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There is growing evidence that preceding the diagnosis or classification of systemic lupus
erythematosus (SLE), patients undergo a preclinical phase of disease where markers of
inflammation and autoimmunity are already present. Not surprisingly then, even though
SLE management has improved over the years, many patients will already have
irreversible disease-related organ damage by time they have been diagnosed with SLE.
By gaining a greater understanding of the pathogenesis of preclinical SLE, we can
potentially identify patients earlier in the disease course who are at-risk of transitioning
to full-blown SLE and implement preventative strategies. In this review, we discuss the
current state of knowledge of SLE preclinical pathogenesis and propose a screening and
preventative strategy that involves the use of promising biomarkers of early disease,
modification of lifestyle and environmental risk factors, and initiation of preventative
therapies, as examined in other autoimmune diseases such as rheumatoid arthritis and
type 1 diabetes.

Keywords: systemic lupus erythematosus, prevention, biomarkers, risk factors, pathogenesis
1 INTRODUCTION: PREDICTION AND POSSIBLY PREVENTION
OF SLE IN THE NEAR FUTURE

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by immune
dysregulation and systemic inflammation, leading to progressive and irreversible multi-organ
damage. Although SLE is relatively uncommon [SLE affects ~25 to 50 per 100,000 persons in the
United States (1, 2)], it disproportionately affects young women during their prime reproductive
years, particularly those of non-White ancestry (3, 4). SLE remains among the leading causes of
mortality in young females, underscoring its impact as an important public health issue (5, 6).
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With the discovery of more risk factors for SLE including
genetics and environmental/lifestyle risk factors our ability to
estimate SLE risk is improving, and thus so is the identification of
patients who are at high versus low risk of this complex
autoimmune disease.

A better understanding of SLE pathogenesis may enable
earlier and more accurate identification of at-risk patients, as
well as the discovery of therapeutic targets, and the design of
prevention trials. However, since the breakthrough and
serendipitous discovery of the Lupus Erythematous (LE) cell
and its role in SLE pathogenesis in 1948 (7), are we any closer to
achieving this goal? The LE cell provided evidence that
autoantibodies are a key player in SLE pathogenesis, which are
generated by a dysregulated immune system leading to immune
complex formation and deposition, and subsequent
inflammation and organ damage. In the 75 years that followed
the LE cell identification, there was an explosion of serologic tests
and technologies developed to detect autoantibodies, most
centrally the antinuclear antibody (ANA) test, to aid in the
diagnosis or classification of SLE [reviewed in (8)].

SLE is notoriously difficult to diagnose and classify because of
the heterogeneity and non-specificity of clinical signs and
symptoms in early disease. The diagnosis of SLE is thus
frequently delayed such that by the time a formal diagnosis is
confirmed, irreversible organ damage has already occurred.
There are reports that the diagnosis of SLE is delayed by a
median of 47 months, with patients submitting to an average of
10 consultations and evaluation by three different physicians
before a diagnosis is finally made (9). A delay in SLE diagnosis
has been associated with worse outcomes including higher
disease activity, organ damage, lower quality of life, and
remarkably increased healthcare costs (9). Organ damage
occurring early in the disease course also has a negative impact
on SLE patients, as it is associated with further damage,
development of comorbidities and early mortality (10, 11). The
classification criteria for SLE have been through several iterations
to improve sensitivity and specificity, with the most recent
criteria being the American College of Rheumatology (ACR)/
EULAR (European League Against Rheumatism) 2019 criteria
(12, 13). Unlike the others, one of the major differences with the
new criteria is that it uses the “ANA at a titer of ≥1:80 on HEp-2
cells or an equivalent positive test at least once” as an
entry criterion.

Despite advances in therapy, such as the recent approval of
several new drugs (anifrolumab, voclosporin, and a new
indication for belimumab) (14–16), without timely and
accurate diagnosis to allow the initiation of evidence-based
therapy, patients with SLE will continue to be at increased risk
for morbidity, disability, and premature death secondary to
cardiovascular events (e.g., strokes and myocardial infarction),
malignancy, and infection, driven by uncontrolled inflammation
(6, 17). Furthermore, antimalarials continue to be the mainstay
therapy in SLE. Hydroxychloroquine (HCQ) has been shown to
reduce SLE flares (lupus nephritis in particular), organ damage,
pregnancy complications, cardiovascular events and survival
(18–23). There is also evidence to suggest it can delay the
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onset of SLE, prompting a clinical trial that is currently
underway to answer whether it can be used as a preventative
therapy (18).

Emerging research suggests that our increasing knowledge
about risk factors and biomarkers for SLE could lead to the
identification of those at highest risk, and potentially then to
early interventions prior to the onset of symptoms, to intercept
and prevent this often-devastating disease. We review how
current understanding of the development of SLE is
contributing to progress in the identification of those who are
developing disease, and how genetic and population risk factor
studies are leading to the potential for disease prevention
through early identification, environmental or lifestyle changes,
and therapeutic interventions.
2 THE PATHOGENESIS OF PRE-CLINICAL
SLE AND IMPORTANT BIOMARKERS AND
RISK FACTORS

Understanding of the etiopathogenesis of SLE is evolving
[reviewed in (24)]. The currently accepted model for multiple
complex autoimmune diseases is that development takes place
over time prior to diagnosis and in several stages (Figure 1). This
next section will review the three phases that precede the
diagnosis of SLE: 1) genetic risk, 2) asymptomatic
autoimmunity and inflammation, and 3) early symptoms of
lupus. As we discuss each phase, we will describe potential
avenues of disease prevention including biomarkers for early
disease detection and modifiable risk factors.

2.1 Genetic Risk
SLE likely begins and is accelerated by a complex interplay
between genetic risk, lifestyle and environmental risk factors
and immune dysregulation. When individuals who possess SLE
genetic risk alleles are exposed to environmental risk factors
throughout their lives, synergistic interactions may take place,
accelerating the onset of autoimmunity and inflammation.
About 5-12% of subjects with a first-degree relative with SLE
will develop the disease in their lifetime, whereas in persons with
a congenital deficiency of the complement component C4, this
risk can increase to 90% (25). Children who develop SLE appear
to have a larger contribution of known SLE genetic risk, in
particular non-HLA genes, than do adults with SLE, and thus the
contribution of environmental exposures to SLE susceptibility
may be increasingly important with advancing age (26, 27).

A series of landmark genome-wide association studies
(GWAS) over the past decade in SLE have greatly expanded
our understanding of the genetic basis of SLE [reviewed in (28,
29)]. To date, over 100 SLE susceptibility loci have been
identified, predominantly in European and Asian populations,
explaining up to 30% of SLE heritability (30–44). These include
alleles in the Major Histocompatibility Complex (MHC) region
(multiple genes), some of the Fcg receptors, ATG5, BLK, BANK1,
IRF5 (interferon regulatory factor 5), ITGAM, PDCD1, PTPN22,
PXK, SPP1, STAT4, TNFSF4, TNFAIP3, XKR6, and deficiencies
June 2022 | Volume 13 | Article 890522
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in complement components (29). Many of these genes belong to
important pathways involved in immune complex clearance,
host immune signal transduction, and pathways involving
interferon (IFN), a key driving cytokine in many cases of SLE.

SLE-associated genes involved in the innate immune system
have been gaining interest because of the “IFN signature”.
Patients with SLE and high levels of IFN-a tend to have more
severe disease manifestations (45). Normally, type I IFNs are
produced during early response to viral infections and promote
dendritic maturation and proinflammatory cytokines. This has
several important effects on the immune system including the
stimulation of the Th1 pathways, promotion of B-cell activation
for autoantibody production, and regulation of apoptosis. One of
these genes is IRF5, which regulates type I IFN-responsive genes.
Outside of the MHC, it is one of the most strongly and
consistently SLE-associated with a modest contribution to SLE
risk (odds ratio 1.5) (46). The rs7574865 SNP risk variant of
STAT4 has also shown to confer increased sensitivity to IFN-a
signaling in peripheral blood mononuclear cells of SLE patients,
and is associated with more severe disease, early disease onset
and production of antibodies to double-stranded DNA (dsDNA)
(47). Together, IRF5 and STAT4 have an additive effect for
increased risk of SLE development (48). Additional genes that
influence the IFN pathway and innate immune signaling include
IRAK1, which is found on the X chromosome and therefore is
thought to contribute increased SLE risk among females (49),
and osteopontin, which is also associated with early disease onset
(50), as well as IRF7, IFIH1, and TYK2.

Other risk factors for SLE development are genes linked to the
MHC, primarily HLA-DRB1 in the MHC class II region (51).
HLA molecules play a key role in autoantibody production as
demonstrated by one Japanese study that identified both SLE risk
Frontiers in Immunology | www.frontiersin.org 3
signature and autoantibodies to ribonucleoprotein (RNP), SSA/
Ro60, SSB/La, cardiolipin were localized to the peptide binding
groove of HLA-DRB1 and anti-Sm to HLA-DPB1 (52). Multiple
genes involved in the adaptive immune response and
autoantibody production have also been linked to SLE risk
such as PTPN22 (53) and BANK1 with three functional
variants that lead to an altered B cell activation threshold to
increase SLE risk (41).

Given that SLE is multifactorial and multigenic, an
individual’s risk for SLE development cannot be well estimated
using only known genetic risk factors. Several similar weighted
genetic risk scores (GRS) have been developed to try to estimate
an individual’s cumulative genetic susceptibility to SLE risk (54).
A high GRS has been associated with earlier onset SLE and more
severe disease phenotypes (55). Overall, men with SLE also
appear to have slightly higher GRS than do women with SLE,
suggesting that there is a stronger genetic component of disease
among families with male SLE patients and perhaps that
environmental or hormonal factors contribute to lowering the
threshold for the development of SLE more among females than
males (or, conversely, environmental, or hormonal factors may
raise this threshold in males) (56). Other studies have also
demonstra ted greater SLE r i sk when genet ic and
environmental interactions are combined such as vitamin D
status in those with CYP24A1 alleles (57), current/recent
smoking and GRS (54).

Future genetic studies will likely reveal increased numbers of
genetic biomarkers, further refining our understanding of SLE
risk and pathogenesis. Large genetic studies in more diverse
racial and ethnic groups are still necessary, as most SLE GWAS
to date have studied subjects of European or Asian ancestry.
Research and development of models that incorporate
FIGURE 1 | SLE pathogenesis in four phases, increasing in SLE risk over time as patients accumulate risk factors. Changes in the immune system are detected
prior to the diagnosis of clinical SLE including presence of autoantibodies, cytokines, and immune complex deposition. Some patients (illustration not representative
of actual pre-clinical/clinical SLE population) will progress over time to clinical SLE while others remain in the earlier stages of preclinical SLE. Refer to Figure 2 for
potential points for early risk assessment and intervention opportunities. BLyS, B-cell lymphocyte stimulator; IFN, interferon; SLE, systemic lupus erythematosus.
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environmental risk factors will hopefully hone our ability to
identify those who are at high risk of developing SLE, and lead to
new therapeutic targets.

2.2 Asymptomatic Autoimmunity and
Inflammation
Some individuals genetically susceptible to SLE will transition
into a period of asymptomatic autoimmunity and inflammation
prior to the development of overt clinical manifestations. Which
individuals will progress and why? These are key questions that
we are still trying to answer. Thus far, studies have pointed to
environmental risk factors, some known and others yet to be
discovered, as potential triggers for this transition. These events
likely act by both separate and overlapping biological pathways,
including but not limited to increasing oxidative stress, loss of
immune tolerance, autoantibody formation, complement
activation and immune complex deposition, epigenetic
modifications, and upregulation in cytokine expression (58). In
this pre-symptomatic phase where there is already evidence of
early immune changes, can we use this our advantage to identify
these at-risk patients earlier? And if we could identify the earliest
changes of SLE, could we “turn it off” or move a person
“backwards” on their trajectory towards SLE? In this next
section, we will highlight important biomarkers and potential
interventions as we review the different pathways of
autoimmunity and inflammation in SLE pathogenesis.

2.2.1 Increased Oxidative Stress
Oxidative stress, which is defined by an imbalance between the
production and neutralization of reactive oxygen intermediates
(ROI), is normally utilized by phagocytic cells to eliminate
pathogenic organisms. However, in SLE, this is increased
leading to abnormal activation and processing of cell-death
signals and autoantibody production [reviewed in (59)].
Endogenous sources of oxidative stress include increased ROI
production in mitochondria, NADPH oxidase enzymes in
phagocytes, endothelial cells, T cells, and B cells (60, 61).
Ultra-violet (UV) radiation, viral and bacterial infections, and
chemical exposure have been implicated to be environmental
sources of oxidative stress. Oxidative stress not only induces T-
cell dysfunction and propagation of oxidative modification of
self-antigens leading to systemic inflammation, but it also
damages various organ systems result ing in renal ,
cardiovascular, and cutaneous disease/comorbidities in SLE
(62–64).

Currently, there are no biomarkers of oxidative stress in
routine clinical use. Potential biomarkers that have been
correlated with disease activity in established SLE patients
include increased modification of serum albumin (65), urinary
levels of F2 isoprostane (66), and serum nitric oxide levels (67).
Future studies are still needed to determine if these biomarkers
and others can help diagnose pre-symptomatic disease. Potential
antioxidant therapies for SLE include N-acetylcysteine and
rapamycin, but their role in preclinical disease is unclear (68,
69). On the other hand, dietary intake of antioxidant vitamins
(vitamins A, C, and E and a-carotene, b-carotene,
Frontiers in Immunology | www.frontiersin.org 4
cryptoxanthin, lycopene, lutein, or zeaxanthin) has not been
found to decrease SLE risk in epidemiologic studies (70, 71).

2.2.2 Break in Immunological Tolerance
Loss of self-tolerance occurs in SLE when autoantibodies target
nuclear self-antigens that are released into the extracellular space
and exposed to the immune system [reviewed in (72)].
Abnormal i t ies in apoptosis , NETosis , and histone
modifications are thought to be involved in this process.
Apoptosis is an important source of autoantigens in SLE and it
has been shown that many of the nuclear autoantigens (e.g.,
DNA, Ro, La, and small nuclear RNP) that are targeted in SLE
are clustered in blebs at the surface of apoptotic cells where
oxidative modification can occur (63, 73). NETosis is a
specialized form of neutrophil cell death that has also been
implicated as another potential source of autoantigens (74).
During NETosis, structures termed neutrophil extracellular
traps (NETs) are extruded by neutrophils to entrap and
dismantle bacteria, viruses, fungi, and parasites. These NETs
include fibrillary networks of DNA, citrullinated histones, and
granule peptides such as cathepsin G, neutrophil elastase, and
myeloperoxidase. In SLE, apoptosis and NETosis are increased,
resulting in an excess load of nuclear autoantibodies (72, 74).

However, these on their own are unlikely to break
immunological tolerance as several studies were not able to
induce immune activation by immunizing mice with apoptotic
cells/blebs or NETs (75, 76). A deficiency in clearance of
apoptotic cells and/or NETs due to intrinsic phagocyte defects
and absent/deficient serum factors are thought to lead to an
enduring exposure of modified proteins such as histones in the
immune system (77). These modified proteins are regarded as
neoantigens that are no longer perceived as endogenous and
subsequently elicit an autoimmune response. It can also
stimulate an inflammatory response through the activation of
nucleic acid recognition receptors (e.g., members of the Toll-like
receptor (TLR) family), which are important in viral and
bacterial defense and associated with type I IFN production
(discussed in 2.2.4 Cytokines/Chemokines). Improving the
clearance of apoptotic cells and/or NETs may therefore be
potential therapeutic targets for SLE or SLE prevention.

2.2.3 Autoantibodies
In addition to apoptotic cells and NETs, other important sources
of autoantigens include neoantigens generated from necrotic
cells under the influence of processes like oxidation and
cleavage and infectious agents (e.g., single-stranded RNA,
double-stranded RNA, and DNA). Autoantibodies and
cytokines are produced by B lymphocytes that process and
present these antigens. Autoantibodies can form immune
complexes with their antigen, which can lead to organ damage
through immune complex deposition and local and systemic
inflammation. In a positive feedback loop, autoantibodies can
then induce NETosis, and immune complexes can stimulate
plasmacytoid dendritic cells to produce pro-inflammatory
cytokines including IFN-a which can incite further NETosis.
In SLE, intrinsic abnormalities of B-cell and T-cell interaction
June 2022 | Volume 13 | Article 890522

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choi and Costenbader Prevention of SLE
also contributes to the production of autoantibodies [reviewed in
(78)]. In SLE, these cells are hyperresponsive to stimuli resulting
in the production of higher quantities of autoantibodies and
cytokines. Furthermore, defects in immune tolerance permit the
survival of dangerous autoreactive B cells that lead to further
production and diversification of harmful autoantibodies in a
process called epitope spreading (79, 80). Early in the disease
course, an antibody response might begin with a particular
epitope, and this is then later followed by a spread of the
response to other epitopes in the same polypeptide
(intramolecular) and in other distinct but structural similar
molecules (intermolecular) (81). In Table 1, we summarize
common SLE autoantibodies, their clinical associations, and
onset prior to the diagnosis of SLE (82–85).

SLE is thus a paradigmatic autoimmune disease, with
formation and detection of a wide range of autoantibodies,
some of which are more SLE-specific and more pathologic
than others. Autoantibody detection has long been a valuable
and effective approach to the diagnosis, classification and
prognostication with a wide range of established systemic
autoimmune rheumatic diseases (SARD), including SLE (87).
However, the exact contribution of autoantibody testing to the
identification of subclinical and very early SLE is still to be
determined. In a seminal study by Arbuckle et al. (83), a serum
biobank and database established by the American military was
queried and SLE-related autoantibodies were found in stored
blood up to 9.4 years (mean 3.3 years) before the onset of SLE
symptoms and eventual diagnosis. Other studies have confirmed
similar findings (84, 88–92). Anti-SSA/Ro60 antibodies typically
appeared first (83, 91, 92). Anti-SSB/La and anti-phospholipid
antibodies have been reported to appear next (83). IgG and/or
IgM anti-cardiolipin antibodies were detected in 18.5% of
patients with mean onset of 3.0 years prior to the diagnosis of
SLE and up to 7.6 years before SLE diagnosis (93). Anti-dsDNA
anti-Sm, and anti-RNP antibodies (mean 3.4 vs. 1.2 years;
p=0.005) appear later (83, 91, 92). Other studies have also
demonstrated that anti-dsDNA and anti-Sm antibodies in non-
SLE or early undifferentiated connective tissue disease patients
are predictive of SLE evolution (88, 94, 95). A positive ANA test,
a test used to screen for the presence of autoantibodies, has been
reported to appear up to 9.2 years (mean 2.25 years) prior to SLE
diagnosis or classification. As SLE progressed before and after
diagnosis or classification, new autoantibodies steadily
accumulated, consistent with other literature supporting
increased epitope spread over time (85, 92, 96, 97).

The absence of specific autoantibodies in SLE or the presence
of others may also help to identify those who are at lower risk of
progression to SLE. ANAs are non-specific and found in up to
20% of healthy subjects, and are more common in females, with
increasing age, and in the setting of infection, lung, and
autoimmune thyroid disease (98–100). Anti-dense fine
speckled 70 (DFS70) antibodies may be a useful biomarker to
rule out the diagnosis of SLE as they are rarely found in SLE
patients. In an international study of 1137 patients with SLE
followed from inception in the Systemic Lupus International
Collaborating Clinics (SLICC) cohort, only 1.1% had
Frontiers in Immunology | www.frontiersin.org 5
monospecific (no other detectable autoantibodies) anti-DFS70
antibodies (101). Thus, the presence of anti-DFS70 antibodies
may help to discriminate between those who are ANA-positive
healthy subjects versus those with SLE. Anti-C1q autoantibodies,
which are associated with lupus nephritis (102), were
infrequently found in patients with incomplete SLE in a small
cross-sectional study of 70 patients (86). The authors suggest that
although it remains undetermined whether this autoantibody
could be a predictor of SLE risk, the presence of an elevated anti-
C1q antibody in a patient with incomplete SLE might raise
concerns for SLE or more specifically, lupus nephritis (86).

One of the challenges of identifying novel predictive
autoantibodies for SLE development is that although over 200
different autoantibodies have been described in SLE, only 10%
have been made widely available as diagnostic assays approved
by regulatory authorities; most are still for research purposes
only (10). Furthermore, most studies of these novel
autoantibodies in SLE have been small and cross-sectional in
design, without consideration of hallmarks of early disease or
variable longitudinal disease course and outcomes, even though
autoantibody test results may vary over time. The parameters
associated with this longitudinal variation, such as the impact of
medical therapies on antibody responses, also have not been
well studied.

There has been a call for future exploration of novel
autoantibody biomarkers given the non-specificity of ANA for
SLE (11, 12). Investigators at the University of Toronto examined
approximately 200 ANA-positive patients without established
SARD, using a custom antigen microarray of 144 established and
novel autoantibodies (85). They found that the majority of
patients who tested negative for most current commercially
available autoantibodies were positive for autoantibodies on
their custom microarray. Anti-Ro52/Tripartite motif
containing-21 (TRIM21) autoantibodies were predictive of
SARD progression over the next two years (defined by the
1997 ACR criteria for SLE (103), 2013 ACR-EULAR criteria
for systemic sclerosis (104) or 2016 ACR–EULAR criteria for
Sjögren’s syndrome (105)), with positive predictive value of 46%
and negative predictive value of 89%. To close the ‘seronegative
gap’, more studies of novel disease-specific autoantibody
biomarkers are needed and will help to identify valid
predictors of disease evolution, potentially enabling
identification and treatment of patients with SLE in these early
stages (10).

2.2.4 Cytokines/Chemokines
Increased IFN-a activity is an important contributor to SLE
pathogenesis because of its involvement in the induction of B-
lymphocyte stimulator (BLyS) and DNA- and RNA- protein
binding autoantibody specificities. BLyS plays a key role in
regulating B cell survival and differentiation, which is central
to autoantibody production and class switching. Drugs blocking
BLyS activity (belimumab), and more recently, the type I IFN
receptor subunit 1 (anifrolumab), have reduced disease activity
in patients with SLE in large clinical trials and are now approved
therapies for SLE treatment (14, 16).
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TABLE 1 | SLE autoantibodies, clinical significance, and time to SLE onset.

Antibody Target SLE Clinical Significance Time to SLE Onset1

SSA/Ro60 • Subacute cutaneous SLE
• Lymphopenia
• Neonatal lupus
• In pediatric SLE, milder disease (cutaneous,

musculoskeletal)
• Protective with SSB/La (less renal and neurologic disease)

Up to 8.1-9.4 years (mean 2.3-2.97 years)

SSB/La • Subacute cutaneous SLE
• Neonatal lupus
• Leukopenia
• Serositis
• Protective with SSA/Ro60 (less renal and neurologic

disease)

Up to 7.0-8.1 years (mean 0.6-2.83 years)

Cardiolipin • Part of classification criteria
• Antiphospholipid syndrome
• Pulmonary hypertension
• Decreased survival

Up to 7.6 years (mean 2.29 years)

dsDNA • Part of classification criteria
• Lupus nephritis
• Disease activity
• Pathogenic

Up to 6.6-9.3 years (mean 1.24-2.0 years)

U1-RNP • Leukopenia
• Neuropsychiatric SLE
• Raynaud’s
• Musculoskeletal involvement
• Lung involvement

Up to 7.2-7.5 years (mean 0.20-1.2 years)

Histone • Drug-induced SLE
• Neuropsychiatric SLE
• Pathogenic

Up to 6.5 years (mean 1.9 years)

Sm (U2-U6 RNP) • Part of classification criteria
• Serositis
• Lupus nephritis
• Neuropsychiatric SLE

Up to 1.1-8.1 years (mean 0.47 years)

Ro52/TRIM21 • Hematologic involvement with SSA/Ro60
• Neonatal lupus
• More severe disease (renal)

Predictive of progression to SLE in patients followed over two years

C1q • Lupus nephritis
• Hypocomplementemic urticarial vasculitis with or without

SLE

Detected in incomplete SLE patients but infrequently, timing
unknown

b2GP1 • Part of classification criteria
• Antiphospholipid syndrome
• Pathogenic

Unknown

b2GP1 domain 1 • Antiphospholipid syndrome Unknown
High Mobility Group
Proteins

• Disease activity Unknown

Ku • Raynaud’s
• Myositis
• Arthritis

Unknown

Nucleosomes and
Chromatin

• Lupus nephritis with more severe renal failure
• Disease activity
• Pathogenic

Unknown

PCNA • Lupus nephritis
• Neuropsychiatric SLE
• Thrombocytopenia

Unknown

PS/PT • Antiphospholipid syndrome Unknown
Ribosomal P • Lupus nephritis

• Neuropsychiatric SLE
• Lupus hepatitis
• Disease activity

Unknown
Frontiers in Immunology | ww
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1. Based on Arbuckle et al. (83), Eriksson et al. (84), Munoz-Grajales et al. (85), and Olsen et al. (86).
2. b2GP1, beta 2 glycoprotein 1; dsDNA, double-stranded DNA; PCNA, proliferating cell nuclear antigen; PS/PT, Phosphatidylserine/Prothrombin; RNP, ribonucleoprotein; SLE, systemic
lupus erythematosus; TRIM21, Tripartite motif containing-21.
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In a case-control study by Munroe et al. of SLE patients and
matched healthy controls, serum collected prior to and at/after
SLE classification were analyzed (92). Prior to SLE classification
(average timespan of 4.3 years), upregulation of IFN-associated
mediators, as observed with autoantibodies, accumulated over a
period of years, and then plateaued close to the time of disease
classification (p<0.001). The most important predictor of
increased IFN-a activity was the number of positive
autoantibodies (p<0.001). Increased circulating IFN-a activity
and BLyS levels were also detected shortly before subjects met
SLE classification criteria (p≤0.005), suggesting that this may be a
turning point in SLE pathogenesis where immune dysregulation
is amplified by positive feed-forward mechanisms. Other studies
have also showed that early SLE patients have exacerbated type I
IFN signatures, their autoantibodies specificities have already
class-switched to IgG isotypes (106), and autoantibody
containing immune complexes drive type I IFN activation
(107–110).

Although IFN-a activity may be an important contributor to
SLE progression, not all SLE patients (only ~25%) have increased
IFN-a activity preceding SLE diagnosis or classification (92).
Hence, other forms of immune dysregulation likely accompany
IFN-a activity, such as type II IFN (IFN-g). IFN-g is important in
mediating the crosstalk between innate cells and lymphocytes,
breaking self-tolerance and enabling the activation and
persistence of autoreactive B cells (111). It modulates TLR
regulation to facilitate autoantibody production, antigen
presentation, and recruitment of lymphocytes to germinal
centers (111). It can also drive the production of IFN-a and
BLyS levels, leading to inflammation, B cell activation and
autoantibody production. Munroe et al. further found
increased levels of circulating IFN-g in pre-clinical SLE
patients prior to detectable upregulation of IFN-a and
autoantibody positivity, as well as dysregulation of the
chemokines IP-10 (CXCL10) and MCP-3 (CCL7) (92). Other
mediators that have been implicated in SLE pathogenesis and are
elevated years before SLE classification include IL (interleukin)-
12p70, MIG, IL-4, IL-5, and IL-6 (91). These chemokines, which
aid in the recruitment of cells to sites of inflammation, may also
be important biomarkers in early pathogenesis of SLE.

2.2.5 Complement Activation
Complement activation is responsible for much of the systemic
inflammation and tissue damage in SLE [reviewed (112)]. All
three pathways of complement activation are involved in SLE,
with the classical pathway, activated by antigen-antibody
complexes, being the most important in SLE pathogenesis. Low
complement C3, C4 and CH50, levels are diagnostic and disease
activity biomarkers in SLE (113). However, they are not always
reliable as they are influenced by the acute phase response,
individual differences in complement gene copy number and
expression, and variability in protein catabolism and
synthesis (114).

To overcome the limitations of measuring C3 and C4, assays
to measure cell-bound activation (split) products (CB-CAPS),
such as erythrocyte-bound C4d (EC4d) and B lymphocyte-
bound C4d (BC4d), have recently been developed. These are
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formed upon activation of the complement cascade and reflect
complement activation rather than the levels of the individual
protein. These are measured using EDTA anti-coagulated blood
by flow cytometry which can be labor intensive, but on the other
hand, sample processing is usually minimal, no centrifugation is
needed, and it does not require low temperature for storage
and transportation.

CB-CAPS are promising SLE biomarkers, shown to be more
sensitive than C3, C4, and anti-dsDNA for the SLE diagnosis
(115, 116), and more prevalent in patients with probable SLE.
When used in combination with a proprietary panel of other
autoantibodies, one study reported these biomarkers were able to
identify patients with a greater than three-fold increased risk of
developing SLE and were slightly better than complements or
anti-dsDNA alone at predicting transition to SLE among patients
with undifferentiated connective tissue disease [reviewed in (117,
118)]. These results suggest that complement activation may also
occur early in the evolution of SLE and be an important feature
in patients with suspected SLE.

2.2.6 Lifestyle and Environmental Risk Factors
Related to SLE Risk (With a Focus on Those That
Are Potentially Modifiable)
The number of factors beyond age, race, sex, family history, and
genetics that are strongly associated with risk of developing SLE
has been growing in recent years. Multiple large cohort studies
have contributed to our understanding of how lifestyle,
behavioral, psychosocial, and environmental risk factors may
converge and synergize with underlying genetic risk. This likely
leads to an acceleration of underlying and brewing
autoimmunity, allowing it to manifest in SLE. These factors
include current cigarette smoking, obesity (in particular, at
younger ages), childhood and adult trauma, stress, post-
traumatic stress disorder, low or no alcohol intake,
environmental air pollution, environmental silica, and
hormonal exposures and reproductive factors among women
[reviewed in (58, 119)]. While is it not known whether these
environmental risk factors work via similar or disparate biologic
pathways, nor whether they are perhaps also inextricably linked
to other societal risk factors that are more difficult to measure,
the picture of how and the extent to which they contribute to SLE
susceptibility is coming into focus. Gene-environment
interactions likely contribute to SLE risk, and only a handful of
these specific interactions have been discovered to date (54, 57).

In a recent, large, prospective evaluation of healthy lifestyle
behaviors and SLE risk using the Nurses’ Health Study (NHS)
and NHSII, adherence to multiple healthy behaviors (healthy
diet (highest 40th percentile of the Alternative Healthy Eating
Index), regular exercise (performing at least 19 metabolic
equivalent hours of exercise per week), never smoker or past
smoker, moderate alcohol consumption [drinking ≥5 gm/day
alcohol), and maintaining a healthy body weight (body mass
index <25 kg/m2)] was associated with a lower risk of SLE
development overall (120). There was a 19% reduction for each
additional healthy behavior and an even greater reduction (22%)
was observed for the risk of dsDNA positive SLE. Strikingly, the
risk of SLE was half as high among those with the best adherence
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to healthy lifestyle behaviors compared to among those with the
poorest adherence. Overall, the population attributable risk, or
the proportion of the risk in this population that could be
attributed to these five modifiable lifestyle risk factors was
47.7% [95% confidence interval (CI) 23.1-66.6%]. These results
suggest that lifestyle behaviors likely work synergistically to
influence the risk of SLE and potentially produce stronger
effects together than individually via common biological
pathways including production of autoantibodies and
dysregulation of pro-inflammatory cytokines. Moreover,
although much work remains to be done in disentangling the
specific pathways by which these environmental risk factors may
be related to SLE pathogenesis, this also suggest that much of SLE
may be preventable with lifestyle change, a somewhat
revolutionary concept.

Many potential biologic mechanisms and synergies are
possible. For example, exposure to obesity and toxic
components of cigarette smoke both cause oxidative stress
(121). This, in turn, increases intracellular levels of reactive
oxygen species to damage DNA forming immunogenic DNA
adducts, thereby promoting dsDNA antibody production
(section 2.2.3) (122–124). In the NHS and NHSII cohorts,
cigarette smoking was associated with a higher risk of anti-
dsDNA positive SLE than never smokers [hazard ratio 1.86 (95%
CI 1.14-13.04)] (125), a finding confirmed in other studies (126,
127). In addition to causing oxidative stress (section 2.2.1), the
by-products of smoking could also augment autoreactive B cells
in the native repertoire (126) and induce pulmonary ANA in the
lungs of exposed mice (128). Alcohol consumption, on the other
hand, contains several compounds such as ethanol and
antioxidants, that can potentially counteract the changes
induced by smoking and obesity including inhibiting key
enzymes in DNA synthesis (129, 130). Moderate alcohol intake
(≥5 gm/day or >0.5 drinks/day) was associated with a decreased
risk of incident SLE in NHS and other studies [hazard ratio 0.61
(95%CI 0.41-0.89)] (131).

Although the association between SLE risk and various diets
is less clear in humans (132–134), murine models have
demonstrated that low dietary fiber intake and Western-type
diet (i.e., high in sugar, fat, refined grains, and red meat) were
associated with increased autoantibody production in SLE-prone
mice (135, 136). A murine study also demonstrated that in mice
genetically susceptible to SLE, sleep deprivation was associated
with an earlier onset of disease and accelerated production of
autoantibodies (137). Among women followed in the Black
Women’s Health study, a diet high in carbohydrates was
associated with increased risk of developing SLE (132). The
association between lack of sleep (less than the recommended
7 hours a night) and SLE risk in humans has been reported in
several studies (138, 139). In a prospective study of 436 non-SLE
relatives of SLE patients, relatives were more likely to transition
to SLE if they reported sleeping less than seven hours a day [odds
ratio 2.8 (95%CI 1.6-5.1)] (138).

Many lifestyle factors associated with SLE development
increase levels of pro-inflammatory cytokines (section 2.2.4).
Smoking increases BLyS expression (128), Tumor necrosis
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factor alpha (TNF-a), and IL-6 (140, 141). Among positive
ANA women, elevated BLyS and lower IL-10 (an anti-
inflammatory cytokine) levels could be found among current
smokers (142). Both TNF-a and IL-6 also play important roles in
the modulation of insulin resistance (121). Adipose tissue, in
particular visceral fat, secretes pro-inflammatory adipocyte-
derived cytokines and exhibit higher levels of C-reactive
protein (CRP), TNF-a receptor 2, and IL-6 than non-obese
individuals (143). Alcohol, on the other hand, suppresses
TNF-a, IL-6, IL-8, and IFN-g to counteract systemic
inflammation (129, 130). In sleep-deprived individuals,
increased levels of IL-6, TNF-a have been observed in addition
to its role in impairing the function of T cells and CD4 regulatory
T cells, which are important in self-tolerance (section 2.2.2)
(144–148). Sleep disturbances in individuals who have had
childhood or adult trauma, post-traumatic stress disorder or
occupational stress from working nightshifts or rotating shifts,
may also explain why these factors have also been linked to SLE
onset (149–155). Systemic inflammation with elevated TNF, IL-6
and CRP levels is also found in these conditions (150, 156–164).

Other environmental and occupational related risk factors,
including chemical and physical exposures, have also been linked
to SLE onset and mechanisms involving stimulation of cellular
necrosis and relate to intracellular antigens with resulting
inflammation and IFN upregulation. These exposures include
crystalline silica dust (165–168), air pollution and other
respiratory particulates (169, 170), heavy metals such as
mercury (149), and agricultural pesticides (149, 171, 172). UV
radiation is also thought to trigger SLE onset, and it has been
shown in SLE patients and lupus-prone mice, that there is a rise
in type I IFN signaling and expansion and prolonged activation
of T cells following UVB exposure (173–175). The association of
UV radiation and SLE risk however is likely complicated by its
role in vitamin D3 synthesis in the skin, which has been
hypothesized to reduce SLE risk (176). A more detailed
discussion about vitamin D and its role in preventing SLE is
found in section 3.

Use of exogenous hormones, oral contraceptive pills, and
hormone replacement therapy have been associated with risk of
SLE (177–179). Among recent oral contraceptive pill users, a
dose response between oral contraceptive pill dose of ethinyl
estradiol and SLE risk has been demonstrated (178). Estrogen is
thought to induce autoreactivity by upregulating several genes
involved in B cell activation and survival (cd22, shp-1, bcl-2, and
vcam-1) and prevent ing B cel l receptor-media ted
apoptosis (180).

The association between infection and SLE is the Epstein-Barr
virus (EBV) has been of interest for many years. The data on
whether prior EBV infection is a risk factor for SLE development
are still unclear [reviewed in (181)]. The release of EBV-encoded
small RNA from infected cells is thought to induce type 1
interferon and proinflammatory cytokines via activating TLR-3
signaling (182). Another potential mechanism is through
molecular mimicry between EBV and SLE antigens and
epitope spreading. In a systematic review and meta-analysis of
25 case-control studies, a higher seroprevalence of anti-viral
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capsid antigen IgG [odds ratio 2.08 (95%CI 1.15-3.76)] and anti-
early antigen antibody, a marker of viral replication, was
observed in patients with existing SLE compared to health or
nonhealthy controls [odds ratio 4.5 (95%CI 3.00-11.06)] (183).
However, the results should be interpreted with caution given
there was publication bias regarding recruitment, matching and
reporting of blinded laboratory analysis and these studies do not
address whether EBV is causally related to SLE. On the other
hand, in a Danish population-based study, it was the EBV-
serologic negative individuals that had an increased risk for SLE,
particularly one to four years after serologic testing [standardized
incidence rate 6.6 (95%CI 3.3–13.2)] (184). This may reflect
surveillance bias as those patients who go on to develop SLE may
have had EBV testing as part of their workup for early SLE
symptoms. More recently, there are data to suggest that EBV
reactivation is associated with SLE disease onset. In a prospective
study of unaffected relatives of SLE patients (n=436), SLE
relatives who transitioned to classifiable SLE had increased
levels of EBV IgG antibodies prior to SLE transition compared
to relatives who did not transition (185). Furthermore, increasing
levels of EBV antibodies were associated with SLE disease
transitioning, particularly among those with variants in genes
that are associated with SLE and implicated in EBV infection.

The association between vaccinations and SLE risk remains to
be elucidated, but thus far, epidemiological studies in SLE suggest
that there is no association (186). It is thought that vaccines
could potentially trigger autoimmunity through molecular
mimicry, autoantibodies, and response to adjuvants in the
vaccine. There have been emerging reports of new-onset
autoimmune diseases including rheumatoid arthritis (187),
immune thrombotic thrombocytopenia (188), autoimmune
liver disease (189), IgA nephropathy (190), and Guillain-Barré
Syndrome [reviewed in (191)] after vaccination. However, the
evidence is from mainly case reports or cross-sectional studies
demonstrating a temporal association. There have also been a
few case reports of SLE and lupus nephritis 1-2 weeks following
COVID-19 vaccination (192–194). Without more substantive
evidence, however, individuals should be encouraged to get
vaccinated as it remains one of the most effective interventions
to prevent COVID-19 infection and related morbidity
and mortality.

2.3 Early or Preclinical SLE
During the next phase of SLE pathogenesis, still pre-diagnosis,
individuals may start to develop early non-specific symptoms of
SLE, but not yet enough to be diagnosed or classified with the
disease (12, 103). These patients are sometimes referred to as
incomplete lupus or undifferentiated connective tissue disease
(195). Eventually, some people with early and non-specific
breakdown of immune tolerance and signs and symptoms of
systemic inflammation and autoimmunity will develop more
disease features and organ damage and diagnosed or classified as
SLE. The duration of this early phase is highly variable from
individual to individual. Some may have smoldering disease
onset over years, while others experience a rapidly explosive
onset of SLE with multiple simultaneous and severe clinical
manifestations and autoantibodies. The rapidity of SLE onset
Frontiers in Immunology | www.frontiersin.org 9
likely relates to the specific combination of genetic and
environmental SLE risk factors and their interactions, and has
been shown to vary by racial ancestry (196). Depending on the
cohort and setting, it has been reported that up to half of
undifferentiated SARD patients with very early connective
tissue disease evolve to fulfill diagnostic and classification
criteria of a SARD, including SLE (197). Identifying those at
high risk of developing SLE, or in early phases of its
development, would enable a “window of opportunity”
whereby interventions could be targeted at intercepting disease
and halting or slowing the progression to SLE (87).
3 DISCUSSION: PROPOSAL OF A
CLINICAL CARE PATHWAY TO SCREEN
AND PREVENT SLE

Even before patients are diagnosed with SLE, some may suffer
irreversible organ damage, including pulmonary arterial
hypertension, cardiovascular disease, renal, and neurological
damage (198). Studies have also demonstrated that prior to
being diagnosed by an astute clinician or meeting formal
classification criteria for SLE, patients are already at higher risk
of hospitalizations and lupus-related complications (199, 200). If
these patients who are developing SLE could be identified at an
early stage, decision‐making regarding preventative strategies
and therapeutic interventions could be improved.

An appropriate screening and prevention program for SLE
has great potential to improve public health outcomes. When
organized effectively, it would be targeted to identifying those at
risk for SLE to prevent disease development, reduce disability,
and cut mortality through early detection and treatment. This
will be challenging however, given that SLE is a rare disease in the
general population. Here we proposed a clinical care pathway for
the screening and prevention of SLE (Figure 2) involving four
different levels that start with targeting patients who are at
genetic risk, the asymptomatic autoimmunity stage, pre-
clinical, and finally clinical disease states as discussed in the
section above.

3.1 Risk Assessment and Early Detection
Currently, there is no consensus concerning how to identify
individuals at high risk for SLE or at what preclinical phase of
disease should a patient be referred to see a rheumatologist.
Given that SLE is a relatively rare disease with an incidence of
about 1/2000 in the general population, most hypothetical
screening programs would have to rely on inexpensive, readily
available, and accurate tests (201). Population studies have used a
30-item questionnaire that can be completed within 30 minutes
called the Connective Tissue Disease Screening Questionnaire
(CSQ) to screen populations for SLE and other connective tissue
diseases (202). It has high sensitivity for SLE (96%, 95%CI 90-
99%) but moderate specificity (86%, 95%CI 81-91%) and has
been validated among African American women (203). It is best
employed in a two-stage screening method followed by medical
record review or in-person assessment and should not be used as
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a test on its own due to the high false-positive rate. The ANA is
the biomarker that we utilize today to “screen” for autoimmune
connective tissue diseases, including SLE (204–206). However, as
the ANA test is most usually performed when patients already
have symptoms, it is not really a population-based screening test.
As some patients may already have organ damage, ideally, those
patients should be caught earlier in the asymptomatic
autoimmunity and early preclinical phases, prior to clinical
signs and symptoms. In this review, we highlighted numerous
biomarkers that have shown promise in the identification of at-
risk patients that could be detected in these earlier phases
(section 2). These included autoantibodies such as ANA and
anti-SSA/Ro60, genetic susceptibility loci, and upregulated
cytokines/chemokines that coincide with timing of the initial
appearance of autoantibodies, as well as markers of
complement activation.

While some of these tests are readily available and accessible,
there are several questions related to their use for screening
purposes that need to be clarified. To better understand what
makes a screening program appropriate, there are ten principles
laid out by the 1968 World Health Organization that prompt
important discussion about the benefits, harm, costs and ethics of
a screening and prevention programs (207). If a program for SLE
were implemented today, it would likely satisfy many of the
criteria such as 1) “the condition should be an important health
problem”; 2) “there should be an accepted treatment for patients
with recognized disease”; 3) “facilities for diagnosis and
treatment should be available”. However, there is still
uncertainty surrounding some of the other criteria. Specifically
related to testing, for instance, it is unclear if a biomarker test or
panel were administered to screen for SLE in the general
population that, “the cost of case-finding (including a
diagnosis and treatment of patients diagnosed) [would] be
economically balanced in relation to possible expenditure on
medical care as a whole.” We have yet to determine the
Frontiers in Immunology | www.frontiersin.org 10
population that should be targeted for screening. However, it
may be reasonable to narrow the screening eligibility criteria,
based on the evidence from epidemiological studies to
individuals from high-risk populations.

Preliminary data using the NHS and NHSII cohorts
demonstrate that a weighted GRS in combination with lifestyle
and environmental risk factors predicted future SLE risk with a
good area under the curve of 0.77 (208). Therefore, using a GRS
in combination with other risk factors assessment may be a
valuable tool that may feasibly be employed in at-risk
populations for predicting disease (Table 2). Once these
patients have been identified, they could then be referred and
potentially enrolled in prevention trials (discussed in 3.2.2
Preventative Therapies). Other prevention efforts targeting
individuals at high genetic risk for lifestyle modification type of
prevention trials could also be envisioned.

3.2 Early Intervention
3.2.1 Lifestyle Modification
We discussed several modifiable risk factors that health care
providers should encourage their patients who may be at risk for
SLE to address, including smoking cessation, moderate alcohol
consumption, regular exercise, avoidance of certain occupational
and environmental exposures, medications, and maintaining a
healthy weight and good sleep hygiene. The cost-effectiveness of
adopting a healthy lifestyle is clear in that it is not only the risk of
SLE that would be reduced, but that of many other chronic and
complex diseases. To test the effectiveness of lifestyle
interventions in actually reducing SLE risk, a primary
prevention clinical trial would be necessary, but would be
very challenging.

It is important to recognize that while the evidence suggests
providers should encourage patients to adhere to as many
healthy behaviors as possible for the greatest reduction in SLE
and other chronic disease risk, there are many structural and
FIGURE 2 | Clinical care pathway for the screening and prevention of SLE. Dx, diagnosis; GRS, genetic risk score.
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institutional factors that affect an individual’s ability to adhere or
achieve a healthy lifestyle. These include poverty, pollution,
toxins, stress, and institutional and structural racism, among
others, which have disproportionately affected non-White
groups in the United States, who are also the same groups with
the highest incidence and severity of SLE. Future studies should
examine how to improve adherence to lifestyle interventions and
address barriers that prevent or limit ability to meet healthy
goals, especially among sociodemographic groups that are
medically vulnerable.

3.2.2 Preventative Therapies
The first prevention trial in SLE is the Study of Anti-Malarials in
Incomplete Lupus Erythematosus (SMILE), a multi-center,
randomized, double-blind, placebo-controlled trial of HCQ
compared to placebo, a 24-month clinical study (209). The
purpose of this trial is to evaluate the efficacy and safety of
HCQ intervention to prevent future onset of clinically apparent
SLE. The inclusion criteria are patients 15-49 years of age with a
positive ANA and at least one (but not three or more) additional
clinical or laboratory criterion from the 2012 SLICC
classification criteria (210). This study is expected to be
completed in 2023. This study was initiated after James et al.
demonstrated in a retrospective study on 130 United States
military personnel that individuals who were treated with
HCQ prior to SLE diagnosis had delayed the onset of complete
SLE compared to untreated patients (median: 1.08 years versus
0.29 years) (18). Furthermore, individuals who had received
HCQ in that study had slower accumulation of new
autoantibodies. Other small studies showed that patients with
incomplete SLE or new-onset, mild SLE treated with HCQ had
lower levels of IFN-inducible genes, serum BLyS levels (also
known as B cell–activating factor or BAFF), anti-C1q antibodies,
IL-9, and better self-reported health status scores (86, 211). These
results support the hypothesis that HCQ could influence SLE
disease progression. Therefore, the SMILE trial will not only
inform clinicians as to whether HCQ can be used to prevent SLE,
but it will be the first step towards testing feasibility of disease
prevention studies in SLE.
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Recently, the results of a large (25,871 participants)
randomized, double-blind, placebo-controlled, two-by-two
factorial design trial examined the impact of vitamin D
(cholecalciferol; 2000 IU/day) and marine omega 3 fatty acids
(1 g/day as a fish oil capsule containing 460 mg of
eicosapentaenoic acid and 380 mg of docosahexaenoic acid) on
the incidence of various autoimmune diseases (212). The
investigators found a reduction in autoimmune disease by 22%
with vitamin D supplementation for five years, with or without
omega 3 fatty acids, reduction by 15% with omega-3 fatty acid
supplementation with or without vitamin D (not statistically
significant). While there were too few new cases of SLE to be
examined in this older population (men age 50 and older and
women age 55 and older), vitamin D deficiency is common in
SLE (213) and is important for regulating numerous genes
involved in inflammation and the immune system through IL-
2 inhibition, antibody production, and proliferation of
lymphocytes (214, 215). Additionally, prior small cohort
studies in SLE on specialized pro-resolving mediators (SPMs),
a family of omega-3 fatty acid-derived lipid mediators, suggest
that specific SPMs, such as the resolvins and lipoxins, may
counter-regulate the production of inflammatory mediators
and promote resolution of inflammation (216, 217). Further
studies to examine whether omega-3 fatty acid supplementation
can affect SPM levels and thereby forestall the development of
SLE in at-risk populations will be needed.

Another potential therapy to decrease SLE risk that has been
proposed is melatonin. Disrupted melatonin production in
nightshift workers has been proposed as an important
mechanism of increasing risk for autoimmune diseases including
SLE [reviewed in (218)]. In lupus-prone mice, abnormal circadian
rhythm of melatonin levels in response to light/dark cycle has been
observed (219).Whenmelatonin was administered to lupus-prone
mice, there was decreased levels of autoantibodies, inflammatory
cytokines, reduce renal injury, and increased levels of anti-
inflammatory cytokine IL-10 (220, 221), particularly for females.
Further studies in humans are called for to investigate the
mechanism by which melatonin may be related to SLE risk and
whether it could be a potential therapeutic strategy.
TABLE 2 | SLE risk stratification chart.

Types of Risk Factors: Epidemiological, immune biomarkers, lifestyle and
environmental

Genetic Risk

Low Risk
-No high-risk alleles

-Low GRS
-No family history

↔ High Risk
-Multiple high-risk alleles

-High GRS
-Positive family history

No risk factors Low Risk Low Risk Moderate
Risk

High Risk Very High
Risk

1-2 types of risk factors Low Risk Low Risk Moderate
Risk

High Risk Very High
Risk

All 3 types of types of risk factors present Moderate
Risk

Moderate
Risk

Moderate
Risk

High Risk Very High
Risk

All 3 types of types of risk factors present with 1-2 SLE features High Risk High Risk High Risk High Risk Very High
Risk

3 or more types of risk factors with multiple SLE features but not enough to meet
classifiable disease

Very High
Risk

Very High
Risk

Very High
Risk

Very High
Risk

Very High
Risk
June 2022 |
 Volume 13 | A
GRS, genetic risk score; SLE, systemic lupus erythematosus.
rticle 890522

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choi and Costenbader Prevention of SLE
It is important to recognize that there are significant barriers
to conducting prevention trials in SLE. A major challenge faced
by past SLE prevention trials is low patient recruitment and
retention. A lack of enthusiasm among clinicians and
patients due to risk aversiveness and misunderstanding or
misinterpretation of the purpose of prevention trials have
resulted in underenrollment and selective enrollment, poor
adherence, and attrition in some studies (222–224). Whereas
good health status, encouragement from one’s physicians, desire
to learn and contribute to research are positive factors for
participation in SLE prevention trials (225). Therefore, future
prevention trials in SLE should employ strategies such as health
education about the clinical problem and importance of the trial,
and involving the patients personal physicians to improve
recruitment of SLE patients into prevention trials (225).
4 CONCLUSION

Developing a deeper understanding of SLE pathogenesis, its
preclinical stages, and risk factors, will ultimately enable
effective screening and potentially prevention. This may appear
to be a daunting task; however, tremendous progress has been
made over the last few decades with greater insights into the
Frontiers in Immunology | www.frontiersin.org 12
etiopathogenesis of SLE, identification of novel biomarkers for
early SLE detection, epidemiologic and genetic studies that have
revealed important risk factors, and the first prevention trial in
SLE is already underway. Well-designed prospective clinical
studies to further elucidate the mechanisms of disease
development and more clinical prevention trials are needed.
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