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Liver ischemia-reperfusion injury (IRI) is a major complication of liver trauma,

resection, and transplantation. IRI may lead to liver dysfunction and failure, but

effective approach to address it is still lacking. To better understand the cellular

and molecular mechanisms of liver IRI, functional roles of numerous cell types,

including hepatocytes, Kupffer cells, neutrophils, and sinusoidal endothelial

cells, have been intensively studied. In contrast, hepatic stellate cells (HSCs),

which are well recognized by their essential functions in facilitating liver

protection and repair, have gained less attention in their role in IRI. This

review provides a comprehensive summary of the effects of HSCs on the

injury stage of liver IRI and their associated molecular mechanisms. In addition,

we discuss the regulation of liver repair and regeneration after IRI by HSCs.

Finally, we highlight unanswered questions and future avenues of research

regarding contributions of HSCs to IRI in the liver.
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Introduction

Liver diseases have become one of the leading causes of death worldwide in the past

few decades. It was estimated that over two million deaths were attributed to major liver

diseases, such as cirrhosis and liver cancer (1), highlighting the demand for liver

transplantation, which is currently the optimal treatment for end-stage liver diseases.

Upon restoration of blood supply after interruption, the liver subjects to further injury

that aggravates the initial injury caused by ischemia. This pathophysiological process is

called liver ischemia-reperfusion injury (IRI) (2). Liver IRI can be classified into warm

and cold IRI, which share similar mechanisms with differences mainly in the clinical

settings (3). Warm IRI, initiated by hepatocellular damage, develops in situ during liver

trauma and transplantation where hepatic blood flow falls transiently. Cold IRI, initiated

by liver sinusoidal endothelial cells (LSECs) damage and microcirculatory disruption,

occurs ex vivo during cold storage of the liver before transplantation surgery (4). Liver

IRI is a critical complication in several clinical settings including liver trauma, resection,
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and transplantation (5–7). The degree of liver IRI depends on

the period, methods of ischemia, and baseline liver condition (8).

Continuous occlusion as short as 5 min can still lead to liver

damage 1 d postoperatively in rat model of liver IRI, and IRI is

much exacerbated in steatotic liver (9). IRI is an important cause

of liver dysfunction (10), yet no reliable treatment option has

been discovered. A better understanding of the cellular and

molecular mechanisms of liver IRI may lead to improvements to

clinical outcomes of liver disease patients, particularly those

undergoing liver transplantation.

Substantial knowledge has been accumulated in regard to

mechanisms underlying hepatic ischemic injury due to success

of animal models. It is proposed that liver IRI consists of initial

and late phases with distinct pathophysiological characteristics.

Initial phase of liver IRI occurs 1-3 h after reperfusion (11–13),

and manifests as rapid Kupffer cell activation after reperfusion

(11, 14). Reactive oxygen species (ROS) is released by Kupffer

cells, leading to oxidative stress and liver injury. Subsequently,

the early liver injury triggers the release of a series of pro-

inflammatory cytokines, such as TNF-a and IL-1b, inducing
immune cell recruitment and more severe liver injury (15). The

late phase of liver IRI, which occurs at 6-24 h after reperfusion

(11, 12), is characterized by the recruitment of neutrophils to the

liver and subsequent damage to hepatocytes (14).

Multiple cell types, including hepatocytes, liver sinusoidal

endothelial cells (LSECs), Kupffer cells, hepatic stellate cells

(HSCs) extrahepatic macrophages, neutrophils, and platelets,

are involved in the progression of liver IRI (14, 16). Hepatocytes

and LSECs are the main cell types subject to IRI induced cell

death (17). Extensive studies indicate that Kupffer cells play a

critical role in regulating IRI by promoting inflammatory injury

mediated by cytokines and chemokines (2, 17). Neutrophils act

as the main actor of cell injury during liver IRI following their

recruitment to the liver regulated by Kupffer cells releasing of

chemokines. Upon migration and infiltration to the liver,

neutrophils respond to signals released by injured hepatocytes,

inducing release of ROS and degranulation to cause further

injury (17, 18). HSCs, which reside in the perisinusoidal space of

liver and are known for their essential function of regulating

hepatic fibrosis (19), has not been long investigated in liver IRI.

As more recent studies shed light in the role of HSCs in liver IRI,

we aimed to summarize the effects of HSCs on regulation of liver

IRI in both injury and repair/regeneration stages, their

intercellular communications with other cell types during IRI,

and the associated molecular mechanisms.
Quiescence and activation of
HSCs in liver IRI

HSCs are localized in the subendothelial space of Disse

between hepatocytes and LSECs and comprise approximately
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15% of total cells in human liver (20). Due to anatomic features,

intercellular crosstalk can occur between adjacent cell types

including hepatocytes, Kupffer cells, bone marrow-derived

macrophages, LSECs, infiltrating leukocytes, and nerve cells (20,

21). HSCs are identified by expression of both mesenchymal and

neuronal markers including desmin, vimentin, nestin, and glial

fibrillary acidic protein (GFAP) (22). Under physiological

circumstance, HSCs sustain a non-proliferative and quiescent

phenotype with angular, rounded cell bodies, extended

cytoplasmic processes, and unique vitamin A storage in lipid

droplets (23). In normal liver, HSCs contribute to liver

regeneration, regulation of sinusoidal circulation, and vitamin A

storage and release (24–26). HSCs are important sources of

myofibroblasts during liver damage (27). When liver injury

occurs, however, HSCs become activated and transdifferentiate

into proliferative, contractile, and inflammatory myofibroblasts,

which are characterized by secretion of extracellular matrix

(ECM) molecules (28, 29). In this condition, HSCs are marked

by expression of a-smooth muscle actin (a-SMA) (30). Activated

HSCs secrete endothelin-1 (ET-1), which is a molecule with

potent vesoconstricting effect, promoting proliferation and

fibrogenesis, and thus is supposed to contribute to portal

hypertension (31, 32). HSCs have been identified as a critical

driver offibrosis in liver injury (19, 33). It is postulated that during

liver IRI, HSCs are activated by TNF-a, IL-6, and nitric oxide

(NO), followed by transdifferentiation into myofibroblast

phenotype (17). Activation of HSCs results in secretion of

matrix metalloproteinases (MMPs), cytokines, and chemokines,

leading to ECM destruction, further activation of HSC, and

infiltration of neutrophils and platelets (17). These effects imply

HSCs can play an important role in regulating hepatic

inflammation during IRI.
Effects of HSCs on liver IRI

Functional roles of HSCs in injury stage of hepatic IRI has

received much less attention than Kupffer cells, partly because

functional inhibitor of Kupffer cells, gadolinium chloride, has

enabled direct manipulation of these cells in experimental

models (34). HSCs as a whole promote liver damage in the

early phase of IRI, but they may mediate protective effect upon

some pharmacological interventions or external stimuli as well.

Thus HSCs may be regulated by specific signaling to combat IRI

in the liver. Figure 1 summarizes the molecular mechanisms of

liver IRI mediated by HSCs, which are discussed below.

The involvement of HSCs in liver IRI was proposed based on

preliminary observational studies. For instance, Takeda et al.

found that heparin diminished serum levels of ET-1, aspartate

transaminase (AST) and recovered hepatic IRI induced

disturbance of oxidized and deoxidized hemoglobin after 1 h

of IRI in rabbit model. Interestingly, electron microscopy
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revealed that IRI induced structural alteration of HSCs, which

were target cells for ET-1, was normalized upon administration

of heparin (35). These results suggested that HSCs mediated

liver protective effect of heparin via microcirculation regulatory

molecule ET-1. Further studies supported HSC’s role in hepatic

IRI was partly mediated by regulation of microcirculation. HSCs

play a key role in regulating hepatic microcirculation. In

response to some stimuli, HSCs can contract or relax

themselves, thus enlarging or shrinking the diameter of the

sinusoidal lumen (36). Rho family of small GTPases regulates

cell structure and motility mainly via rearrangement of actin

cytoskeletons (37, 38). Rho-associated coiled-coil forming

protein serine/threonine kinase (ROCK) was identified as one

of the critical regulators of HSCs motility (39). In contrast to the

scenario where HSCs appear to protect hepatocytes against IRI,

HSCs drive liver injury mediated partly by ROCK.

Administration of a specific inhibitor of ROCK named Y-

27632 in rat attenuated IRI induced liver dysfunction

manifested as increased deoxidized hemoglobin, decreased

cytochrome oxidase, and elevated transaminase 1 h after

reperfusion (40, 41). Consistently, Y-27632 resulted in

relaxation of HSCs even in the presence of ET-1 in vitro (41).

Liver protective effect of ROCK inhibition on IRI was also

confirmed by another study in rat with steatotic liver. Kuroda

et al. demonstrated that suppressing ROCK with specific

inhibitor fasudil ameliorated IRI induced increase in portal

perfusion pressure and liver damage at early stage of IRI in

steatotic liver (42). In particular, Rho/ROCK signaling in HSCs

from steatotic livers was activated and the activation was related

to increased contractility and ET-1, making it more vulnerable to
Frontiers in Immunology 03
IRI (42). Specificity of the effect of ROCK regulator on HSCs was

further supported by the findings that HSCs targeting inhibition

of ROCK by vitamin A-coupled liposomes suppressed HSC

activation, hepatic blood supply, portal perfusion pressure

during early hepatic IRI, and improved survival rate after the

damage in rat steatotic liver (43).

A more clear landscape of functions of HSC in liver IRI is

delineated by specific manipulating approaches for HSCs in vivo.

Functional experiments in rodent model suggest that HSCs

exacerbate injury during hepatic IRI mediated by TNF-a and

ET-1. Exploiting genetically engineered mice expressing HSV-

thymidine kinase under the GFAP promoter coupled with

ganciclovir and CCL4 to eliminate actively proliferating HSCs,

a seminal research by Stewart et al. showed that hepatic injury in

both IRI and endotoxemia scenarios was attenuated in HSCs

depleted mice (approximately 70%) (44, 45). The decreased

injury was accompanied by significantly reduced hepatocyte

pro-inflammatory cytokine TNF-a, neutrophil expression of

chemoattractant CXCL1 and endothelin-A receptor (45). Of

note, liver IRI and endotixin-induced acute injury might share

similar cellular pathogenesis via HSC regulated inflammation.

However, the time to evaluate the liver damage, mRNA and

protein expression was not mentioned in this study, making it

not feasible to infer whether HSCs regulate early or late liver IRI.

Pharmacological approach alone has also been found to deplete

HSCs in vivo. Gliotoxin induces apoptosis in both human and

rat HSCs in vitro, and rat HSCs in vivo leading to resolution of

fibrosis (46–48). Liver IRI in early phase was significantly

reduced and sinusoidal perfusion was recovered by

pretreatment with gliotoxin in HSCs decreased rat, suggesting
FIGURE 1

Cellular and molecular mechanisms by which HSCs modulate liver IRI. Solid arrows indicate positively regulatory effect with supporting
experiment data, whereas dash arrows indicate putative positively regulatory effect. KC, Kupffer cell; TC, T cell; HSC, hepatic stellate cell; MMPs,
matrix metalloproteinases; ROCK, Rho-associated coiled-coil forming protein serine/threonine kinase; ET-1, endothelin-1.
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HSCs exerted exacerbating effect on the magnitude of early liver

ischemic injury (49).

Matrix metalloproteinases (MMPs) are a family of zinc-

dependent proteases which are essential in the degradation of

ECM to enable cellular movement and tissue reorganization (50).

MMP activation and release are involved in liver IRI due to their

profound effects on tissue integrity (51). It has been asserted that

prolonged or over expression of MMP exerts harmful effects on

the liver (52). Kupffer cells and HSCs are main sources of MMPs

in the liver, although LSECs and leukocytes can also secreteMMPs

(50, 53, 54). The involvement of MMPs in liver IRI is

demonstrated by their concomitant expression and functional

effects. HSCs contribute to MMP-9 production in the liver (55,

56). MMP-9 is increased 6 h after hepatic IRI in the steatotic rat

orthotopic liver transplantation (OLT) model, and serumMMP-9

is elevated significantly 7 d post IRI in human OLT (57, 58).

Furthermore, several MMPs, including MMP-9, are induced

during early phase of liver IRI, and blocking MMPs with

specific inhibitors reduces liver IRI and the release of

proinflammatory cytokines (12, 59). MMP-9 deficiency and

anti-MMP-9 neutralizing monoclonal antibodies also result in

protection against damage during early phase of liver IRI in

mice (60).

Despite the in-vivo data indicating HSCs exacerbate damage

during IRI collectively, they may aid in or mediate liver

protection via distinct signals. ROS have been proposed as key

initiators of IRI response in the liver by causing direct cellular

damage and inducing inflammatory response via high mobility

group box‐1 (HMGB1) and NF-kB (61–63). An in-vitro study

suggested that HSCs protected hepatocytes against ROS injury

(64). In addition, pretreating mice with HSCs ameliorated liver

IRI at 12 h after reperfusion in a regulatory T cells (Tregs)-

dependent manner (65). It should be noted that, however, the

HSCs administered were primary cell lines not subject to

activation following hypoxia/reoxygenation (H/R) stress, which

could largely explain the differences with HSC depletion results

in-vivo. Post-conditioning with the volatile anesthetic drug

sevoflurane protected the liver from IRI 1 d post reperfusion

in a randomized controlled trial, and in-vitro study suggested

that HSC might be the effector of the protection by reducing

apoptosis of hepatocytes (66, 67). More specifically, supernatants

of HSCs previously exposed to H/R induced apoptosis of

hepatocytes, but this effect was attenuated with sevoflurane

postconditioning (67). Fibroblast growth factor 10 (FGF10)

belongs to the fibroblast growth factor (FGF) family, whose

members play crucial roles in organ development, homeostasis,

and repair (68). FGF10 binds to fibroblast growth factor receptor

2b (FGFR2b) and this signaling controls hepatoblast survival

and liver size (69, 70). Li et al. demonstrated that HSCs secreted

fibroblast growth factor 10 (FGF10) in vitro, which ameliorated

inflammation and necrosis, and protected hepatocytes from

apoptosis during early phase of liver IRI in vivo (71). These
Frontiers in Immunology 04
results elucidated the protective effects of FGF10 in early liver

IRI, and strongly implied these effects were modulated by HSCs.
HSCs in liver repair and regeneration
after IRI

The liver has a large regenerative capacity following physical

or functional loss, with the potential of hepatocyte proliferation

to sustain liver function. Necrotic tissue in the postischemic liver

is cleared and remodeled by phagocytes, HSCs, and other cells,

followed by hepatocyte regeneration and reconstruction of

functional liver architecture (14). Far less is elucidated about

the mechanisms of these processes compared with the

mechanisms of hepatic IRI. Particularly, the role of HSCs in

the process of liver repair after IRI is not clear (72).

MMPs derived from HSCs may promote liver repair after

IRI in the liver, although they have been shown to promote

damage by destruction of ECM and recruitment of leukocytes

(73). Specifically, reduction in liver damage at 24 h after

reperfusion and significant delay of liver repair after 72 h of

reperfusion were observed in MMP-9 knockout mice, compared

with wild type mice (74). MMP-9 was found to increase TGF-b
activation after IRI. In-vitro study showed that MMP-9 activated

TGF-b secreted by HSCs, indicating involvement of HSC in liver

repair (74). A recent study exquisitely examined pathology of

liver fibrosis during the repair process after IRI and highlighted

involvement of HSC and MMPs. Konishi et al. found that the

number of activated HSCs increased along the damaged areas 1

wk after IRI (72). Liver fibrosis took place at the interface

between necrotic site and regenerating liver associated with

HSCs during the reparative process after IRI, and noticeably,

the number of HSCs decreased shortly after resolution of injury

and restoration of disrupted liver structure. They also

investigated the expression of several MMPs related to

degradation of extracellular matrix components and reported

that the expression of MMP-2 and MMP-9 increased at 1 wk

after liver IRI and diminished thereafter. In contrast, MMP-13

expression remained at low level 1 wk after IRI but significantly

elevated after 2 wk and the trend was stable up to 8 wk post IRI.

The trends of MMP-2 and MMP-9 expression were associated

with resolution of liver fibrosis and concomitant increase and

decrease thereafter in the number of activated HSCs (72). Akin

to MMP-9, MMP-13 is expressed in and produced by HSCs (75,

76). In relation to the injury stage, MMP-9 plays both deleterious

and protective roles in hepatic IRI, which is dependent on the

timing (74). It can be inferred from the pathological findings and

source of MMPs that HSCs participate in the reparative process

after liver IRI.

Recent innovative works involving Yes-associated protein

(YAP) also underline the critical role of HSC in liver repair and

regeneration after IRI. YAP and transcriptional coactivator with
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PDZ-binding motif (TAZ) are downstream effectors of the

Hippo signalling pathway, which have been identified as

essential regulators controlling cellular proliferation and organ

size (77). Marked activation and proliferation of HSCs was

observed at both injury and repair/regeneration phases after

liver IRI in mice, with concurrent selective activation of YAP and

TAZ and expression of their target genes. Inhibiting YAP and

TAZ after injury phase significantly diminished HSC and

hepatocyte proliferation, suggesting the dependence of liver

repair and regeneration after IRI on HSC (78). Liu et al.

demonstrated that YAP inhibition prior to ischemia and

reperfusion operation delayed liver repair and increased

hepatic fibrosis at 7 days after IRI. These changes were

associated with enhanced HSC stimulation manifested as

fibrogenic and contractile characteristics in-vitro (79). This

study indicated HSC might serve as a regulator of liver repair

and fibrogenesis in an YAP dependent manner.

HSCs contribute to liver fibrosis during reparative process

after IRI. ECM accumulation generated by HSCs potentiates at

the boundary between necrotic and hepatocyte regenerating

region. Resolution of liver fibrosis is associated with decreased

activation of HSC (72). In fibrotic liver, HSCs may also promote

liver repair after IRI. Fibrotic liver shows more severe injury

but more rapid repair and regeneration compared with

nonfibrotic liver in mice, which are accompanied by

prominent accumulation of HSCs in fibrotic liver in early

reparative phase (80).
Intercellular communications
involving HSCs in liver IRI

The signaling cascades leading to hepatic damage are various

and complex, involving interactions between hepatocytes, Kupffer

cells, HSCs, LSECs, recruited neutrophils, macrophages, and

platelets (81). HSCs are highly versatile cells with complex

crosstalk with residential hepatic cells and circulating immune

cells, including hepatocytes, Kupffer cells, LSECs, natural killer

cells (NK cells), T cells, and B cells (26, 27, 82, 83). This notion is

demonstrated with enormous evidence mainly in the context of

chronic hepatic injury leading to hepatic fibrosis, such as viral

infection and alcoholic liver disease, but only a few works

elucidate the crosstalk involving HSCs in liver IRI. As

mentioned above, Kupffer cells are fundamental drivers of the

early hepatic IRI. The crosstalk between Kupffer cells and HSCs

were validated by in-vitro model (84, 85). This crosstalk was

mediated by H2O2 and IL-6 (84). Furthermore, Kupffer cells can

activate HSCs in vitro and in vivo mediated by IL-1 and TNF

during fibrogenesis (86). It is believed that TNF-a and IL-6

released by Kupffer cells activate HSCs in the early phase of

liver IRI (17). As liver fibrosis is a component of liver repair after

IRI (72), Kupffer cells may induce activation and proliferation of
Frontiers in Immunology 05
HSCs in the recovery of IRI. In the scenario of liver fibrosis

following chronic liver injury, activation and proliferation of

HSCs are induced by TNF-a, IL-6, TGF-b, platelet-derived
growth factor (PDGF), and ROS secreted by Kupffer cells (87,

88). CD4+ T cells are essential in promoting pro-inflammatory

immune response in the liver and play an important role in

hepatic IRI (89–91). Reifart et al. reported that CD4+ T cells

interacted with HSCs along their migration to the liver in vivo.

Depletion of HSCs diminished CD4+ T cell recruitment to the

postischemic tissue and protected the liver from IRI (92). LSECs

form the vascular wall of the liver sinusoid and play crucial

protective roles in vascular homeostasis, and inflammation.

LSECs are prominently vulverable to IRI, making them one of a

key factors leading to hepatic IRI (81). LSECs suffering from

ischemic challenge decrease production of NO, and together with

elevated ET-1 production, contribute to contraction of HSCs.

These events lead to narrowing of the sinusoidal lumen and

microcirculatory dysfunction (81, 93). Cellular and molecular

mechanisms by which HSCs regulate hepatic IRI are shown

in Figure 1.
Conclusion and future direction

Despite decades of research into the development of liver IRI

and its intervention, liver IRI is still a major cause of mortality and

morbidity after hepatic surgery and transplantation. Much less

attention has been focused on the roles of HSCs in liver IRI

compared to other cell types involved. HSCs become activated and

proliferate in response to IRI, likely through signals from Kupffer

cells. HSCs promote early phase hepatic IRI by constraining

hepatic microcirculation mediated by ROCK, effects of ET-1

signalling, and pro-inflammatory cascades initiated by TNF-a.
MMPs derived from HSCs may also increase damage by

destruction of ECM and recruitment of leukocytes. HSCs can

mediate hepatic protective effect via external stimuli such as

sevoflurane, and FGF10. During the repair and regeneration

stage, HSCs play an fundamental role in potentiating liver

recovery. Molecular mechanisms involve activation of TGF-b
signalling pathway by MMP-9, activation of YAP and TAZ.

During the reparative stage of liver IRI, HSCs also regulate

fibrogenesis, the extent of which may be critical to functional

recovery of the liver.

Future research regarding involvement of HSCs in liver IRI

can be aimed at three directions to aid in better understanding of

the pathophysiology of IRI and development of novel therapeutic

interventions. Intercellular communications between HSCs and

other cell types should be studied using in vivo visualization

techniques and cell-type specific genetic animal models.

Furthermore, it is clinically useful to identify HSCs derived

biomarkers predictive of transplantation outcomes with less

expensive modern multi-omics technologies. It is of paramount
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importance to screen and identify novel agents to ameliorate

hepatic IRI, given that clinical trials of many drugs targeting HSCs

for anti-fibrosis are completed or under way (26). An update of

the clinical trials and drugs is shown in Table 1 (94–99). Because

HSCs contribute to damage and repair of liver IRI, it is likely that

anti-fibrotic drug has an effect on combating IRI.
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