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Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants
of concern (VOCs) with different resistance levels to existing immunity have recently
emerged. Antibodies that recognize the SARS-CoV-2 spike (S) protein and exhibit
neutralizing activities are considered the best correlate of protection and an
understanding of humoral immunity is crucial for controlling the pandemic. We thus
analyzed such antibodies in individuals recovered from infection in 2020 as well as
vaccinees after two doses of an mRNA vaccine.

Methods: Neutralizing antibody responses against three SARS-CoV-2 variants (D614G,
VOCs Beta and Delta) were determined in serum samples from 54 infected individuals (24
non-hospitalized, 30 hospitalized) and 34 vaccinees shortly after symptom onset or
second vaccination, respectively, as well as six months later. In addition, the effect of the S
sequence of the infecting strain on neutralization was studied.

Results: Non-hospitalized patients had the lowest neutralization titers against all variants,
while those of hospitalized patients equaled or exceeded those of vaccinees. Neutralizing
activity was lower against the two VOCs and declined significantly in all cohorts after six
months. This decrease was more pronounced in hospitalized and vaccinated individuals
than in non-hospitalized patients. Of note, the specific neutralizing activity (NT titer/ELISA
value ratio) was higher in the infected cohorts than in vaccinees and did not differ between
non-hospitalized and hospitalized patients. Patients infected with viral strains carrying
mutations in the N-terminal domain of the spike protein were impaired in Beta VOC
neutralization.

Conclusions: Specific neutralizing activities were higher in infected than in vaccinated
individuals, and no difference in the quality of these antibodies was observed between
hospitalized and non-hospitalized patients, despite significantly lower titers in the latter
group. Additionally, antibody responses of infected individuals showed greater
heterogeneity than those of vaccinees, which was associated with mutations in the
spike protein of the infecting strain. Overall, our findings yielded novel insights into SARS-
CoV-2-specific neutralizing antibodies, evolving differently after virus infection and COVID-
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19 vaccination, which is an important issue to consider in ongoing vaccine strategy

improvements.
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INTRODUCTION

Since its emergence, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has evolved into multiple variants,
some with mutations that affect their biology, spread and
transmissibility. These include the variants of concern (VOCs)
Alpha, Beta, Gamma, Delta and the most recently emerged
Omicron, which exhibit different levels of immune escape'.

Neutralizing antibodies are predictive for protection against
disease (coronavirus disease 2019, COVID-19) (1-3), but the
precise definition of such correlates has remained elusive so far,
requiring a better understanding of the different immune
responses induced by infection and/or vaccination. Severe
COVID-19 and mRNA vaccinations were shown to induce
high amounts of antibodies, whereas lower titers were observed
after asymptomatic or mild infections (4-7). Waning of virus-
specific IgG and neutralizing antibodies has been observed in all
instances, and its influence on long-term protection, in particular
with respect to VOCs, is a matter of intensive research (8). In our
study, we therefore investigated antibody responses in groups of
individuals after SARS-CoV-2 infection, either hospitalized or
non-hospitalized, and vaccination using samples collected early
(~ three weeks) and late (~six months) after antigen exposure.

The majority of the neutralizing activity after infection is
attributable to antibodies binding to the receptor-binding
domain (RBD) of the surface spike glycoprotein (S) (9-11).
The spike protein is not only responsible for receptor binding,
but also mediates membrane fusion during host cell entry
[reviewed in (12)]. Additionally, potent neutralizing antibodies
have been described to target the N-terminal domain (NTD) of
the spike, which, like the RBD, is part of the SI domain of S (13-
15). An RBD-specific neutralization dominance was also
observed following vaccination with mRNA vaccines (4, 16).
Both licensed mRNA vaccines encode a membrane-anchored
SARS-CoV-2 spike protein with the sequence of the strain
originally isolated in Wuhan and two stabilizing proline
mutations in the membrane-anchored S2 part (17, 18).

As neutralizing antibodies play a critical role in preventing virus
infections, we investigated the humoral immunity in hospitalized
and non-hospitalized patients as well as mRNA vaccinees early after
disease onset or the two-dose vaccination, respectively, and six
months later, including neutralization of three SARS-CoV-2
variants (an ancestral D614G strain and the two VOCs Beta and
Delta). We found that the specific neutralizing activity (defined as
the ratio of neutralizing antibodies to SARS-CoV-2 S-specific IgG)
is higher in infected than in vaccinated people regardless of severity
of disease and the sampling time point. In addition, the range of
these ratios was larger after infection than after vaccination. Analysis

"https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

of spike sequences in patient swabs indicated that the observed
heterogeneity was associated with additional mutations in the NTD
of the infecting virus strain.

METHODS

Human Samples and Ethical Statement

All patients (non-hospitalized and hospitalized) had been
diagnosed with SARS-CoV-2 infection by PCR testing from
nasal swabs or respiratory secretions between March and
November 2020, excluding the possibility of infection with a
VOC. All patients gave written informed consent before being
included in the study.

Serum samples after the second dose of the BNT162b2
mRNA vaccine from healthcare workers were sent to the
diagnostic laboratory of the Center for Virology for antibody
titer determinations, and anonymized leftover samples were used
for our analyses. SARS-CoV-2 infections were ruled out by
regular PCR testing of the vaccinees.

Serum samples were collected approximately three weeks
after infection/vaccination (“early” samples, median 19 days,
range 9-41 days) as well as approximately six months later
(“late” samples, median 176 days, range 107-429 days). Median
time to sample collection after symptom onset or second
vaccination was similar in all cohorts, as shown in Table 1.

Ethics Statement

The analyses were approved by the local ethics committee of the
Medical University of Vienna (EK-No. 1291/2021 and EK-No.
1926/2020).

Viruses

The D614G, Beta and Delta SARS-CoV-2 strains were isolated from
nasopharyngeal swabs from COVID-19 patients. Vero E6 cells
(ECACC 85020206) were infected and incubated at 37°C until a
cytopathic effect occurred. Cell culture supernatant was harvested
and the presence of SARS-CoV-2 was confirmed by PCR. The virus
isolates were then passaged two more times in Vero E6 cells. All
isolates were controlled to be free of other respiratory viruses by
PCR as described (19), and were tested negative for mycoplasma
contamination by the MycoAlertTM Mycoplasma Detection Kit
(Lonza Group Ltd, Basel, Switzerland). The sequences were
determined by next generation sequencing and uploaded to the
GISAID database. GISAID accession numbers: D614G variant,
EPI_ISL_438123/hCoV-19/Austria/CeMM0360/2020 (19); Beta
VOC, EPL_ISL_4236051 (mutations D80A, D215G, 1242-, A243-,
L244-, K417N, E484K, N501Y, D614G, A701V); Delta VOC,
EPI_ISL_4172121 (mutations T19R, G142D, E156del/F157,
R158G, L452R, T478K, D614G, P68IR, R682W, D950). The cell
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TABLE 1 | Description of study cohorts.

Total Non-hospitalized Hospitalized BNT162b2 vaccinated
N 88 24 30* 34
Symptomatic (% of N) ICU (% of N)
24 (100) 13 (43)
Median age in years [range] 37 [19-89] 25 [20-35] 51 [19-89] 45 [20-58]
Male sex (%) 43 (49) 15 (63) 23 (77) 5 (15)
“Early” samples in dpo/dpv [range] 19 [9-41] 25 [14-41] 18 [9-25] 17 [10-28]
“Late” samples in dpo/dpv [range] 176 [107-429] 184 [170-219) 235 [169-4291] 162 [107-183]
Sequenced (% of N) 25 (28) 4(17) 19 (63) n/a

dpo, days post symptom onset; dpv, days post 2nd vaccination; n/a, not applicable; ICU, intensive care unit.
*For seven patients, serum samples were available only at the early time point. These samples were not included in longitudinal analyses.
L ate samples of two patients were collected at days 352 and 429 post symptom onset, respectively. All other “late” samples were collected between month 6 and month 9 post symptom

onset (range: dpo 169-288).

culture-adaptation R682W acquired in the Delta VOC has been
shown not to influence virus neutralization (5).

Sequencing

Whole genome sequencing of SARS-CoV-2 was performed using
a tiled amplicon approach with the ARTICv3 primer panel.
Amplicon pools were fragmented and multiplexed with dual
index barcodes (NexteraXT, Illumina, Inc.). The cleaned,
indexed libraries were pooled in equimolar ratios and
sequenced on an Illumina MiSeq, using V2 chemistry in paired
reads of 150 bp in each direction. Sequencing reads were
demultiplexed, quality trimmed, and aligned to the Wuhan-
Hu-1 reference sequence (GenBank accession number:
NC_045512.2) by the BWA-MEM software package (20).
Primer sequences were masked using iVar package, and the
consensus FASTA file was generated from the BAM file using
samtools and mpileup a majority vote to exclude minor variants
(21, 22). All sequenced strains had a minimum coverage of 200X.

RBD-Specific IgG ELISA

Spike-specific IgG antibodies were quantified in binding
antibody units (BAU)/ml using the WANTAI SARS-CoV-2
IgG ELISA kit (Beijing Wantai Biological Pharmacy Ent.). The
test is based on the RBD of the original strain isolated in Wuhan
and was performed according to the manufacturer’s instructions.
Samples were serially diluted until the endpoint in all instances.

Neutralization Assays

The live virus neutralization tests (NT) were performed as
previously described (19). Briefly, two-fold serial dilutions of
heat-inactivated serum or plasma samples were incubated with
50-100 TCIDs, SARS-CoV-2 (D614G strain, Beta or Delta
VOCs) for one hour at 37°C before the mixture was added to
Vero E6 cell monolayers (starting dilution of samples 1:10). After
three days, NT titers were expressed as the reciprocal of the
serum dilution required for protection against virus-induced
cytopathic effect. NT titers 210 were considered positive.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism
(Version 9.2.0). For longitudinal analyses, only samples from

patients available at both the early and late time points were
included. Seven additional early samples were included in the
spike sequence analyses (Figure 6).

RBD-ELISA BAU/ml and NT titers were compared with the
Kruskal-Wallis test (3 groups, Dunn’s multiple comparisons post
hoc test) or Mann-Whitney test (2 groups). In the case of NT
titers < 10, a value of 5 was used for these analyses. Fold
reductions of antibody levels over time were calculated for
each patient individually using the following formulas:

BAU per ml, early sample
BAU per ml, late sample

fold reduction of anti body level =

or

NT titer, early sample
NT titer, late sample

This analysis included only patients with a positive test result in
all assays at both time points.

Specific neutralization (NT/ELISA ratios) was calculated for
samples that were positive in both assays and log-transformed for
ANOVA (three groups, Tukey’s multiple comparisons post hoc
test)or a paired t-test (two groups). The ranges of NT/ELISA ratios
were expressed as maximum-to-minimum factors, which were
calculated by dividing the maximum ratio through the minimum
ratio for each cohort, time point and virus variant, respectively.
Spearman’s rho was applied to evaluate the correlation
between the test results (ELISA and NT), to assess the
correlation between NT titers against different variants, and the
correlation between ELISA, NT or NT/ELISA ratios and the time
point of sample collection (days post onset/2™ vaccination),
respectively. The coefficient of determination (R?) was used to
assess variability.

RESULTS
Study Cohorts

The study population consisted of 54 patients infected between
March and November 2020 (24 non-hospitalized and 30
hospitalized) and 34 individuals after a two-dose mRNA
vaccination (BNT162b2).
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SARS-CoV-2 infection was diagnosed by RT-PCR from nasal
swabs or respiratory secretions. Non-hospitalized patients
showed a mild to moderate course of the disease. Thirteen of
30 (43%) hospitalized patients were treated in intensive care
units (Table 1).

Serum samples were taken at two time points. The first
sample was collected approximately three weeks post symptom
onset or the second vaccine dose (“early” samples, median 19
days, range 9-41 days). Follow-up samples were collected
approximately six months later (“late” samples, median 176
days, range 107-429 days). As shown in Table 1, the sampling
time points were similar in all cohorts. Infected individuals were
predominantly male, and hospitalized patients were older than
non-hospitalized patients.

IgG Antibody Responses

Non-hospitalized patients yielded the lowest RBD-specific IgG
antibody concentrations at both time points (P < 0.0001),
whereas hospitalized and vaccinated individuals developed
similar amounts of antibodies (P > 0.05, Figure 1). Antibody
concentrations declined significantly in all cohorts within six
months post disease onset or after the second vaccination

(Figure 1), with the strongest waning occurring in vaccinated
individuals (Supplementary Table 1).

Neutralizing Antibody Responses
To analyze functional activities of antibodies, we performed NT's
with all samples using an isolate from the early pandemic
(D614G virus) and the two VOCs Beta (B.1.351) and Delta
(B.1.617.2). In line with our ELISA results, non-hospitalized
patients showed significantly lower NT titers against all virus
strains than hospitalized and vaccinated individuals at both time
points, whereas hospitalized individuals developed the highest
titers against all variants at each time point (Figures 2A-C). At
the early time point, no significant difference in NT titers was
observed between hospitalized and vaccinated individuals, while
six months later hospitalized patients showed significantly higher
NT titers than vaccinees (Figures 2A-C). For all cohorts, NT
titers were highest against the D614G strain at both time points
(Supplementary Figure 1), and no significant differences were
observed between the Beta and Delta VOCs.

A decline in NT titers over time was observed in all cohorts
for the three virus strains (Figures 2D-F), which was significant
for the vaccinated and hospitalized cohorts. In the case of non-

%k %k % %
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RBD IgG, BAU/mI
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FIGURE 1 | SARS-CoV-2 RBD-specific IgG antibodies after infection (non-hospitalized and hospitalized patients) and two doses of the mRNA vaccine BNT162b2.
Early samples (E) were taken approximately three weeks after disease onset or the second vaccine dose; late samples (L) approximately six months after disease
onset or the second vaccine dose. Bars indicate the median, the dotted horizontal line the cut-off of the assay. Statistical analysis was performed with the Kruskal-
Wallis test and Dunn’s multiple comparisons post hoc test (comparison of cohorts, bottom brackets) or Mann-Whitney test (comparison within groups, top brackets).
Asterisks indicate statistical significance: (*) = P < 0.01, (***) = P < 0.0001. non-hosp., non-hospitalized patients; hosp., hospitalized patients; vacc., vaccinees.
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FIGURE 2 | Neutralizing antibody titers against an ancestral D614G virus strain and the two VOCs Beta and Delta after infection (non-hospitalized and hospitalized
patients) and two doses of the mRNA vaccine BNT162b2. (A-C) Comparison between cohorts. (D-F) Graphs represent the same data as in (A-C), but regrouped
according to time points of sample collection. (A, D) D614G virus NT, (B, E) Beta VOC NT, (C, F) Delta VOC NT. Early samples (E) were taken approximately three
weeks after disease onset or the second vaccine dose; late samples (L) approximately six months after disease onset or the second vaccine dose. Bars within the
violin plots indicate the median with interquartile range, the dotted horizontal line the cut-off of the assay. Statistical analysis was performed by Kruskal-Wallis test and
Dunn’s multiple comparisons post hoc test (A-C) or Mann-Whitney test (D-F). Asterisks indicate statistical significance: () = P < 0.05, (**) =P < 0.01, (") =P <
0.001, (***) = P < 0.0001. non-hosp., non-hospitalized patients; hosp., hospitalized patients; vacc., vaccinees.

hospitalized individuals, a significant decrease was only detected
for the Delta variant (Figure 2F; Supplementary Table 1).

At both time points, all hospitalized and vaccinated individuals
had neutralizing antibodies against the D614G strain, and only
one non-hospitalized patient did not develop such antibodies
(Figures 2, 3). In contrast, a substantial number of non-
hospitalized patients were negative against the Beta and Delta
VOC:s at the early time point (37% and 25%, respectively), with a
further decline during the six-month period (54% and 50%,
respectively; Figure 3A). In terms of the proportion of samples
with detectable neutralizing activity against the Beta and Delta

VOCs, the highest percentages of NT-positive samples were from
hospitalized patients (Figure 3B), with only a few individuals
negative in the Beta and Delta VOC NTs at both time points
(Figure 3B). A similar result was obtained for vaccinees in the NT
with the Beta variant (Figure 3C), but while only 3% were negative
in the Delta VOC NT at the early time point, this proportion
increased to 26% over the following six months (Figure 3C).

Individual Variation of Antibody Responses
To assess the relationships between ELISA-binding and D614G-
neutralizing antibodies (Figure 4A) as well as NTs with different
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FIGURE 3 | Percentage of individuals with neutralizing activity against an ancestral D614G virus strain and the two VOCs Beta and Delta in (A) non-hospitalized and
(B) hospitalized patients and (C) individuals after two doses of the mMRNA vaccine BNT162b2. Early samples (E) were taken approximately three weeks after disease
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with a positive (blue) and negative (red, lined) result for both time points are shown. Numbers in/on bars indicate the percentage of NT-positive and NT-negative
individuals, respectively. non-hosp, non-hospitalized patients; hosp, hospitalized patients; vacc, vaccinees.
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SARS-CoV-2 strains (Figures 4B-D), we analyzed the respective
assay values (BAU/ml, NT titers) by Spearman correlation tests.
Overall, significant positive correlations were observed in all
instances (p = < 0.0001, r = 0.67-0.95), but a certain variability
was observed, especially in the ELISA-NT analysis with the
lowest R* values (R*> = 0.58 and 0.45, Figure 4A).

To investigate the specific NT activities of each individual in
detail, we compared the ratios between neutralizing and ELISA-

binding antibodies for the three groups (specific NT activities)
(Figure 5). NT/ELISA ratios were only calculated for samples
with a positive result in both assays, which was the case for most
samples tested in the D614G NT (only one non-hospitalized
patient with a negative N'T had to be excluded, see Figures 2 and
3). In contrast, a number of samples showed no neutralization of
the Beta or Delta VOCs (Figures 2, 3), especially in the non-
hospitalized cohort.
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FIGURE 4 | Correlation analysis of ELISA concentrations and NT titers of all samples. Spearman correlation coefficients (r) and coefficients of determination (R?) are
indicated. (A) IgG in BAU/ml and D614G virus NT titers, (B) D614G virus and Beta VOC NT titers, (C) D614G virus and Delta VOC NT titers, (D) Beta VOC and Delta
VOC NT titers. All samples from infected and vaccinated individuals for which early and late samples were available are included. Early samples were taken
approximately three weeks after disease onset or the second vaccine dose; late samples approximately six months after disease onset or the second vaccine dose.
The dotted lines indicate the cut-offs of the specific assays.
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FIGURE 5 | Ratios of D614G virus NT titers and ELISA concentrations of individual serum samples after infection (non-hospitalized and hospitalized patients) and
two doses of the mMRNA vaccine BNT162b2. Only NT- and ELISA-positive samples were included. Early samples (E) were taken approximately three weeks after
disease onset or the second vaccine dose; late samples (L) approximately six months after disease onset or the second vaccine dose. Bars indicate the mean.
Statistical analysis was performed with ANOVA and Tukey’s multiple comparison’s post hoc test (comparison of cohorts, bottom brackets) and paired t-test
(comparison within groups, top brackets). Asterisks indicate statistical significance: (*) = P < 0.05, (***) = P < 0.0001. non-hosp., non-hospitalized patients; hosp.,
hospitalized patients; vacc., vaccinees.
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We found no differences in the D614G NT/ELISA ratios
between non-hospitalized and hospitalized individuals at both
time points (Figure 5), but the ratios after infection were
significantly higher than those obtained from vaccinated
individuals, indicating either the presence of more strongly
neutralizing antibodies and/or a higher proportion of such
antibodies. In all cohorts, an improvement of these ratios was
observed up to the late time point. Similar results were found
with the ratios calculated for the Beta and Delta VOCs
(Supplementary Figure 2). In all instances, the maximum-to-
minimum factors of the NT/ELISA ratios were higher after
infection than after vaccination (Supplementary Table 2),
revealing a greater variability within the infected groups.

To analyze the antibody responses in relation to the time
points of sample collection, we performed correlation analyses
combining the WT-specific antibody levels as well as the NT/
ELISA ratios from all cohorts (Supplementary Figure 3). When
we plotted the RBD IgG ELISA values and D614G NT titers
against the early sampling time points, we saw a moderate
negative correlation (Spearman r = -0.4 and -0.35, respectively)
(Supplementary Figures 3A, C). No such effect was seen for the
early NT/ELISA ratios (Spearman r = 0.23) (Supplementary
Figure 3E) or with any of these parameters at late time points
(Supplementary Figures 3B, D, F). In the latter instances, we
obtained only a very weak or no correlation (r = 0.06 - 0.26). The
individual variation, however, was very high for all combinations
tested (R* < 0.1).

Influence of the Spike Sequence on
Antibody Responses

As we observed more heterogeneous functional antibody
responses in infected than in vaccinated individuals (Figure 5;
Supplementary Figure 2; Supplementary Table 2), which could
not be explained by the sampling time point (Supplementary
Figures 3E, F), we hypothesized that mutations in the S sequence
of the infecting strain might influence virus neutralization in
individual patients. Leftover material from swabs initially used
for the diagnosis of SARS-CoV-2 infection was available from 22
patients (Table 2) and was used for sequencing the spike gene of
the respective infecting strain. Fifteen of these patients showed
neutralizing antibodies against all variants at both time points.
Of the remaining seven patients, only early blood samples were
available, which were also NT positive against all variants.

One patient was infected with the D614 strain (originally isolated
in Wuhan), ten samples had the D614G mutation only, and samples
of eleven patients carried one or two additional substitutions in
different regions of S (Figure 6A) in addition to D614G (Tables 2,
3) as compared to the reference sequence (see Methods). As shown
in Figure 6A, most mutations in the study cohort were located in
the NTD. Therefore, we compared the NT/ELISA ratios from the
D614G-infected patients (n = 10) with those that had additional
mutations in the NTD (n = 8) (Figure 6B). Since we had only early
samples for five of these patients, an analysis of the late time point
was not possible. Patients previously infected with NTD-mutated
strains showed a slight reduction in the D614G- and Delta-NT/
ELISA ratios compared to patients infected with viruses carrying
only the D614G mutation (Figure 6B), which was significant in the
case of the Beta VOC, suggesting a possible association between S
sequence and variance in neutralizing activities.

DISCUSSION

In this study, we provide a comprehensive analysis of the variability
of antibody responses in longitudinal cohorts after early-pandemic
infection with SARS-CoV-2 and vaccination with an mRNA
COVID-19 vaccine. The data presented demonstrate not only
substantial differences in the magnitude as well as the functional
activity of the induced antibodies, but also a greater heterogeneity of
responses in infected than in vaccinated individuals.
Non-hospitalized and hospitalized patients developed antibodies
with similar functional activities (NT/ELISA ratios in Figure 5),
despite significantly lower antibody titers in non-hospitalized (low
responder) versus hospitalized (high responder) individuals
(Figure 2). On the other hand, vaccinees had similar NT titers as
hospitalized patients at the early time point and fell between the
high- and low responder patients six months later (Figure 2), but
the NT/ELISA ratios of vaccine-induced antibodies were
significantly lower at both time points (Figure 5), suggesting the
presence of more non-neutralizing antibodies. Such differences
between infection- and vaccine-induced antibodies were also
described by others and are consistent with studies reporting
rather low proportions of plasmablasts generating neutralizing
antibodies in vaccinated individuals (4, 16, 24). The reasons for
these discrepancies are unclear, but they could be due to differences
in the presentation of the S protein to the immune system. In virus

TABLE 2 | Location of spike mutations identified in a subset of samples from infected individuals.

Cohorts n sequenced Mutations found in spike sequences of infecting strains (individuals, n)
(% of n)
No D614G D614G D614G D614G+RBD D614G+RBD D614G+NTD D614G
mutation +RBD +NTD +NTD +S2 +S2 +S1

Total 54 22 (41) 1 10 1 5 1 1 2 1
Non- 24 2(8) 0 1 1 0 0 0 0 0
Hospitalized

Hospitalized 30" 20 (67) 1 9 0 5 1 1 2 1

RBD, receptor-binding domain; NTD, N-terminal domain; S1, ST subunit; S2, S2 subunit.
*samples of seven patients only available at early time point.
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TABLE 3 | Specific S mutations identified in infected individuals.

Site of mutation

Amino acid substitutions (in addition to D614G)

Cohort (individuals, n)

No mutation - non-hosp (1).
D614G - non-hosp (1)., hosp (9).
D614G+RBD L452R non-hosp (1).
D614G+NTD S255F hosp (3).
R211 hosp (1).
A222V hosp (1).
D614G+RBD+NTD N439K+Del69/70 hosp (1).
D614G+NTD+S2 T95I + H1159Y hosp (1).
L179F + S939F hosp (1).
D614G+RBD+S2 S477N +Q1011fs hosp (1).
D614G+S1 V534F hosp (1).

RBD, receptor-binding domain; NTD, N-terminal domain; S1, S1 subunit; S2, S2 subunit.

particles, S is associated with other structural proteins, whereas the
mRNA for the synthesis of S in the vaccine lacks these components,
possibly leading to modulations of glycosylation patterns and/or S
stability [reviewed in (12)]. S in the vaccine, based on the original
strain isolated in Wuhan (17, 25), has two proline mutations in the
S2 domain to avoid the adoption of the inactive post-fusion state
[reviewed in (12)], which can slightly alter the conformational
landscape of the pre-fusion S protein and might have contributed
to the differences observed in our study (26, 27).

In infected and vaccinated individuals, waning of antibodies
occurred during the intervening six-month period, but all
SARS-CoV-2 IgG values (RBD of the original Wuhan strain as
ELISA antigen) and most NT titers against the D614G virus were
still positive at this time point (Figures 1-3). Only one non-
hospitalized patient did not develop measurable amounts of
D614G virus-neutralizing antibodies (Figures 2, 3). Of note,
an increase in the NT/ELISA ratios, and thus the functional
quality of the antibodies, occurred in the three groups up to six
months, which is most likely a consequence of the affinity
maturation of IgG over time, accompanied by the maintenance
of high-affinity SARS-CoV-2 neutralizing antibodies and the
decay of low-affinity antibodies (28, 29). Continuous somatic
hypermutation due to a certain degree of antigenic persistence
and ongoing germinal center reactions after infection with
SARS-CoV-2 or vaccination were shown to increase the
breadth of antibody responses and neutralizing potencies,
including higher resistance to mutations in the RBD (29, 30).

We found that the range of specific neutralizing activities after
SARS-CoV-2 infection was larger than after COVID-19
vaccination (Figure 5; Supplementary Figure 2), consistent
with other studies (4, 16). One reason for the observed greater
heterogeneity could be differences in the S sequences of infecting
strains in contrast to vaccinees, who obtain exactly the same
construct and had more homogeneous antibody responses. A
recent study has indeed shown that samples derived from Beta
and Gamma VOC-infected patients are less able to neutralize the
Delta VOC than samples from patients infected with early
pandemic strains or the Alpha VOC (31). In our work,
sequencing of strains before the appearance of VOCs reflected
the relatively low genetic diversity of circulating strains in
Austria during this time period, with some lineages occurring
at higher frequency in the general population (e.g., B.1.160 with

S:N477K, B.1.258 with S:N439K, or B.1.177 with S:A222V) (32).
Nevertheless, we detected different patterns of specific
neutralizing activities in infected patients associated with
mutations in the NTD (Figure 6B). We observed lower
specific neutralizing activities in samples of individuals infected
with a mutated NTD strain, which was significant for the Beta
VOC, but not the Delta VOC (Figure 6B). This could be
explained by different NTD mutations present in these two
SARS-CoV-2 variants (33), allowing the Beta VOC a stronger
immune evasion from antibodies induced by the infecting strains
sequenced in this study. Most of the neutralizing activity is
directed against the RBD as shown by depletion analyses (11,
16), but strongly neutralizing antibodies recognizing the NTD
were also isolated from infected patients (4, 13, 14, 34).
Mutations in the NTD can not only directly change antibody-
binding sites, but can also have long-range effects on the
structure of S, thus reducing antibody recognition (15, 31, 35,
36), which might have contributed to our results. A limitation of
our analyses is that we had only a subset of patients with a known
S sequence, and we could only evaluate the patterns early after
infection. Since we have seen an improvement of the specific
neutralizing activity over time (Figure 5), it would have been of
interest to find out whether such an effect still exists in later
samples. Additional factors, like antibody subclass distribution
and/or posttranslational modifications of RBD- and/or S-specific
antibodies, should be investigated in future studies addressing
differences in neutralizing activities of vaccine- and infection-
induced antibodies.

Our results also have practical implications. Neutralizing
antibodies are important for assessing the quality of immune
responses, but NTs are more time-consuming than ELISAs and
require the handling of infectious virus. It would thus be of
interest to relate ELISA values to NT titers and define a BAU/ml
threshold for neutralization, which, however, has to take the
source of immunity into account. Even more complex is the
relation of these values to protection, as Fc-mediated effector
functions of non-neutralizing antibodies can also play a role (37,
38). The relatively small sample size is a limitation of our study.
Thus, further studies are required to precisely characterize the
different functional properties as well as temporal development
of antibody immunity induced by SARS-CoV-2 infections and/
or COVID-19 vaccinations in larger cohorts, which can provide
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leads for the design of next-generation vaccines as well as help in
the definition of a generally applicable correlate of protection.
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