, not significant.
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cells from the JAK1-deficient patient to develop antiviral

responses in vitro. Surprisingly, despite a documented

reduction in STAT1 signaling in patient primary dermal

fibroblasts (16), we found no detectable susceptibility to viral

infection using three different viruses, suggesting that residual

JAK1 activity was sufficient to preserve sufficient IFN-a
response for the control of viral proliferation in that cell type.

In contrast, the patient’s EBV-B cells showed lack of viral

protection following VSV infection, which may indicate a

more pronounced impact of partial JAK1 deficiency on the

type I IFN response in hematologic cells. Although in our

patient we observed only flat warts (which were presumed to

be due to HPV) without life-threatening viral infections, the

description of additional patients may broaden the phenotype of

JAK1 deficiency in humans and provide opportunities to further

assess the relative importance of JAK1 for viral protection in

hematopoietic and non-hematopoietic cell types. Future studies

should also address the impact of JAK1 deficiency on IFN-l
signaling which is important for viral protection in epithelial

cells, natural killer and dendritic cells (58). It remains possible

that patients with JAK1 deficiency retain relatively normal viral

susceptibility in specific cell types in vivo as result of other

antiviral mechanism, as has been suggested for patients with

complete STAT2 deficiency who also have surprisingly mild

viral infections (41).

Here we provide the first evidence that partial loss of JAK1

function results in mycobacterial susceptibility by reducing

multiple aspects of the IFN-g response in myeloid lineage cells.

Our data suggest that the predominant effect of partial JAK1

deficiency is on the IFN-g pathway, as IFN-a but not IFN-g
responses were preserved in our shRNA model despite 70-75%

loss of JAK1 expression. Although viral susceptibility was also

observed in vitro, this varied according to cell type. Our findings

contrast with the adverse effect profile published with early trails

of the selective JAK1 inhibitors, filgotinib and upadacitinib,

where herpes zoster viral infections and not mycobacterial

disease predominate (59–62). However, even though filgotinib

is considered a JAK1 selective inhibitor, it still has a role in

inhibiting other JAKs with IC50 of 10 nM, 28 nM, 810 nM, and

116 nM for JAK1, JAK2, JAK3, TYK2, respectively. This possible

inhibitory effect to the other JAKs may influence viral

susceptibility (63). More extensive use of the JAK1/JAK2

inhibitor ruxolitinib is associated with a greater risk of

mycobacterial infections (Mycobacterium tuberculosis and

atypical mycobacterial infections) in the treatment of patients

with myelofibrosis and polycythemia vera (64, 65).

We support a recommendation that previous mycobacterial

infection should be investigated when considering the use of JAK

inhibitors (66) and suggest tuberculin skin testing and an IFN-g
release assay (IGRA) prior to the prescription of JAK1 inhibitors.

Longer experience with pharmacological JAK1 inhibition and

identification of additional patients with germline JAK1

deficiency, including perhaps patients with more common and
Frontiers in Immunology 10
milder forms of JAK1 deficiency as recently shown for TYK2

(13), will allow us to better understand the relative importance of

JAK1 for specific cytokine pathways governing host protection

in vivo.
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BCG Bacillus Calmette-Guérin

CFU Colony forming units

CIITA Class II Transactivator

CMV Cytomegalovirus

DMEM Dulbecco’s Modified Eagle’s Medium

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

EBV Epstein-Barr virus

EBV-B cells Epstein-Barr Virus-Transformed B cells

FC Flow cytometry

FCS Fetal calf serum

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

GFP Green fluorescent protein

GOF Gain of function

HPV Human papilloma virus

HSV Herpes simplex virus

IFN-a Interferon alpha

IFN-l Interferon lambda

IFN-g Interferon gamma

IFNAR Interferon alpha receptor

IFNGR Interferon gamma receptor

IL Interleukin

IRF Interferon regulatory factor

IU International unit

JAK Janus Associated Kinase

KD Knock down

LOF Loss-of-function

MFI Mean fluorescence intensity

MHC Major histocompatibility complex

MOI Multiplicity of infection

MSMD Mendelian susceptibility to mycobacterial disease

OD Optical density

PBMCs Peripheral blood mononuclear cells

PBS Phosphate-buffered saline

PCR Polymerase chain reaction

PFA Paraformaldehyde

PFU Plaque-forming unit

PI Propidium Iodide

PID Primary immunodeficiency

PIV5 Parainfluenza virus 5

PIV5VDC Attenuated recombinant strain of PIV5

PMA Phorbol myristate acetate

P/S Penicillin-streptomycin

qPCR Quantitative real-time PCR

RNA Ribonucleic acid

RT-PCR Reverse transcription polymerase chain reaction

RT-qPCR Real time-quantitative polymerase chain reaction

(Continued)
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SC scrambled control

SCID Severe combined immunodeficiency

SDS-PAGE Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

SE Standard deviation

SEM Standard error of the mean

shRNA Short hairpin RNA

STAT Signal transducer and activator of transcription

TYK2 Tyrosine kinase 2

VSV Vesicular stomatitis virus

VZV Varicella zoster virus

WT Wild type

gc Common gamma chain
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