
Frontiers in Immunology | www.frontiersin.

Edited by:
Alessandro Poggi,

San Martino Hospital (IRCCS), Italy

Reviewed by:
Lorenzo Mortara,

University of Insubria, Italy
Neal Shore,

Carolina Urologic Research Center,
United States

*Correspondence:
Jiuwei Cui

cuijw@jlu.edu.cn
orcid.org/0000-0001-6496-7550

†First author

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 05 March 2022
Accepted: 30 May 2022
Published: 27 June 2022

Citation:
Bai R and Cui J (2022)

Development of Immunotherapy
Strategies Targeting

Tumor Microenvironment
Is Fiercely Ongoing.

Front. Immunol. 13:890166.
doi: 10.3389/fimmu.2022.890166

REVIEW
published: 27 June 2022

doi: 10.3389/fimmu.2022.890166
Development of Immunotherapy
Strategies Targeting Tumor
Microenvironment Is
Fiercely Ongoing
Rilan Bai† and Jiuwei Cui*

Cancer Center, The First Hospital of Jilin University, Changchun, China

Tumor immune microenvironment is a very complex system that is influenced by a wide
range of factors; in this microenvironment, various immune cells, stromal cells, and
cytokines can interact with tumor cells and jointly regulate this complex ecosystem.
During tumor development, the tumor microenvironment (TME) shows the upregulation of
inhibitory signals and downregulation of activating signals, which result in an
immunosuppressive microenvironment and lead to tumor immune escape. In recent
years, a variety of precision immunotherapy strategies have been developed to remodel
the TME into a positive immune microenvironment by stimulating or restoring the inherent
tumor inhibition ability of the immune system so as to improve anti-tumor therapeutic
efficacy. This review focuses on immunotherapy strategies targeting the TME, including
those that target the microenvironment to inhibit signaling, activate signaling, and
specifically involve many new targets such as physical barriers, immune cells and their
surface molecular receptors, cytokines, and metabolic factors. Furthermore, it
summarizes the challenges faced while conducting research on the tumor immune
microenvironment and the corresponding solutions.
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1 INTRODUCTION

The tumor immune microenvironment (TIME) is a very complex system that is influenced by a
wide range of factors; in this microenvironment, various immune cells, stromal cells, and cytokines
can interact with tumor cells. The regulation of these immune system networks and the complex
interaction between tumors can have an important impact on tumor development and
immunotherapy response: “what happens to a small part may affect the whole.” Tumorous
tissues depend on the microenvironment for survival and jointly regulate complex ecosystems.
Many factors within a tumor can affect and induce a tumor microenvironment (TME), which in
turn can promote tumor development and affect the efficacy of anti-tumor therapy. Tumor-
associated macrophages, tumor-associated fibroblasts, and mesenchymal stem cells can enhance
tumor drug resistance by recruiting and secreting a variety of protective cytokines. Non-cellular
components such as extracellular matrix and conditions such as hypoxia and acidification can
mediate resistance to anti-tumor therapy by constructing a physical barrier and affecting the growth
org June 2022 | Volume 13 | Article 8901661
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and metabolism of tumor cells. In the process of tumor
development, the TME shows the upregulation of inhibitory
signals and downregulation of activating signals, which result in
an immunosuppressive microenvironment. It is closely related to
both tumor immune escape and anti-tumor treatment efficacy.
Therefore, immunotherapeutic strategies targeting the TME can
stimulate or restore the inherent tumor suppression ability of
the immune system, remodel it into a positive immune
microenvironment, and yield comprehensive response effects.
In recent years, with the development and continuous
improvement of multiplex immunohistochemical technology,
high-throughput sequencing, and microarray technology, the
understanding and cognition of TME factors have gradually
deepened, and a variety of precision immunotherapy strategies
targeting TME have been developed. This review focuses on
immunotherapy strategies targeting the TME and summarizes
the challenges faced while conducting research of on the TIME
and the corresponding solutions.
2 IMMUNOTHERAPEUTIC STRATEGIES
TARGETING THE TME

2.1 Therapeutic Strategies Based on TME
Inhibitory Signaling
TME is characterized by a variety of inhibitory signals, including
TME physical barriers, inhibitory immune cells and their surface
inhibitory receptor signals, and metabolic inhibitory signals, which
promote tumor development and immune escape and affect the
efficacy of and resistance to anti-tumor immunotherapy. Strategies
targeting these inhibitory signals can reverse T-cell depletion and the
overall state of the inhibitory immune microenvironment, contribute
to the normalization of the immune microenvironment, restore the
tumor-suppressive ability of the immune system, and significantly
improve anti-tumor immunotherapy efficacy.
2.1.1 Targeting TME Physical Barriers
In vivo, cancer cells are located in a complex 3Dmicroenvironment,
and its physical barriers, including the extracellular matrix,
fibroblast activating protein (FAP), collagen, and laminin (FAK),
are considered great obstacles for cancer therapy (1). The rapid
growth of tumors disrupts the structure and function of
surrounding tissues and leads to the presentation of unique
physical cues of the TME, such as increased matrix stiffness,
changes in vascular shear stress, and changes in the extracellular
matrix (ECM) structure (2), which affect the biological behavior of
cancer cells and lead to the formation of a heterogeneous
immunophenotype of TMEs by interfering with the integrity of
the cancer-immune cycle, promoting tumor progression further,
and affecting tumor responsiveness to immunotherapy (2–5).
Therefore, overcoming the physical barriers in the TME may
improve the efficacy of immunotherapy. In recent years, a variety
of strategies and drugs have been developed to reverse the
immunophenotype of TME: these include inhibition of Rho-
kinase and FAK-mediated cell contraction (e.g., Fasudi, H1152,
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Defactintb), reduction of matrix components (e.g., FAP gene-
editing cells, FAP-vaccine, FAP antibody-nanoparticle, VS-4718,
and PEGPH20), inhibition of matrix cross-linking (e.g., BAPN and
miRNA LOX inhibitors) and fibrosis (e.g., pirfenidone, losartan,
and tranilast), improvement of tumor vascular leakage (e.g.,
bevacizumab), and reduction of the effect of vascular shear stress
(2, 6, 7).

Vascular abnormalities are hallmarks of most solid tumors,
and they mediate immunosuppressive microenvironments and
immune evasion. The rational use of drugs that target these
molecules can improve therapeutic responsiveness, partially
because abnormal tumor vasculature returns to normal, and
anti-angiogenic drugs increase the infiltration of immune
effector cells into tumors and transform the intrinsic
immunosuppressive TME into an immunosupportive one (8).
Therefore, the combination of anti-angiogenic therapy and
immunotherapy may have synergistic effects and reduce the
risk of immune-related adverse events. The IMpower 150 study
(9) showed that the combination with atezolizumab, an
immunotherapeutic agent, with platinum-based chemotherapy
+ anti-angiogenic therapeutic agents can exert a new synergistic
effect. The LEAP-006 (NCT03829319) study was a phase 3,
double-bl ind, randomized cl inical s tudy that used
pembrolizumab in combination with pemetrexed and
platinum-based chemotherapy ± lenvatinib in patients with
advanced first-line non-squamous non-small-cell lung cancer
(NSCLC). The LEAP-007 study (NCT03829332) was a phase 3,
double-bl ind, randomized cl inical s tudy that used
pembrolizumab alone or in combination with lenvatinib in
patients with advanced first-line NSCLC with programmed
death ligand 1 (PD-L1) tumor proportion score (TPS) ≥ 1%;
this study explored the synergistic effect of anti-angiogenic
therapy with other immunotherapies. In the future, emerging
innovative technologies, such as cancer microarrays, immuno-
engineering technologies, cancer mathematical models, and
deep machine learning, can comprehensively explore the
characteristics of TME physics and use this as a basis to
develop immunotherapeutic strategies targeting TME
physical barriers.
2.1.2 Targeting Immune Checkpoints
Immune checkpoint inhibitors targeting cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) (ipilimumab) and
programmed cell death-1/PD-L1 (PD-1/PD-L1) (nivolumab,
pembrolizumab, atezolizumab, avelumab and durvalumab)
have been found to be effective against many types of tumors
(10–12) and approved by the Food Drug Administration (FDA)
for the treatment of a variety of tumors. In recent years, novel
checkpoint molecules such as lymphocyte-activation gene-3
(LAG-3), T-cell immunoglobulin 3 (TIM-3), and T-cell
immunoglobulin and ITIM domain (TIGIT) have been
widely and intensively studied in terms of the tumor
immunosuppressive microenvironment, “T-cell depletion,” and
corresponding targeted antibody therapy (13). LAG-3, a type I
transmembrane protein that is mainly expressed in activated T
cells, natural killer cells (NKs), B cells, and plasmacytoid
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dendritic cells (DCs), is involved in the transduction of immune
cell inhibitory signals (14). Currently available drugs for LAG-3
include relatlimab (BMS-986916), LAG525 (IMP701), MK-4280,
TSR-033, REGN3767, Sym022, INCAGN02385, FS118,
BI754111, and MGD013. The global, randomized, double-
blind, phase II/III RELATIVITY-047 (CA224-047) trial is the
first first-line treatment study to demonstrate that dual
inhibitory effects of LAG-3, and the PD-1 pathways may be a
key target to enhance the immune response and help improve the
prognosis of patients with metastatic or unresectable melanoma
(15). Eftilagimod alpha (Efti, IMP321, or LAG-3Ig) is a soluble
LAG-3 fusion protein composed of the extracellular domain of
LAG-3 and the Fc region of IgG that may activate antigen-
presenting cells (DCs) through major histocompatibility
complex (MHC)-II-mediated signaling; this activation results
in an increase in interleukin (IL)-12 and tumor necrosis factor
(TNF) levels and upregulation of CD80 and CD86 expression,
along with the removal of the inhibitory effect of DCs on T cells
through LAG-3 (16–18). The phase III TACTI-002 clinical trial
(NCT03625323) used Eftilagimod alpha in combination with
pembrolizumab as the first-line treatment for advanced tumors
and metastatic NSCLC (part A) (19) and as second-line
treatment for NSCLC (refractory to PD-1/PD-L1) (part B) and
metastatic head and neck cancer (platinum-resistant) (part C)
(20). Based on preliminary efficacy data, the FDA awarded the
soluble LAG-3 protein eftilagimod alpha fast-track designation
in April 2021; the phase II TACTI-003 study was conducted on
LAG-3Ig combined with pembrolizumab as the first-line
treatment for head and neck squamous cell carcinoma, while
the INSIGHT-004 study is an ongoing study on LAG-3Ig
combined with avelumab for the treatment of a variety of
advanced solid tumors.

Interaction of TIM-3 with its ligand galectin-9 (Gal-9)
inhibits the activity of T cells, prompts them to present a
“depletion phenomenon,” and regulates apoptosis and immune
tolerance of T cells (21, 22). Blocking the pathway of TIM-3/Gal-
9 binding may break the “depletion phenomenon” of T cells, and
a combination of two monoclonal antibodies, anti-PD-1 and
anti-TIM-3, can synergistically break the drug-resistant TIME,
which is a promising novel cancer immunotherapy regimen (23).
At present, several phase I/II clinical trials are ongoing with anti-
TIM-3 or its combination or anti-TIM-3/PD-1/L1 bispecific
antibodies (NCT03489343, NCT03652077, NCT03099109,
NCT02608268, etc.). For TIGIT target, the ongoing/upcoming
phase III clinical studies on advanced first-line NSCLC treatment
in China include the following: MK-7684A-003 trial (PD-L1 ≥
1%, MK-7684 + Pembrolizumab, NCT04738487), AdvanTIG-
302 trial (PD-L1 ≥ 50%, BGB-A1217 + Teicilizumab,
NCT04746924), and SKYSCRAPER-01 trial (high PD-L1
expression, Tiragolumab + Atenibizumab, NCT04294810). An
in vitro cell interaction analysis system confirmed that Siglec-15
(S15) was highly expressed in macrophages, and Siglec/
sialyloglycan axis activation could directly inhibit T-cell
activity and play an important role in the process of immune
escape in tumor cells (24). The NC318 monoclonal antibody
against Siglec-15 is currently undergoing clinical studies (25). It
Frontiers in Immunology | www.frontiersin.org 3
is worth mentioning that the expression of Siglec-15 does not
affect that of PD-L1 or vice versa, which provides a new strategy
for the treatment of patients who develop resistance to PD-1/PD-
L1 or patients with very low PD-L1 expression (24).

2.1.3 Targeting Immunosuppressive Cells
Major factors hindering the function of effector T cells in the TME
are immunosuppressive myeloid and lymphoid cells, including
myeloid-derived suppressor cells (MDSCs), immunosuppressive
macrophages, regulatory cells (Tregs), and immature DCs, which
can promote tumor immune escape via the production of
immunosuppressive cytokines. Targeting these suppressive
immune cells and reversing their immunosuppressive effects on
the microenvironment are effective measures to improve the anti-
tumor immune response. M2 macrophages are predominant in the
TME, and promoting the reprogramming of M2 macrophages to
inhibit the M1 phenotype of tumors is an effective approach for
improving the TIME significantly. Tumor cells can regulate the
proliferation and differentiation of macrophages to the M2 type
with the help of class IIa HDACs (26); thus, TMP195, an HDAC
inhibitor, can reduce the number of M2 macrophages in mice and
improve the efficacy and tolerability of chemotherapy and PD-1
inhibitors (27). Sitravatinib is an RTK inhibitor that targets tumor-
associated macrophage (TAM) receptors (TYRO3, AXL, MerTK)
and a variety of similar RTKs, including those associated with
angiogenesis (e.g., VEGFR2, KIT), RET, andMET (28), whichmake
sitravatinib important for improving the tumor immunosuppressive
microenvironment. Moreover, sitravatinib can transform M2
macrophages with immunosuppressive function into M1
macrophages, increase the number of CD8+ T cells, and decrease
the number of Treg and MDSCs cells (28). Therefore, sitravatinib
can lead to changes in innate and adaptive immune cells, thereby
enhancing the immune checkpoint blockade. In an open-label
clinical phase II study (MRTX-500) (29), sitravatinib in
combination with nivolumab showed good clinical efficacy in
patients with non-squamous NSCLC whose disease progressed on
previous anti-PD-1/L1 regimen, with a primary endpoint objective
response rate (ORR) of 18% (12/68), median progression-free-
survival (mPFS) of 5.7 months, and median overall survival
(mOS) of 14.9 months. Sitravatinib in combination with
nivolumab showed better anti-tumor activity and OS than did the
control in previous studies, with no new safety signals observed. On
the basis of this finding, a global multicenter phase III SAPPHIRE
study (NCT03906071) is being conducted to further assess the
feasibility of this regimen. Currently, sitravatinib is undergoing
clinical trials for multiple indications (NCT02978859,
NCT02219711, NCT02954991, and NCT03015740). These results
highlight the potential immune-activating effects of sitravatinib and
the synergistic effects of combination therapy with other immune
checkpoint inhibitors (ICIs).
2.1.4 Targeting Inhibitory Cytokines
There are multiple immunosuppressive factors in the TME, and a
combination of drugs targeting these immunosuppressive cytokines
can effectively improve the efficacy of immunotherapy. Tumors,
June 2022 | Volume 13 | Article 890166
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tumor-associated stromal cells, and Tregs produce large amounts of
transforming growth factor-b (TGF-b). TGF-b is a factor the
promotes the differentiation of bone marrow and T cells, and it
can promote MDSC and Treg differentiation (30). A study showed
that the inhibition of TGF-b increases the proliferation and matrix
metallopeptidase 9 (MMP-9) expression of tumor-associated
fibroblasts (TAF), which negatively regulate PD-L1 expression on
the surface of tumor cells and reduce anti-PD-1 efficacy (31).
However, this phenomenon can be avoided, and the anti-tumor
therapeutic effect can be enhanced when anti-PD-1 and TGF-b
inhibitors are used sequentially rather than simultaneously (31). In
addition, a bifunctional fusion protein M7824 (Bintrafuspalfa) was
developed against PD-L1 and TGF-b, which can improve anti-
tumor therapeutic effects by antagonizing PD-L1 and “trapping”
TGFb (32, 33). Colony-stimulating factor-1 (CSF-1) is able promote
the function and survival of small glioma cells and TAMs, and the
inhibition of the CSF-1 receptor (CSF-1R) relieves TME
immunosuppression by depleting TAMs and synergizes with
other immunotherapies (34). An open-label, single-arm cohort
phase Ia/Ib clinical trial (NCT02526017) that assesses the safety,
kinetics, and pharmacodynamics of the CSF-1R antibody
cabiralizumab (FPA008) in combination with nivolumab in
patients with advanced solid tumors and a phase II clinical trial
(NCT03336216) that investigates the efficacy of cabiralizumab and
nivolumab with or without chemotherapy in patients with advanced
pancreatic cancers are ongoing. Shi et al. (35) combined the CSF-1R
inhibitor PLX3397 with oncolytic viruses (OVs) and PD-1
antibodies and showed that CT26 and MC38 subcutaneous
xenografts in 43% and 82% of mice, respectively, had complete
tumor regression after combination therapy and were able to
develop long-term immune memory effects. The combination of
these three agents reversed the TME in an immunosuppressive
state, increased the infiltration of T cells, reduced the proportion of
TAMs, and depleted CD8+ T cells. Moreover, the activation level
and killing function of T cells increased significantly, which resulted
in a strong synergistic anti-tumor effect (35).
2.1.5 Targeting Metabolic Inhibition Signaling
TME metabolism is influenced by many factors, including
oncogene-driven intracellular metabolic processes; extracellular
factors, such as tissue vascularization, extratumoral nutrition,
and oxygen concentration; and other microenvironment-derived
factors that determine tumor metabolic characteristics, such as
cytokines, hormones, and metabolites that can regulate immune
cell metabolism (36). Targeting these metabolic inhibitory
molecules or signals in the TME is currently a promising anti-
tumor immunotherapeutic strategy. The solute carrier transporter
(SLC) family mainly mediates the membrane transport of various
solutes and maintains the stability of the intracellular
environment. Combined strategies targeting SLCs in the TME
can improve antigen presentation and secretion of cytokines,
chemokines, and granzymes, thereby improving multiple
immune cell functions and mobilizing immune cell-cell
interactions. The output of lactate by glycolytic cells and the
input of lactate by OXPHOS cells are regulated by the specific
Frontiers in Immunology | www.frontiersin.org 4
transporter monocarboxylate transporter (MCT)-1/4 on the cell
membrane, which maintain intercellular lactate metabolic
adaptation and symbiosis within tumor tissues and promote
tumor growth and metastasis through signaling pathways. At
present, multiple small-molecule inhibitors targeting MCT1 have
been reported (37), of which AZD3965, a novel drug, is the most
striking (38, 39); clinical trials evaluating the effects of this drug on
several tumors (NCT01791595). A study that evaluated the effect
of nanomedicines composed of MCT1 inhibitors (AZD3965)
combined with anti-PD-1 therapy on tumor models reported
the potent inhibition of tumor growth and prolongation of
survival (40). In addition, the FA receptor CD36 can transport
fatty acids into cells and affect tumor cell growth, metastasis, and
epithelial-mesenchymal transition (41–43). In tumor mice, an
antibody targeting CD36 showed that 15% of metastases (lymph
node and lung metastases) achieved a complete response (CR),
and mice that had developed lymph node metastases had an 80–
90% reduction in lesion size, with little effect on the primary tumor
(43). CD36 targeting can also promote a decrease in the number of
and apoptosis of intracellular mitochondria in intratumoral Tregs
and promote the production of interferon (IFN)-g+ and TNF+

CD8+ T cells (42). IFN-g released by CD8+ T cells downregulates
the expression of SLC3A2 and SLC7A11, which are two subunits
of the glutamate-cystine reverse transport system xc−, and inhibits
cystine uptake in tumor cells (44). Therefore, the combination of
ICIs with a synthetic protease that specifically degrades
extracellular cystine and cysteine may significantly enhance T-
cell-mediated anti-tumor immune responses and induce
ferroptosis in tumor cells.

In addition to targeting metabolic receptors, therapeutic
strategies target metabolic enzymes within the microenvironment
also. Avasimibe is a small-molecule inhibitor that targets acyl
coenzyme A cholesterol acyltransferase 1 (ACAT1) in the
cholesterol metabolic pathway, which inhibits cholesterol
esterification and increases intracellular free cholesterol levels. A
study showed that avasimibe can promote pancreatic cancer cell
apoptosis by promoting increased ER stress (45), inhibit hepatoma
cell proliferation, and improve prognosis (46). A mouse study by
Yang et al. (47) confirmed that the inhibition of cholesteryl
esterification by gene knockout or ACAT1 inhibitor significantly
increased the production of CD3-TCR (T-cell receptor) clusters,
effective immune synapses in the T-cell membrane, the proliferation
of CD8+ tumor infiltrating lymphocyte cells (TILs), and the
production of cytolytic granules, cytokines, and their cytotoxic
anti-tumor effects; it finally prolonged the inhibition of tumor
growth and survival time of mice (47). High indoleamine 2,3-
dioxygenase (IDO) expression can lead to local tryptophan
depletion in cells, induce T-cell arrest in the G1 phase, inhibit
proliferative activation, and strengthen Treg-mediated
immunosuppression (48, 49). Although IDO inhibitors can
activate T cells in various ways, they do not provide clinical
benefits alone. IDO inhibitors can be combined with other anti-
cancer drugs, but a trial of their combination with anti-PD-1 has
shown disappointing data (50). Interestingly, results of a recent trial
that used IO102/IO103, a vaccine under development that targets
IDO and PD-L1, in combination with nivolumab for the treatment
June 2022 | Volume 13 | Article 890166
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of metastatic melanoma showed an ORR as high as 80%, with 13
patients (43%) achieving CR (51). In summary, new exploration of
TME metabolic patterns should be gradually carried out in the
future to study the effect of TME metabolic changes on tumor
invasiveness and immune regulation and to develop therapeutic
strategies that can target tumor metabolism and activate anti-tumor
immunity; this exploration must consider combinations with other
metabolic targeted drugs, antibody-based immunotherapy, and
tumor vaccines, as this can open up a new horizon for improving
the treatment of cancer.
2.2 Therapeutic Strategies Based on TME
Stimulatory Signals
Activation signals are downregulated in TME, and the treatment
strategies targeting this aspect are as follows: activation of
stimulatory receptors on the surface of immune cells,
supplementation of stimulatory cytokines, enhancement of
antigen presentation, and supplementation of immune effector
cells, which can reverse the efficacy limitations caused by
insufficient immune activation signals in the TME.
2.2.1 Targeting Stimulatory Checkpoints
A variety of stimulatory checkpoint molecules exist on the
surface of immune cells in the TME, including CD27, CD40,
OX40, glucocorticoid-induced TNF receptor (GITR), and
inducible co-stimulator (ICOS), which can stimulate the
proliferation and activation of immune cells after activation,
improve the TIME, and enhance the efficacy of anti-tumor
immunotherapy (52). 4-1BB is a well-studied stimulatory
receptor, which interacts with its ligand to provide a second
costimulatory signal independent of CD28 signal for T-cell
activation, promotes T-cell proliferation and activation, and
inhibits activation-induced apoptosis (a major type of
programmed cell death of T cells, referred to as AICD),
thereby enhancing T-cell immune killing function; moreover,
binding of 4-1BB to its ligands can induce the activation of cells,
such as monocytes, DCs, etc., and the secretion of corresponding
cytokines, which plays a promoting role in immune regulation
(53). Therefore, 4-1BB is considered a potential target for
enhancing anti-tumor immunity. Currently, it is widely used
for the development of targeted antibodies and chimeric antigen
receptor (CAR)-T products (54). New drugs for 4-1BB targeted
immunotherapy include 4-1BB targeted antibodies ADG106,
LVGN6051, and PD-L1/4-1BB-bispecific antibodies ES101 and
ATG-101. Recently, researchers have explored several strategies
such as intratumoral (IT) administration, design of 4-1BB
bispecific antibodies targeting tumor antigens or tumor matrix
components, development of proteolytic activation antibodies,
and design of tumor-targeting 4-1BB novel antibodies without Fc
segments; these are expected to eliminate the key factors causing
toxicity while improving the accuracy of antibodies attacking
tumors, so that 4-1BB agonists achieve the goal of high efficiency
and low toxicity (55, 56). In addition, there are many activating
receptors on the surface of NK cells, such as NKp30, NKp44,
NKp46, and CD226 of the natural cytotoxicity receptor (NCR)
Frontiers in Immunology | www.frontiersin.org 5
series; these can be designed for immunotherapy so as to target
NK cell-activating signals (57). NK cells express human receptor
III on their surface for recognition by the Fc region of
immunoglobulin G (FcgRIII/CD16), which can bind to the Fc
of monoclonal antibodies and trigger antibody-dependent cell-
mediated cytotoxicity (ADCC) (58). On the basis of this
principle, monoclonal antibodies such as a-CD20, a-GD2, a-
Her2, and a-EGFR have been successfully marketed, and various
bispecific monoclonal antibodies are being developed. Natural
killer group 2D (NKG2D) can improve the cytotoxic activity of
NK cells by interacting with its ligands, MHC class I chain-
related gene A (MICA) and MICB (59); however, cleavage of
MICA and MICB by proteases can block this activation, and
inhibition of cleavage of MICA and MICB using monoclonal
antibodies can improve the survival rate of mice (60).

2.2.2 Application of Stimulating Cytokines
Cytokines, which are messengers that coordinate cellular
interactions and immune system communication, are released
by immune and non-immune cells in response to cellular stresses
such as infection, inflammation, and tumorigenesis (61).
Secreted cytokines can rapidly propagate immune signals in a
complex but efficient manner to generate potent and coordinated
immune responses to target antigens (61, 62). Therefore, the
addition of stimulatory cytokines to the TME can improve
immune cell activity and enhance anti-tumor immune
responses. IL-2 is a key cytokine that regulates the adaptive
and innate immune systems. Intravenous infusion of high-dose
recombinant IL-2 induces CR in approximately 12% of patients
with melanoma (63)and 7% of patients with renal cell cancer
(RCC) (64), which tends to be durable. However, the
disadvantages of using IL-2 in clinical practice include shorter
half-life, high incidence rates of adverse events, and inducible
activity of immunosuppressive Tregs (61). In addition, drugs
have been designed to selectively activate immunostimulatory
low-affinity IL-2Rbg complexes. Bempegaldes (NKTR-214) is a
CD122 agonist that achieves pleiotropic immune activation by
preferentially activating the IL-2b receptor; it has a sustained
signaling effect, can activate and expand specific anti-tumor
effector T cells and NK cells directly in the TME, increases
PD-1 expression on the surface of CD8+ T immune cells, and
facilitates the binding of this protein to a PD-1 inhibitor (65–67).
The phase I/II PIVOT-02 study (NCT02983045) (68) evaluated
NTRK-214 in combination with nivolumab for the treatment of
advanced solid tumors and found that it showed good efficacy,
with an overall ORR of 59.5% (22/37) and CRs in seven patients
(18.9%) by tumor type and dose cohort. Cellular and gene
expression analyses of longitudinal tumor biopsies showed
increased infiltration, activation, and cytotoxicity of CD8+ T
cells, but no enhancement of regulatory T cells (68). Phase II and
III trials on NKTR-214 in combination with PD-1 inhibition
(NCT03138889 and NCT03635983) or dual CTLA4 and PD-1
inhibition (NCT02983045) are ongoing.

IL-12 can stimulate NK-cell and CD8+T-cell proliferation,
promote cytotoxic activity (69), and have potent anti-angiogenic
effects; thus, it is a potentially important therapeutic cytokine
(70). However, similar to IL-2, the short half-life and toxicity of
June 2022 | Volume 13 | Article 890166
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IL-12 hinders its clinical application (71, 72). To avoid toxicity,
NHS-IL12 was developed by fusing two IL-12 molecules to
antibodies targeting DNA-histone complexes, which are able to
selectively deliver cytokines to necrotic tumor regions (73). The
IL12-L19L19 fusion consists of IL-12 linked to a tandem Fv
fragment derived from mAb L19 that specifically targets tumor
tissue (74), and preclinical studies have shown that IL12-L19L19
is more effective than fusion proteins containing intact mAbs
such as NHS-IL12 and BC1-IL12 (74). In addition, recent studies
have shown that targeting and/or local delivery of IL-12 or
combined anti-PD-1/PD-L1 monoclonal antibody therapy
could be a promising approach for cancer therapy (75, 76).
Nakao et al. (77) found that intratumoral injection of tumor-
selective oncolytic bovine poxvirus encoding IL-7 and IL-12 into
immunocompetent tumor-bearing mice altered the TME
immune status, activated inflammatory immune status in
previously poorly immunogenic tumors, had anti-tumor
activity in both tumors that are directly injected with this
oncolytic bovine poxvirus and those that are not injected
distantly with this oncolytic bovine poxvirus, and even led to a
complete tumor response. In tumor models that were
unresponsive to ICIs combined with anti-PD-1 antibodies or
anti-CTLA4 antibodies alone, it was further confirmed that
intratumoral injection of an oncolytic bovine poxvirus
encoding IL-7 and IL-12 combined with ICI therapy improved
anti-tumor activity (77). IL-15 is another cytokine that can
promote the generation, proliferation, and activity of anti-
tumor NK cells and CD8 + T cells (61); however, its efficacy as
a treatment is limited. The most extensively tested IL-15
superagonist, N-803, has been tested in combination with
other immunotherapies (78, 79). Indeed, there is evidence that
N-803 in combination with ICIs is efficacious against a range of
solid tumor types following progression under prior ICI therapy
(80). Therefore, the supplementation or activation of stimulatory
cytokines in the TME is potentially a novel anti-tumor
therapeutic strategy.

2.2.3 Enhancing Antigen Presentation
T cells specifically recognize tumor-specific or tumor-associated
antigenic peptides presented by MHC or HLA class I or class II
molecules on the surface of antigen presenting cells (APCs), and
naive T cells are activated to prime and kill tumor cells (81).
Inhibition of tumor cell antigen presentation processes plays an
important role in limiting T-cell immune responses, and
immunotherapies against enhanced presentation of TME
antigens can be developed. Plinabulin is a novel selective
immunoregulatory microtubule binder (SIMBA) that triggers
the release of the immune defense protein GEF-H1 to induce the
maturation of APCs and DCs, enhance the cross-presentation of
tumor antigens to CD8+ T cells, and activate effector T cells to
target tumor cells. The randomized double-blind clinical phase
III study DUBLIN-3 (NCT02504489, ESMO2021, LBA48)
evaluated the efficacy of plinabulin used in combination with
chemotherapy as a second- or third-line treatment for patients
with NSCLC with wild-type EGFR. Intratumoral toll-like
Frontiers in Immunology | www.frontiersin.org 6
receptor 9 (TLR9) agonists can stimulate immature DCs to
release large quantities of cytokines (e.g., IFN-a) and facilitate
their maturation into APCs by targeting TLR9 on immature
plasmacytoid DCs; this promotes the recognition ability of the
immune system and increases the infiltration of CD8+ T cells in
tumors. A multicenter phase 1/2 clinical trial designed to assess
the safety and efficacy of intratumoral injection of the TLR9
agonist SD-101 in combination with low-dose radiation therapy
in treatment-naive patients with indolent lymphoma showed
that almost all patients had tumor shrinkage at the treatment site
without treatment-related grade 4 or serious adverse events (82).
Moreover, the investigators observed treatment-related increases
in CD8+ and CD4+ effector T cells and decreases in follicular
helper T cells and Tregs in TME, which correlated with good
clinical outcomes (82). A trial that evaluated the efficacy of TLR9
agonist SD-101 combined with the PD-1 antibody
pembrolizumab for the treatment of patients with advanced
melanoma reported an overall ORR of 78%, estimated 12-
month PFS of 88%, OS of 89%, and tolerability of a good level
(83). Combination therapies induce a wide range of immune
activations in the TME, including increased infiltration of NK
cells, cytotoxic cells, DCs, B cells, and CD8+ T cells, which are
often associated with enhanced tumor immune responses. The I-
SPY2 study (NCT01042379) evaluated the efficacy of adding SD-
101 and pembrolizumab to neoadjuvant therapies (paclitaxel,
doxorubicin, and cyclophosphamide). Phase Ib clinical trial on
another TLR9 agonist, CMP-001, administered alone or in
combination with pembrolizumab in patients with anti-PD-L1-
resistant malignant melanoma showed that the response rate of
the combination therapy was 25% (28/83), with CR in six
patients and partial response (PR) in 22 patients. An ongoing
multicenter trial (NCT02680184) continues to evaluate the
efficacy and safety of intratumoral CMP-001 therapy
administered alone or in combination with pembrolizumab in
patients with PD-1-resistant melanoma. Currently, FDA has
awarded the Fast Track designation for CMP-001 combined
with nivolumab plus ipilimumab to support its clinical
development as a treatment regimen for patients with
unresectable stage III or IV melanoma. Stimulation of the
TLR9 pathway of the innate immune system can enhance the
adaptive immune response of tumors in the injection and non-
injection sites by enhancing the antigen presentation process.
This has unmeasurable potential as a combined new target drug
for cancer immunotherapy and is worthy of further exploration.

OVs improve immune system recognition of tumor cells by
upregulating pathways that are involved in antigen processing
and presentation, including increasing MHC class I/II expression
on APCs and tumor cells, promoting tumor-associated antigen
presentation and recognition, stimulating potential class I IFN
responses, and stimulating chemokine production, thereby
recruiting T cells and promoting anti-tumor T-cell responses
(84). In addition, OVs can also induce TNF and IL-1b,
complement responses, and upregulate the expression of
selectin in endothelial cells, thus providing a key signal for the
infiltration of T cells (84). Irrespective of whether they are
June 2022 | Volume 13 | Article 890166
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natural or acquired and modified or unmodified, OVs are
cytotoxic and show tropism toward tumor tissues; they can
selectively infect tumor cells, multiply and spread in and
between tumor cells, stimulate the immune response of the
human body, and amplify immunomodulatory effects (85).
Modified OVs are expected to promote T-cell binding to
tumor cells using an entirely new approach. In a previous
study, a bispecific T-cell engager system (BiTE) was used to
bridge T cells (through CD3 specificity) to tumor cells expressing
tumor-associated antigens (such as HER2), and then, BiTE was
integrated into OVs to construct those with multiple
immunoregulatory effects, which can release BiTE into tumor
cells and induce T-cell-mediated tumor cell killing (85). A phase
II study evaluating the effects of in situ OVs (showing
adenovirus-mediated herpes simplex virus thymidine kinase
expression) + valacyclovir (an antiviral drug) + stereotactic
radiotherapy + pembrolizumab therapy (NCT03004183) in
patients with triple-negative breast cancer (TNBC) is ongoing.
Therapeutic tumor vaccines act on the innate immune system to
present tumor-specific antigenic peptides to T cells through
APCs, which enhances cytotoxic T lymphocyte (CTL)
activation and mediates immune recognition and killing
responses to cancer cells (86). Sipuleucel-T is a DC-based
cancer vaccine therapy approved for the treatment of advanced
prostate cancer (87). The Atalante-1 study used OSE-2101
(ESMO2021. LBA47), a tumor vaccine targeting the HLA-A2+-
restricted new epitope of five tumor associated antigens (TAAs)
commonly associated with lung cancer, for the treatment of
patients with HLA-A2+ NSCLC showing secondary immune
resistance; it represents the first phase III randomized
controlled study on lung cancer in the world to obtain positive
results. Multiple studies have used breast cancer vaccines,
including the PVX-410 vaccine (targeting the overexpressed
XBP1 and CD138 peptides of TNBC) (NCT03362060,
NCT02826434), folate receptor a vaccine (NCT03012100), and
neoantigen vaccine, administered alone or in combination with
PD-1/L1 inhibitors for the adjuvant treatment of TNBC or for
the treatment of metastatic disease (88). Relevant ongoing
clinical trials include a randomized phase I study on
neoantigen vaccine ± durvalumab treatment (NCT03199040)
and a randomized phase II study on nab-paclitaxel +
durvalumab ± neoantigen vaccine treatment (NCT03606967).
These advances highlight the clinical application of tumor
vaccines in cancer therapy.

2.2.4 Application of Immune Effector Cells
Other immunotherapeutic strategies that are currently being
explored to target the TME include adoptive cell therapy
(CAR-T cells and TIL therapy). Recently, two types of
genetically modified T cells have been developed, namely,
CAR-T cells and TCR-engineered T cells, for adoptive transfer,
and substantial progress has been made in the treatment of
malignant tumors (89). CAR-T technology has entered the
developmental stage of the fifth generation. CAR-T cells were
precisely constructed using CRISPR gene editing technology to
Frontiers in Immunology | www.frontiersin.org 7
prepare allogeneic CAR-T cells (90). To date, the US FDA
approved five CAR-T cell therapeutics according to clinical
guidelines. More than 200 studies on CAR-T cells have been
conducted using clinical data from the Google website. CT041 is
a humanized autologous CAR-T cell drug candidate that was
developed in China. It is currently the only CAR-T cell
immunotherapy in the world that targets the gastro-specific
membrane protein CLDN18.2 (91), has been approved by the
US FDA and China FDA (CFDA), and is undergoing clinical
trials. It is the first solid tumor CAR-T product to be qualified as
a priority drug (PRIME) by the European Medicines Agency
(EMA). CAR-T cell therapy for solid tumors is limited by the
lack of tumor-restricted and homogeneously expressed tumor
antigens, and the combination of CAR-T with other therapies
may solve this bottleneck. Tumor cells were infected with
vaccinia virus, an OV, coding CD19t that expressed de novo
CD19 on the cell surface before virus-mediated tumor lysis; it
promotes the targeting of tumor cells by co-cultured CD19-
CAR-T cells, thereby inducing the secretion of cytokines,
showing potent cytolytic activity against infected tumors,
confirming the OV19t promoted tumor control by CD19-
CARt cells in several mouse tumor models (92). The other
approach involves the enhancement of CAR-T function in
solid tumors by enhancing donor cells with a chimeric
receptor booster vaccine in vivo. Amphipathic CAR-T ligands
(amph-ligands) have been designed to be transported to the
lymph nodes and to decorate the surface of APCs after injection,
which lead to the initiation of CAR-T cells in the native lymph
node microenvironment (93). Amph-ligand enhancement
triggers massive expansion of CAR-T cells, increases the
versatility of donor cells, and enhances anti-tumor efficacy in a
variety of immunocompetent mouse tumor models, thus
supporting the application of this simple non-human leukocyte
antigen-restricted method of enhancing CAR-T function to
existing CAR-T designs (93).

Recently, researchers have attempted to engineer immune cells
that are less immunogenic and have good tumor-killing activity,
such as NK cells, which represent a cell type that has the potential to
replace T cells and to be used for universal immune cell therapy.
CAR-NK cell therapy can not only specifically recognize antigen-
expressing tumors through CAR but also eliminate tumors through
NK receptor-dependent mechanisms (e.g., ADCC), and lysis occurs
in antigen-negative tumors as well (94). Most CAR-NK cell
therapies, including those targeting hematologic targets (e.g.,
CD19, CD20, and CD138) (95–97) and solid tumors (e.g., HER2,
GD2, PSCA, and EGFRvIII), have been evaluated for efficacy in
tumor xenograft (PDX) models (98–100). Studies show that 68%
and 32% of CAR-NK cell therapies are undergoing phase I and
phase II clinical studies, respectively. No CAR-NK cell therapy has
entered phase III clinical studies. With regard to the use of anti-
CD19 IL-15-secreting CAR-NK cells for the treatment of patients
with B-cell lymphoma and chronic lymphocytic leukemia (CLL), 8
of 11 (73%) patients with relapsed or refractory CD19-positive
cancer achieved a response; 7 of these patients (lymphoma, 4
patients; and CLL, 3 patients) achieved CR, and 1 patient
June 2022 | Volume 13 | Article 890166
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achieved a response with Richter’s transformation component, but
had persistent CLL (101). A rapid response was observed within 30
days of infusion at all dose levels, with expansion of the injected
CAR-NK cells at low levels that persisted for at least 12 months
(101). In addition to CAR-NK, Klichinsky et al. (102) engineered
macrophages using CAR-targeting HER2 and evaluated the killing
effect of CAR-macrophages (Macs) on tumors using a mouse
model; they found that CAR-Macs could effectively kill tumors,
reduce lung metastasis of SKOV3 cells, and ultimately prolong OS
in the SKOV3 human ovarian cancer mouse model. Studies
revealed that the mechanism underlying the key tumor-killing
function may be related to CAR-Mac resistance and the reversal
of the transformation of TAMs to M2 macrophages (102).
Researchers induced iPSC differentiation in pluripotent stem cells
to obtain CAR-expressing iPSC-derived macrophages (CAR-iMac)
and found that CAR-iMac cells showed antigen-dependent
phagocytosis and cytotoxicity toward tumor cells, as well as
antigen-dependent polarization effect on M1 macrophages, when
co-cultured with lymphoma cells expressing CD19 antigen or
ovarian cancer cells expressing mesothelin antigen (103).
Subsequently, CAR-iMac cells also showed an antigen-dependent
ability to inhibit tumor cell growth in hematological and solid tumor
models of mice (103). The above exploration of CAR-immune cells
provides new ideas and broad application prospects for cellular
immunotherapy of tumors.

In addition to CAR cell therapy, TIL therapy, which obtains
TILs that recognize tumor-specific neoantigens from patient
tumor tissues, activates and amplifies them, and then
transfuses them back into patients for treatment, has been a
breakthrough in recent years. The phase II C-144-01 study (104)
used lifileucel (LN-144) for the treatment of 66 patients with
stage IIIC/IV unresectable melanoma and showed that after 18.7
months of follow-up, the mDOR was not achieved; an ORR of
36% (2 CR and 22 PR), a disease control rate (DCR) of 80%, and
a superior effect in the primary refractory subset of anti-PD-1 or
PD-L1 therapy were observed. The FDA has granted orphan
drug designation to another novel TIL therapy, ITIL-168, for the
treatment of stage IIB-IV melanoma. The US FDA granted
breakthrough therapy designation to the candidate therapy
LN-145 for the treatment of recurrent, metastatic, or persistent
cervical cancer that worsens during or after chemotherapy. A
phase II study on LN-145 (NCT04111510) autologous TIL
infusion therapy and a multicenter phase II InnovaTIL-01
study on lifileucel for melanoma are currently ongoing. IOV-
COM-202 (NCT03645928) is a multicenter, multi-cohort, phase
II clinical trial on TIL therapy (LN-144, LN-145, and LN-145-S1)
administered alone or in combination with PD-1 monoclonal
antibody for the treatment of advanced solid tumors (105). Data
from the NSCLC cohort published in 2021 showed that the
combination group achieved an ORR of 21.4% and a DCR of
64.3%; this group did not reach an mDOR. Among them, one
patient with a CR (negative PD-L1 expression) had a response
duration of more than 20.7 months (105). This highlights the
synergistic and durable efficacy response of TIL therapy
combined with PD-1 monoclonal antibody therapy.
Frontiers in Immunology | www.frontiersin.org 8
Table 1 provides an overview of the current targets, therapies
or drugs and related clinical trials of immunotherapeutic
strategies targeting the TME.
3 CHALLENGES FACED BY TIME
RESEARCH AND SOLUTIONS

Immunotherapy strategies have a positive therapeutic effect and
potentially cure a small number of patients with advanced high-
grade tumors, and inmost cases, TME blocks the immunotherapeutic
effect by dynamic evolution through compensatory feedback
mechanisms and induces drug resistance and even tumor
progression. At present, the challenges associated with TME
therapy include the lack of research models, complexity of TME
immune networks, spatiotemporal heterogeneity of the TME, and the
impact of systemic immunity.
3.1 Complexity of TIME
The TIME is a complex multi-level system, so there is still room
for improvement in immunotherapies targeting the TME. By
integrating multi-omics techniques, such as multi-parameter
flow cytometry, RNA sequencing, protein array, and spatial
tissue characterization, key insights into the composition and
transcriptome of the most abundant immune cell populations
originating from a variety of extracranial tumors in patients with
brain metastases have been proposed; this information revealed
the complexity of glioma TIME (106). With recent advances in
single-cell technology, the large-scale characterization of tumor-
infiltrating immune cells at single-cell resolution is of great
interest to cancer immunologists. Sun et al. (107), for the first
time, conducted a deep and comprehensive dissection of the
unique TIME ecosystem of early recurrent HCC using single-cell
transcriptome sequencing technology, which is an important
step in understanding how the immune microenvironment
affects tumor recurrence.
3.2 Spatiotemporal Heterogeneity of TIME
The spatially heterogeneous distribution of the TIME poses a
challenge for targeted anticancer immunotherapy. A study used
multi-omics analysis technology to comprehensively evaluate the
immunophenotype and spatial heterogeneity of NSCLC TME by
analyzing the spatial characteristics of surgical resection biopsy
at multiple sites in the tumor mass of patients and found that the
immune microenvironment shows a high degree of spatial
heterogeneity, which results in large regional variations in the
tumor (108). A systematic overview of TIL profiles in different
cancers examined using single-cell technology could reveal the
unique mechanisms of immune responses and elucidate
differences in responses between different cancer types.
However, the TME is dynamical ly evolving and is
characterized by strong plasticity. The team constructed a
nanoimmunomodulator-hydrogel superstructural drug
June 2022 | Volume 13 | Article 890166
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delivery system that can remodel TIME in situ based on self-
assembled ol igopept ide hydroge l s and biomimet ic
nanoimmunomodulators, which can cascade remodel the
immune microenvironment of tumor killing in a variety of
ways to curb the recurrence of postoperative glioblastoma
multiforme (GBM) (109). Multi-parameter and multi-
locus analyses will facilitate the comprehensive assessment
of the heterogeneous characteristics of the immune
microenvironment in tumors, whereas dynamic monitoring
and effective remodeling of TME immune characteristics are
required to effectively improve immunotherapy efficacy.
3.3 Systemic Immunity Affects TME
Immune Response
In addition, tumor immunity is not limited to the local
microenvironment of the tumor but also relies on the assistance of
the peripheral immune system. Mass spectrometry analysis of all
immune cells in the bone marrow, spleen, blood, lymph nodes, and
tumor revealed remodeling of a large number of peripheral immune
cells (110). In three different animal models of breast cancer
(AT3,4T1, MMTV-PyMT), the proportions of neutrophils,
eosinophils, and monocytes increased, which corresponded with a
decrease in the proportions of DCs, B cells, and T cells in the TME
(110); this indicates that the systemic immune system forms an
immune network cycle of continuous communication during tumor
development, whereas the integrity of the body’s immune cycle is
closely related to the TME immunophenotype and the response to
anti-tumor immunotherapy. Therefore, current therapies targeting
the TME are associated with many challenges that need to be
Frontiers in Immunology | www.frontiersin.org 11
analyzed comprehensively and to be overcome so that we can
improve the accuracy and effectiveness of these strategies.
4 SUMMARY AND PROSPECT

Starting from the TME signals, we summarize drug research and
development for many new targets, including physical barriers,
immune cells and surface molecular receptors, cytokines, and
metabolic factors (Figure 1). However, it should be noted that
the treatment of targeted TME is affected by various factors, such
as the systemic immune system (host factors), anti-tumor
therapy, and tumors, in such a way that a minor change affects
the whole system. With the development of novel technologies,
the understanding of mechanisms of immune response in the
TME has gradually deepened, which is conducive to
the discovery of more effective therapeutic targets and the
optimization of immunotherapy regimens. Simultaneously,
novel drug delivery platforms, such as the TME-responsive
nanomedicine systems, must be constructed on the basis of the
local environmental properties of TME, including low nutrition,
low pH, tediousness, and ischemia (111, 112). The future trend of
precision testing involves continuous breakthroughs in new
technologies (genomics technology/liquid biopsy, single-cell
protein/RNA analysis, multidimensional combined detection
technology), new targets, and new drugs. Moreover, a data
sharing culture and resources and repositories that can support
data sharing are needed to reduce the time from discovery to
practice, and through large sample accumulation, development
and application of targeted TME immunotherapeutic strategies,
BA

FIGURE 1 | Immunotherapeutic Strategies Targeting Tumor Microenvironment. (A) Therapeutic strategies based on tumor microenvironmental inhibitory signals;
(B) Therapeutic strategies based on tumor microenvironmental stimulatory signals. SLCs, solute carrier transporters; DC, dendritic cell; MDSC, myeloid-derived
suppressor cell; TAM, tumor-associated macrophage; Treg, regulatory cell; NK, natural killer cell; MHC, major histocompatibility complex; TCR, T cell receptor; PD-1,
programmed cell death-1; PD-L1, programmed cell death-ligand 1; TIM-3, lymphocyte-activation gene -3; TGF-b, transforming growth factor-b; CSF-1, colony-
stimulating factor-1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; b2M: b2- microglobulin; MCT, monocarboxylate transporter; ACAT1, Acyl coenzyme A
cholesterol acyltransferase 1; OVs, oncolytic viruses; TILs, infiltrating lymphocyte cells; CAR, chimeric antigen receptor; TLR, toll-like receptor 9.
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in the future, with the help of cloud computing and artificial
intelligence (AI) technology seem promising.
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